Perl Scripts, Applications & Tips for Database Administrators

O’REILLY"

Andy Duncan & Jared Still

9

Oracle/Perl

O’REILLY"
Perl for Oracle DBAs

Perl is a very powerful tool for Oracle database administration, but too few DBAs
realize how helpful Perl can be in managing, monitoring, and tuning Oracle databases.
J Whether you're responsible for Oracle9i, Oracle8i, or earlier databases, you'll find Perl
an invaluable addition to your database administration arsenal.

You don't need to be a Perl expert to use the excellent applications and scripts described in

Perl for Oracle DBAs. The book explains what you need to know about Perl, provides a wealth of

ready-to-use scripts developed especially for Oracle DBAs, and suggests many resources for further

exploration. It covers:

e The Perl language—an introduction to Perl, its rich history and culture, and its extensive text
processing and data transformation capabilities.

e The Perl/Oracle architecture—detailed information about Perl DBI, DBD::Oracle, the Oracle

Call Interface (OCI), Oracle::OCI, extproc_perl, and mod_per!, the modules that allow Perl
programs to communicate with Oracle databases.

e Perl applications for Oracle DBAs—profiles of the best Perl Open Source applications available
for use and customization by Oracle DBAs: Perl/Tk, OraExplain, StatsView, Orac, DDL::Oracle,
SchemaDift, Senora, DBD::Chart, SchemaView-Plus, Oracletool, Karma, Embperl, and Mason.

e The Perl Database Administration (PDBA) Toolkit—a comprehensive suite of specialized scripts
designed to help Oracle DBAs perform both routine and special-purpose tasks: monitoring
the Oracle alert log and databases, creating and managing Oracle user accounts, maintaining
indexes and extents, extracting DDL and data, troubleshooting and tuning database problems,
and much more. The book also explains how you can extend the toolkit and solve your own
database administration problems using Perl.

“Any tools that belp the skilled and often demanding work of an Oracle DBA are to be wel-
comed—and this book is full of them. It describes not only many powerful utilities, but also
the Open Source components from which they’re built. It will empower Oracle DBAs to cus-
tomize and develop solutions for their unique requirements.”

—Tim Bunce, Author of the Perl DBI

“A wonderful book! Real-world problems that every DBA has struggled with, solved using
a practical step-by-step approach, plus a pinch of bumor). DBAs will find the toolkit and
utilities extremely valuable; they might even find that they write a few lines of Perl them-
selves.”

—Andrew Carr, Director,
Developer Evangelism, Oracle Corporation

www.oreilly.com

US $44.95 CAN $69.95
ISBN-10: 0-596-00210-6
ISBN-13: 978-0-596-00210-7

54495
OO g

7805967002107

Perl for Oracle DBAs

<WO0D"00gIMOM MMM > Y00ga jMOA\ WOLS PROJUMO(Q

Perl for Oracle DBAs

Andy Duncan and Jared Still

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Perl for Oracle DBAs
by Andy Duncan and Jared Still

Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deborah Russell
Production Editor: Darren Kelly

Cover Designer: Emma Colby
Interior Designer: David Futato
Printing History:

August 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of thread-winged
lacewings and the topic of Perl for Oracle DBAs is a trademark of O’Reilly & Associates, Inc.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation, Inc. in the United States and other countries. O’Reilly & Associates, Inc. is
independent of Oracle Corporation.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00210-6
(M]

Table of Contents

Preface ix
Partl. Introducing Perl for Oracle
1. PerlMeetsOracle 3
What is Perl? 4
The Perl/Oracle Architecture 10
Perl for Oracle DBAs 15
For Further Information 24
2. InstallingPerl 28
Installing Perl 28
Installing Per] DBI 38
Running Per] DBI 48
Installing Cygwin 51
Partll. Extending Perl
3. PerlGUIEXtensions 65
Perl/Tk 66
OraExplain 72
StatsView 74
Orac 82
DDL::Oracle 84
SchemaDiff 90
Senora 92

DBD::Chart 95

SchemaView-Plus 104
Open Source Perl IDEs 107
Open Source Perl GUI Debuggers 108
4. PerlWebExtensions 110
Apache 111
Oracletool 118
Karma 127
5. Embedding Perl into Apache withmod_perl 136
mod_perl 137
Apache::OWA 155
6. Embedded Perl Web Scripting 161
Embperl 162
Mason 169
7. Invoking the Oracle Call Interface with Oracle::0CI 178
What is Oracle::OCI? 179
What Is OCI? 180
Installing Oracle::OCI 185
Coding with Oracle::OCI 190
The Future of Oracle::OCI 198
8. Embedding PerlintoPL/SQL, 201
Communication Between Perl and PL/SQL 202
Embedding Perl Within Oracle 204

Partlll. The Perl DBA Toolkit

9. Installingthe PDBAToolkit... 227
Introducing the PDBA Toolkit 228
Toolkit Modules 232
Installing the PDBA Toolkit for Unix 257
Installing the PDBA Toolkit for Win32 261
Configuring the PDBA Toolkit 265

vi | Tableof Contents

10. Performing Routine DBA Tasks with the PDBA Toolkit 279

Managing User Accounts 280
Maintaining Indexes 297
Killing Sniped Sessions 305
Managing Extent Usage 312
Extracting DDL and Data 315
11. Monitoring the Database with the PDBA Toolkit 328
Monitoring the Alert Log 328
Monitoring the Databases 342
12. Building a Database Repository with the PDBA Toolkit 366
Repository Table Structure 367
Installing the Repository 369
Loading the Repository with Data 374
Reporting on Database Changes 377
Reporting on SQL Execution Plans 392
13. Extendingthe PDBAToolkit .. 403
Modifying a Script in the Toolkit 404
Modifying a Module in the Toolkit 421

Part1V. Appendixes

A. ThekEssential GuidetoPerl 439
B. TheEssential GuidetoPerIDBI 459
C. The Essential Guide to Regular Expressions 482
D. The Essential Guide to Perl DataMunging 521
IndeX ... 575

Table of Contents | vii

Preface

There are many books on Perl and many books on Oracle, but until now there have
been no books dedicated to describing the relationship between these two popular
technologies. Our aim is to bridge the gap between the world’s leading data-process-
ing language and the world’s leading database. The Perl language was created with
the goal of making “the easy things easy and the hard things possible.” Oracle’s ever-
expanding purpose is to provide a complete database environment for the entire
interconnected world. This mission makes Oracle a tough taskmaster—and thus an
environment ideally suited to Perl, because being an Oracle database administrator is
one of the toughest jobs around.

Oracle DBAs need enormous intelligence, infinite patience, and considerable cour-
age. We think they also need Perl. The Perl open source language is a many-splen-
dored thing; you can write scripts with it, develop GUIs with it, create web sites with
it, generate XML with it—and you can probably hang your towels from it! Perl fills
data warehouses and runs on virtually every operating system around. Perl is the
toolkit without limitations, the salvation of your 24x7 lifestyle. If Gandalf the Wiz-
ard were to choose a scripting language, he would choose Perl.

Our mission in this book is to show you how Perl can revolutionize your life as an
Oracle DBA. We'll focus on four aspects of the Perl/Oracle connection:

The Perl language itself
We'll introduce you to the Perl language, with its rich history and culture,
present some language basics, and shine some light on CPAN, the Comprehen-
sive Perl Archive Network, the main distribution point for Perl modules.

The Perl/Oracle architecture
We'll introduce you to the modules that allow Perl programs to communicate
with Oracle databases.

Perl applications for Oracle DBAs
We’ll profile about a dozen of the best ready-made applications written in Perl
for use by Oracle DBAs. These provide help with database administration,

Download from Wow! eBook <www.wowebook.com>

monitoring, tuning, and daily troubleshooting. They also provide components
you can use in your own Perl scripts, should you choose to add a little pro-
gram development to your daily DBA routine.

The PDBA Toolkit

We'll present, for your enjoyment, an Oracle database administration toolkit
we’ve written ourselves. The Perl Database Administration (PDBA) Toolkit con-
tains nearly 100 Perl scripts and reusable modules that perform operations rang-
ing from creating new Oracle users to monitoring the Oracle alert log to building
a repository of database information for use in tuning and troubleshooting. All
of this code is available on the O’Reilly web site (http://www.oreilly.com/catalog/
oracleperl/pdbatoolkit).

Audience for This Book

If you’re an Oracle DBA who is trying desperately to keep up with the daily demands
of administering, monitoring, and tuning your Oracle databases, this book is for you.
We are Oracle DBAs ourselves, and we know how difficult your job can be. This
book provides both information and software that we hope will ease your burden.

Although the primary audience is Oracle DBAs, many DBAs end up being devel—
opers from time to time, and there is no better language than Perl for writing those
quick scripts. Anyone doing Perl development will find Chapters 7, 8, and 13, as well
as the appendixes, particularly useful.

This book assumes no prior experience with Perl, though some knowledge of the lan-
guage will help you get the most out of the material presented here. Although the
book’s appendixes explore the essential syntax of Perl, Perl DBI (DataBase Inter-
face), Perl’s regular expressions, and Perl’s data-munging modules, a complete Perl
tutorial is beyond our scope. Our goal here is to jump-start your explorations into
the intersection where Perl meets Oracle. We'll provide plenty of suggestions for
where to go next on your journey.

Which Platform and Version?

Both Perl and Oracle run on virtually every hardware platform and operating system.
To demonstrate this ubiquity, we’ve used a wide variety of OS platforms and Oracle
versions in the preparation of this book. Oracle versions range from Oracle7.3
through Oracle9i. OS platforms include Linux Red Hat 6, Linux SuSE 7.3, Solaris 8,
Windows NT 4, Windows 2000, and others. We’ve focused on Unix and Win32
operating systems, but we’ve also included specific installation instructions for par-
ticular operating system variants when necessary.

Against this irresistible surge of platforms, our immovable rock is the Perl version
we've used on all of these operating systems. Perl 5.6.1 was the latest stable Perl

x | Preface

release available as we wrote this book and developed the toolkit software. We also
used the most current stable version of Perl DBI, Version 1.20, in conjunction with
Perl DBI’s Oracle-specific driver module, DBD::Oracle (DataBase Driver for Oracle),
Version 1.12.

N
o By the time you read this book, it’s possible that the latest stable ver-
.'s\ sions on the CPAN web site will have been upgraded, particularly if
T 9k Perl itself is upgraded to Perl6, which was under development as we

* wrote this book. We’ll be updating our toolkit as an open source

project in order to cope with any such Perl enhancements.

Structure of This Book

This book is divided into four parts:
Part I, Introducing Perl for Oracle

* Chapter 1, Perl Meets Oracle, introduces the Perl language and explains why it is
such a helpful language for Oracle database administrators. It also provides an
overview of the main components of the Perl/Oracle architecture.

* Chapter 2, Installing Perl, describes how to install Perl on Unix and Win32 sys-
tems. It also describes how to install Cygwin, a Unix-like development environ-
ment you can install on your Win32 machine.

Part I, Extending Perl

* Chapter 3, Perl GUI Extensions, describes Perl/Tk, an extensive GUI-based tool-
kit for Perl, as well as a number of applications that provide Oracle DBAs with
graphically oriented tools for performing database administration. These include
OraExplain, StatsView, Orac, DDL::Oracle, SchemaDiff, Senora, DBD::Chart,
SchemaView-Plus, and a variety of Perl GUI integrated development environ-
ments (IDEs) and debuggers.

* Chapter 4, , discusses the relationship between Perl and the Apache web server,
and focuses on two Oracle applications that use a web browser as their user
interface: Oracletool and Karma.

* Chapter 5, Embedding Perl into Apache with mod_perl, explains how the use of
Apache’s mod_perl module can greatly improve the performance of Perl web-
based CGI (Common Gateway Interface) scripts used with Oracle. This chapter
also covers several related Apache modules: Apache::Registry, Apache::DBI, and
Apache::OWA (used to connect mod_perl to Oracle’s PL/SQL Web Toolkit).

* Chapter 6, Embedded Perl Web Scripting, describes two applications, Embperl
and Mason, that demonstrate the advantages of embedded scripting, a method
that allows Perl code to be embedded within web pages. These tools provide a
mechanism for filling your production web pages with dynamic Oracle data and

Preface | xi

creating your own Oracle web tools, while separating content from design
issues.

Chapter 7, Invoking the Oracle Call Interface with Oracle::OCI, covers Oracle::
OCI, a Perl module that provides a more extensive interface to Oracle’s Oracle
Call Interface (OCI) than is possible with Per] DBI.

Chapter 8, Embedding Perl into PL/SQL, discusses extproc_perl, a Perl module
that communicates with the Oracle PL/SQL language’s external procedure C
library system (known as EXTPROC). This module and the others described
here allow Perl code to be embedded directly in PL/SQL programs.

Part III, The Perl DBA Toolkit

Chapter 9, Installing the PDBA Toolkit, introduces the components of the Perl
Database Administration Toolkit (PDBA) and explains how to install it and
build the toolkit’s password server.

Chapter 10, Performing Routine DBA Tasks with the PDBA Toolkit, describes the
toolkit’s Perl scripts that help DBAs perform day-to-day administration. We’ll
cover managing user accounts, maintaining indexes, killing sniped sessions,
managing extent usage, and extracting DDL (Data Definition Language) and
data.

Chapter 11, Monitoring the Database with the PDBA Toolkit, describes the tool-
kit’s Perl scripts that can be used to monitor both the Oracle alert log (contain-
ing database error and status messages) and the connectivity of the databases.

Chapter 12, Building a Database Repository with the PDBA Toolkit, describes the
toolkit’s Perl scripts that allow you to build a repository in which to store infor-
mation about the many changes made to an Oracle database’s tables, indexes,
roles, schemas, and other objects.

Chapter 13, Extending the PDBA Toolkit, provides information that will be help-
ful if you decide to modify any of the scripts or modules in the toolkit. We’ll take
a detailed look inside one of the toolkit’s scripts and modules and illustrate how
you can change it to suit your specific database administration needs.

Part IV, Appendixes

* Appendix A, The Essential Guide to Perl, summarizes basic Perl syntax, includ-

ing object-oriented features.
Appendix B, The Essential Guide to Perl DBI, presents the main Perl DBI applica-
tion programming interface (API) functions.

Appendix C, The Essential Guide to Regular Expressions, describes the basics of
regular expressions (regexes), patterns of literals and metacharacters used exten-
sively by Perl for pattern matching.

Appendix D, The Essential Guide to Perl Data Munging, summarizes the Perl
data-munging modules that are helpful in formatting and transforming data for

Xii

Preface

data warehouses and other such Oracle applications; it includes sections on
numeric, date, conversion, and XML modules.

About the Perl DBA Toolkit and Examples

The full source code for the PDBA Toolkit is available on the O’Reilly web site at:
http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

The toolkit is a fully open source-compliant project, and we welcome all contribu-
tions to extend it. In line with the OSI (Open Source Initiative) guidelines,” the PDBA
Toolkit is freely available for download over the Internet under the Perl Artistic
License.t We'll try our best to keep this code up to date as Perl and the many mod-
ules described in this book are upgraded. Our goal is to have you be able to down-
load the latest and greatest version of the toolkit at all times as we seek constantly to
improve it.

In addition to the toolkit programs, we have also provided a large number of stand—
alone Perl programs in the book and on our site. We’ll also try to keep this code up
to date and available for download at the O’Reilly web page cited earlier.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for filenames, directory names, and URLs. It is also used for emphasis and
for the first use of a technical term.

Constant width
Used for code examples.

Constant width bold
Used occasionally in code examples to highlight statements being discussed.

A N
. Indicates a tip, suggestion, or general note. For example, we’ll tell you
if a certain feature is version-specific.

Q‘
(152

* The Open Source Initiative (OSI) is a “non-profit corporation dedicated to managing and promoting the
Open Source Definition for the good of the community” (see http://www.opensource.org/).

T The Perl Artistic License “state(s) the conditions under which a package may be copied, such that the copy-
right holder maintains some semblance of artistic control over the development of the package, while giving
the users of the package the right to use and distribute the package in a more-or-less customary fashion, plus
the right to make reasonable modifications” (see http://www.perl.com/publa/language/misc/Artistic.html).

Preface | xiii

Indicates a warning or caution. For example, we’ll tell you if a certain
operation has some kind of negative impact on the system.

Comments and Questions

We have tested and verified the information in this book and in the source code to
the best of our ability, but given the number of tools described in this book and the
rapid pace of technological change, you may find that features have changed or that
we have made mistakes. If so, please notify us by writing to:

O’Reilly & Associates

1005 Gravenstein Highway
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for this book where you can find updated links to Perl and Ora-
cle software discussed in this book, along with errata (previously reported errors and
corrections are available for public view there). You can access this page at:

http://www.oreilly.com/catalog/perloracledba

To download the PDBA Toolkit, you can go directly to:
http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments

As you might expect, a tremendous number of people from the Perl and Oracle com-
munities have helped us put this book together, including many of the creators of the
actual tools discussed here. We cannot thank them enough (although we’ll do our
best). We also are very grateful to the whole O’Reilly editorial and production team.

xiv | Preface

From Andy

First of all I have to thank my wife and beg her not to throw me out of the house for
having deserted our family (my son Ross, four-and-a-half, and daughter Ellie, two-
and-a-bit) for the last six months while completing this magnum opus. I had thought
my previous book, Oracle & Open Source, written with Sean Hull, was as tough as it
would get on a family, but I was proved wrong. Daddy could often only be located
by following the trail of pizza crumbs and Dr. Pepper cans from the fridge to the
darkest recesses of the house where he hid, tip-tapping away on a variety of work-
stations. But all will be redeemed if you get as much out of this book as I have, in its
long-fingered probings into the darkest recesses of Perl for Oracle DBAs. My wife Sue
has been the magnificent rock upon which I built my effort, and without her and our
beautiful children, you can just take everything else and give it all away. I am forever
in their debt.

As with all O’Reilly books, this has also been an immense collaborative effort involv-
ing more than just the writing team of myself, Jared, and our omniscient editor,
Debby Russell. T would like to thank Tim Bunce, the father of Perl DBI, for his help
and support over the past five years, and everyone else who has helped us achieve
our goal of producing this book, particularly our technical reviewers who did such a
magnificent job under tight deadline pressure: Stephen Andert, Tim Bunce, Ben
Evans, Lance Hollman, Thomas A. Lowery, Ilya Sterin, and Richard Sutherland.

Many others also helped us ensure that this book was both as accurate and as up-to-
date as we could possibly make it. My deepest thanks to all of them: Dean Arnold,
Jeffrey W. Baker, Doug Bloebaum, Ronald Bourret, Thomas Boutell, Hans-Bernhard
Broeker, Alan Burlison, Damian Conway, Martin Drautzburg, Thomas Eibner, Kim
Fowler, Andy Gillen, Lars Hecking, Russell Herbert, Roger Hipperson, Dan Horne,
Jeff Horwitz, Sean Hull, Randy Kobes, Robert Lupton, Doug MacEachern, Edmund
Mergl, Julian Moss, Alistair Orchard, Ian Pilgrim, Alan Ranger, Eric S. Raymond,
Gerald Richter, Dave Rolsky, Dave Roth, Nick Semenov, Steve Shaw, Jonathan
Swartz, Svante Sormark, Jesse Reed Vincent, Adam vonNieda, and Ken Williams.

My future bar bill is now immense, possessing gravitational mass in its own right.
However, before I finish, I have to thank our editor Debby Russell, who has done so
much to support us and sculpt our natural techno-speak into what we hope you’ll
find to be an invaluable guiding light towards the Perl and Oracle mithril of a deep
subterranean world. She also brought this book down from being a ridiculous 1,000-
page cave troll into the more-or-less manageable wood-elf you hold in your hands
without losing a single important point. And finally, I have to thank David Gray, for
his album, White Ladder, without which the completion of my half of this book
would have been simply impossible, Dr. Pepper or no Dr. Pepper.

Preface | xv

From Jared

I must first thank my own personal goddess, my wife, Carla. Although her husband
spent many early mornings, late nights, weekends, and even several days of vacation
time over a period of months, sequestered away in his hobbit hole of a computer
warren producing code and text, she remained supportive and understanding.

Next I must thank my coauthor Andy. A true human dynamo, Andy was a whirl-
wind of activity while we collaborated on this project, and a source of inspiration on
several occasions. He and Debby Russell are responsible for bringing our massive
first draft down to a manageable size.

Andy and I both owe a deep debt of gratitude to everyone who has assisted us in the
creation of this book. Andy has already mentioned those who have given us direct
help in this project. I would like to reiterate our thanks to Tim Bunce for his out-
standing work on the Perl DBI and DBD::Oracle modules. I would take it even fur-
ther and thank Larry Wall for the inspired moment when he first decided to create
Perl.

Hats off to the entire open source community as well. Without the dedication and
hard work of so many talented individuals, computing would be far less interesting.
Trite? Maybe, but nonetheless sincere.

I’'m grateful to my friends who listened patiently when they asked what “the book”
was about when they learned 1 was working on one, even though they had never
heard of Perl or Oracle, and for the fact they are still my friends, in spite of missed
social occasions.

Finally, I thank my parents, Jerry and Betty. They had no idea that their combined
genes would create progeny with a predilection for Perl, Unix, Linux, databases, and
a fascination with ones and zeros arranged in meaningful patterns. Thanks Dad,
thanks Mom.

xi | Preface

PART |
Introducing Perl for Oracle

This first part of the book introduces Perl and the architecture that allows it to
connect to the Oracle database. It consists of the following chapters:

Chapter 1, Perl Meets Oracle, introduces the Perl language and explains why
it is such a helpful language for Oracle database administrators. It also
provides an overview of the main components of the Perl/Oracle
architecture.

Chapter 2, Installing Perl, describes how to install Perl on Unix and Win32
systems. It also describes how to install Cygwin, a Unix-like development
environment you can install on your Win32 machine.

CHAPTER 1
Perl Meets Oracle

Perl is the world’s number one solution for transforming and gluing data together,
and Oracle is the world’s number one solution for storing that data. In this book
we’ll explore the interface between two of the finest American inventions since base-
ball and pretzels. We’re going to grab that Oracle data, we’re going to flip that Ora-
cle data, and we’re going to munge that Oracle data. And we’re going to do it all in
Perl!

The goal of this book is to explore the frontier connecting the Perl and Oracle
worlds, having as much fun along the way as possible. There are many routes
through this largely unexplored territory, and one we think is particularly important
is the one focused on Oracle database administration. We are Oracle DBAs our-
selves and we know the frustrations the job can bring. We’ve found Perl an enor-
mous help to us in performing administrative tasks—both routine ones, like adding
new users to the database, and more complex ones, like monitoring database con-
nectivity in real time and tracking down database performance problems by compar-
ing SQL execution plans. We want to share the information we’ve acquired over the
years about Perl and its many Oracle applications. We also want to give you access
to our own Oracle database administration scripts, which we’ve packaged up in the
Perl Database Administration (PDBA) Toolkit described in this book and freely avail-
able on the O’Reilly web site.

This chapter sets the scene by introducing you to Perl and how it connects to Ora-
cle. We'll look at the following:

Perl’s origins and advantages
We'll take a look at where Perl came from and what makes it such a popular and
powerful language.

Perl/Oracle architecture
We’ll see how Perl connects to the Oracle database via the Perl DBI module, the
DBD::Oracle program, and Oracle’s own OCI product. These modules interact
to allow Perl programs access to Oracle databases.

Download from Wow! eBook <www.wowebook.com>

Perl for Oracle DBAs
We'll discuss why Perl is a particularly appropriate language for Oracle DBAs to
learn and use.

We'll also provide a list of additional Perl resources.

What is Perl?

Perl is a wonderful language with a rich history and culture. Many books have been
written about its capabilities and roots. In this book we’ll be focusing on how Perl
and Oracle work together, and we’ll only skim the surface of Perl’s overall capabili-
ties, giving you just enough detail so you’ll appreciate what Perl can do for you.

In a nutshell, Perl is a freely available interpreted scripting language that combines
the best capabilities of a variety of other languages. Despite borrowing other lan-
guage capabilities, the whole of Perl is far greater than the sum of its parts. Perl was
designed especially to be:

* Extremely fast, in order to be useful when scanning through large files

* Especially good at text handling, because data comes in many different forms
and Perl has to handle them all

* Extensible, in order for Perl to expand users’ horizons, not restrict them

A tutorial for basic Perl is outside the scope of this book. Fortunately, there are many
excellent web sites and books containing the information you need to get going.
We’ve collected references to what we consider to be the best Perl books and online
documentation in the “For Further Information” section at the end of this chapter.
The appendixes provide quick references to different aspects of Perl’s capabilities.
For online information, check out the main Perl portals at:

http://www.perl.com
http://'www.perl.org
http://www.activestate.com (for Win32)

Before we get into the details of how Perl and Oracle interact, let’s take a step back
to look at where Perl came from.

The Origins of Perl

Larry Wall created Perl back in 1987 with the goal of making “the easy things easy
and the hard things possible”—originally just for himself, but ultimately for a whole
generation of developers. Larry had been working on a complex system and had
been trying to get Unix’s awk utility to do his bidding. He finally gave up on it and
under the auspices of a secret project for the National Security Agency known as the
“Blacker,” he decided to create a new language by raiding a primeval soup of tech-

4 | Chapter1: Perl MeetsOracle

nologies and splicing together the genetic structures of awk, sed, sh and C, as well as
csh, Pascal, and BASIC. The first release of Perl, Perl 1.0, arrived after a nine-month
gestation period.

Perl was unlike any other computer language that had come before it, and this sea
change was partially reflected in the name. The original name, “Pearl,” stood for
“Practical Extraction And Report Language,” but in the spirit of this compact lan-
guage, Larry wanted to save typing that extra fifth character. The name quickly mor-
phed into Perl, which by now also stood for “Pathologically Eclectic Rubbish Lister.”
This self-irreverence further distinguished the language and gave it a certain counter-
culture cachet.

Perhaps the most accurate summary of what Perl is best for can be found in the
README file written by its author for Perl Version 1.0:

Perl is a interpreted language optimized for scanning arbitrary text files, extracting
information from those text files, and printing reports based on that information. It’s
also a good language for many system management tasks. The language is intended to
be practical (easy to use, efficient, complete) rather than beautiful (tiny, elegant, mini-
mal). It combines (in the author’s opinion, anyway) some of the best features of C,
sed, awk, and sh, so people familiar with those languages should have little difficulty
with it. (Language historians will also note some vestiges of csh, Pascal, and even
BASIC|PLUS.) Expression syntax corresponds quite closely to C expression syntax. If
you have a problem that would ordinarily use sed or awk or sh, but it exceeds their
capabilities or must run a little faster, and you don’t want to write the silly thing in C,
then perl may be for you. There are also translators to turn your sed and awk scripts
into perl scripts. OK, enough hype.

The Unix world embraced the Perl language, and the fast-growing Perl development
community gradually built their favorite language into the world’s supreme text-pro-
cessing engine. Over the next few years, Perl grew ever more powerful. Perl’s regular
expression handling was enhanced, the ability to handle binary files was added to the
language, and the three main variable types were honed and sculpted. Soon the Perl
Artistic License was adopted, and with the publication of the first edition of
Programming Perl, the definitive guide to the language, the camel became the Perl
trademark.”

Perl has become hugely popular, largely because of its extremely fast text processing
and its ability to glue difficult things together with ease. With the explosion of the
interactive Internet in the 1990s, Perl found itself superbly pre-adapted to become
the new tool of an Internet generation. It glued those trillions of text packets into one
big global village! And as the World Wide Web burst on the scene, Perl continued to
evolve, emerging as the premier language for developing web applications. Perl 4
brought the release of modules allowing Perl to interact with Oracle (and other)

* The camel is a great image for Perl because it suggests a horse designed by more than one voice—perhaps a
bit challenged in looks, but perfectly adapted for a difficult ecological niche.

WhatisPerl? | 5

databases. The current version of Perl, Perl 5, contains long-sought object-oriented
features.

Perl on Win32

Although Perl’s origins were in the Unix world, it was ported to Windows back in
1995 by Dick Hardt and Hip Communications, the forerunners of ActiveState. Win-
dows NT administrators then discovered a whole new world of functionality via the
Win32 modules supplied by ActiveState, and Perl became their dominant scripting
language. Perl was a lifesaver for busy administrators performing large NT system
updates. (Adding 100 users to a system via the repetitive and arthritic point-and-click
method really is no fun!)

Win32 Perl became so popular that there was some danger that the Unix and Win-
dows versions would diverge. But Larry Wall was not about to let this happen. Those
not familiar with Perl may wonder why it matters. What difference would it make if
the Unix and Win32 Perls were different? In fact, it is this hard-won unity that gives
Perl its power. You can write a single script on one operating system, and as long as
you don’t use native methods, you can run it unchanged on every other kind of
machine, from Linux to Windows NT to Solaris and back again. That is a huge
advantage in our multiplatform, networked computing world.

CPAN (the Comprehensive Perl Archive Network)

Over the years, an enthusiastic and partisan army of Perl volunteers has extended
Perl in a myriad of ways. CPAN (the Comprehensive Perl Archive Network), an
online repository of Perl core files, documentation, and contributed modules, has
become a model for an open source development community. Check out:

http://'www.cpan.org

Literally thousands of Perl modules are now available on CPAN, providing virtually
any application you can imagine—and many you haven’t yet imagined. Just about
every Perl module we describe in this book, from core modules like Perl and Perl DBI
themselves to Oracle-specific database administration scripts like OraExplain and
Orac, can be downloaded from CPAN.

New Perl modules go through an evolutionary process that begins with an individ-
ual developer’s code, which he or she posts to CPAN. As others learn about the new
module and start downloading and testing it, and relying upon it, it becomes more
and more acceptable. If it’s good enough, and if enough people and products rely
upon it, the Perl gods ultimately might decide to include the new module in the next
general Perl distribution.

6 | Chapter1: Perl MeetsOracle

Perl and the corporate world

When Java, Microsoft’s Active Server Pages (ASP), and similar corporate tools came
along, many people assumed that they would sweep the inelegant Perl away. How-
ever, this hasn’t come to pass. Instead, Perl has grown exponentially both in market
share and stature, especially since its 1994 Perl 5 adoption of reference technology,
which greatly increased its scope in terms of both extensibility and object orienta-
tion. Tim Bunce’s Perl DBI module, built on the object-oriented base, gave Perl the
ability to interface with Oracle and other databases. The fact that Perl can now
dynamically glue the Internet to the database has greatly increased corporate accep-
tance of the language.

The Perl Advantage

There are nearly as many reasons why people choose to use Perl as there are people
who use Perl. Aside from the language’s specific capabilities, we think there are a few
key reasons for Perl’s awesome acceptance among programmers and nonprogram-
mers alike:

Practicality
Unlike some languages that have developed within the ivory towers of computer
science departments, Perl is a practical language. It is unbound by dogma and
driven by day-to-day practicalities. With its flexible syntax, it gives users enor-
mous freedom to do what they want to do.

Bandwidth
Perl is one of the most concise languages around. In ten lines of Perl code, you
can achieve more than is possible in any other language. Disciplined use of Perl
can thus reduce program maintenance costs (because there’s less to maintain)
and aid clarity (because there’s less code to try to understand).

Range
Literally thousands of Perl modules are available for download from CPAN,
covering virtually every computing requirement imaginable. The abundance of
prebuilt code modules makes Perl the number one choice for anyone with a wide
range of programming needs—and that description fits most Oracle DBAs.

We believe that Perl’s popularity is based to a large extent on the fact that it has
resisted the temptation to try to become the most elegant language of its time. A lin-
guist by training, Larry Wall took many lessons from the development of real-world
natural human languages, and blended the necessary messiness of those languages
into his evolving design for Perl. In the following sections we’ll look at how the
English language itself offers some important Perl analogies.

WhatisPerl? | 7

Perl’s Three Virtues

In the original Camel Book—the latest edition is Programming Perl by Larry Wall,
Tom Christiansen, and Jon Orwant, 3rd ed. (O’Reilly & Associates, 2000)—Larry
Wall identified three characteristics of virtuous programmers; these have become the
most basic Perls of Wisdom among the faithful:

Laziness
From the Old English for “resistance to work,” laziness is a virtue that makes you
write labor-saving programs in order to avoid unnecessary effort. It also encour-
ages good documentation to keep others from bothering you by asking imperti-
nent questions.

Impatience
From the Latin for “unwillingness to endure waiting,” impatience pushes you into
change and arises from the restless injustice felt when computer applications are
inefficient. It makes you write programs that match and even anticipate your
needs.

Hubris
From the Greek for “excessive pride or wanton violence,” hubris ensures that you
create solutions that others say only good things about and that cut through any
problem’s resistance.

Flat learning curve

Although natural languages such as English are difficult and messy, even a baby can
learn them. The messiness of such languages aids learning, develops expression, and
allows the human mind to map complex real-world problems onto the symbolic
logic of complex real-world languages. Perl tries to follow this pattern—it’s very
intentionally designed for humans rather than computers. You need only a little Perl
to get going, just as a baby needs only a little language to ask for a chocolate ice
cream. Indeed most of the fun of Perl is that you never stop learning about its new
elements. This characteristic of Perl contrasts with some other languages where you
have to learn virtually the entire shooting match before you can do the simplest
thing, such as print:

"Hello World! :-)"

It also means that it’s okay to know only parts of the whole language—every Perl
programmer is on the same flat learning curve as every other Perl programmer,
merely at a different position.

Expression

Perl is optimized for expressive power, rather than ease of operation. Once you’ve
learned an element of Perl, such as the structure of hashes (described in Appendix A,

8 | Chapter1: Perl MeetsOracle

The Essential Guide to Perl), you can use this knowledge in many different ways to
achieve many different ends. Again, this is similar to English, in which you can learn
a rhetorical debating technique and then employ it in many different ways to get
what you want.

There’s more than one way to do it (TMTOWTDI)

In many computer languages, there’s often a single acceptable way to do a certain
thing—for example, communicate with a distant server. Perl is different. So is
English. In real life, when you introduce yourself to other people, there are many dif-
ferent ways to successfully perform this occasionally tricky verbal task. It’s the same
in Perl. What counts is what works best for you, not some rigid adherence to a
strictly enforced protocol. As with formal introductions, of course, there are certain
conventions that most people use. There is peer pressure even among Perl program-
mers. But Perl itself doesn’t care; if you want to do something different, you are free
to do so.

Flexibility

English is a successful language mainly because it looks forward into the future,
rather than backward towards its origins. It’s built up from Latin, Greek, French,
Anglo-Saxon, and many other elements. And if it needs to borrow the word
“veranda” from the Portuguese in order to describe a covered porch, it just goes right
ahead without worrying about whether doing so breaks some rule. Perl is the same: if
it sees a great idea in Java, it just goes right ahead and borrows it, slipping it in so the
join is invisible. Eventually, if it’s a successful graft, even Java programmers may
come to think that the idea originally came from Perl. It is this continuous evolution
that transforms Perl from the ordinary into the extraordinary.

Ambiguity

English is also successful because it’s so good at handling ambiguity. Although there
are few cases, genders, or definitive word endings in the English language, local
ambiguities are quickly resolved by the juxtaposition of certain other words, conven-
tions, and punctuation. Perl is the same: some pieces of isolated code can be quite
ambiguous, but the ambiguity is quickly resolved in the context of its word order,

punctuation, and relationship to other code fragments. There are even pronouns in
Perl, such as $_ and @_ for “it” and “they”!

Acceptance of the real world

In a pure computer language world, you could visit the local cinema in an infinite
number of ways; for example, you could float up to 10,000 feet, disappear, and then
rematerialize in your favorite seat to watch The Lord of the Rings. But the fact is that
you’d most often walk or drive there. Similarly, Perl recognizes that most people tend

WhatisPerl? | 9

to want to do things in familiar ways (e.g., opening a file, processing the lines in it,
and then closing the file). So Perl will typically assume that you’ll be following a nat-
ural order unless you tell it explicitly that you won’t be.

Simplicity

Lawyers have taken the once straightforward English language and twisted it into the
most tortuous logic the human mind could devise—unfortunately, this is the route
most often taken by other computer languages. They start simply enough, but
develop a rigid straitjacket of theoretical perfection before drowning in a bog of com-
plexity. You’ll be pleased to hear that Perl is much friendlier. There is no ideology
that must be obeyed. A country run by Perl programmers would be a really cool
place to live!

Cooperation and divergence

Natural languages have evolved with the involvement of different people over a long
period of time—indeed, they continue to evolve. They’re also continuously diverg-
ing into separate dialects and even other languages. Perl too began as an amalgam of
different ideas, shepherded together by Larry Wall. It has since continued as a coop-
erative effort, with many contributing voices. The eventual creation of Perl 6 will be
one vast community effort (something we hope you’ll be part of).

But language fragmentation has been an ongoing problem for Perl. The solution has
been a continuous release program over the last decade that has accommodated
divergent tendencies. The CPAN architecture also offers a outlet for those with inde-
pendent voices. The threatened Win32 divergence we discussed earlier in the “Perl
on Win32” section could have had a dramatic impact on the unity of Perl—and all
that implies in terms of portability and extensibility. Thankfully, as we described ear-
lier, that threat came to a happy conclusion. And it’s still true that if you write a Perl
script on one operating system, then as long as you haven’t used native methods and
system commands, the script can be copied to any other machine and will work
there identically, regardless of operating system.

The Perl/Oracle Architecture

How do Oracle DBAs, developers, and users take advantage of everything that Perl
has to offer? The architecture illustrated in the figures in the following sections show
how the various Perl and Oracle modules fit together to make the Perl/Oracle con-
nection clean and efficient. In the following sections we’ll take a look at the main
components of this architecture:

¢ Per] DBI
e DBD::Oracle
e OCI

10 | Chapter1: Perl MeetsOracle

Perl DBI and DBD::Oracle are Perl modules available from CPAN. OCI is an Oracle
Corporation product that comes with all versions of the Oracle database.

Perl DBl and DBD::Oracle

Perl DBI is a generic application programming interface (API). It is similar in con-
cept to ODBC (Oracle DataBase Connectivity) and JDBC (Java DataBase Connectiv-
ity), but it has a Perl-based object-oriented architecture. Perl DBI’s object-oriented
architecture allows it to have a single routing point to many different databases
(shown in Figure 1-1), each via a database-specific driver. Oracle uses the DBD::
Oracle driver, another Perl module that provides the actual communication to the
low-level OCI code. It is OCI that makes the final connection to the Oracle database.

DBD::Oracle) Orade
database
Perl Perl
script LD) DBD:Sybase)| Sybase
P DBI ‘ database
DBD:mysql > Mysal
database
Database-specific
driver module

Figure 1-1. Perl DBI can interface to many databases

The beauty of Perl DBI is you can forget the details of the necessary connections
beneath its simple API calls. The DBI package glides serenely over the surface of our
databases, while the driver module, DBD::Oracle, does all the hard paddling beneath
the surface.

Figure 1-2 shows how all the modules fit together on the Perl and Oracle sides.

The origins of Perl DBI

The origins of Perl DBI date back more than a decade. Way back in 1991, an Oracle
DBA, Kevin Stock, created a database connection program called OraPerl that was
released for Perl 4. Over time, similar Perl 4 programs appeared, such as Michael
Peppler’s Sybperl, designed for communication with the Sybase database. In a paral-
lel development, starting around September of 1992, a Perl-based group was work-
ing on a specification for DBPerl, a database-independent specification for Perl 4.

The Perl/Oracle Architecture | 11

What Perl supplies ; What Oracle supplies

#!perl -w

use strict;

Perl DBI DBD::Oracle Oracle Call Interface (0Cl)
. Perl DataBase Perl DataBase Oracle-supplied C library
use DBI; Interface Driver module for Oracle database dOtral:Ie
Main Perl module for Oracle access atais

Script

What the script needs to deal with « What the underlying technology needs to deal with

Figure 1-2. The Perl/Oracle architecture

Within two years they were just ready to start implementing DBPerl when Larry
Wall started releasing the alpha version of the object-oriented Perl 5. Taking advan-
tage of both Perl 5 and the earlier Call Level Interface (CLI) work from the SQL
Access Group, the DBPerl team relaid the foundations of Perl DBI within an object-
oriented framework, creating this new architecture in a similar form to that
employed by the familiar API of ODBC. Meanwhile, Tim Bunce wrote an emulation
layer for OraPerl Version 2.4 that let people easily move their legacy Perl 4 OraPerl
scripts over to Perl 5 and Perl DBI.

With the new DBI architecture, you could now transparently employ just one Perl
module to connect to every type of database, as long as you had the right driver. For-
tunately for Oracle DBAs, Tim Bunce, the main creator of Perl DBI, is also the main
creator of DBD::Oracle, which automatically keeps Oracle on the cutting edge of Perl
DBI’s development schedule.

The Perl DBI API

We won’t try to describe all of the capabilities of Perl DBI here, but Table 1-1 pro-
vides a summary of the main calls (e.g., DBI class methods) to OCI. For additional
background information about Perl DBI, see Appendix B, The Essential Guide to Perl
DBI. And for much more information, consult the references listed under “Further
Information on Perl DBI” at the end of this chapter.

Table 1-1. Main Perl DBI functions

DBI function Description

available_drivers() Lists all of the available DBD drivers including DBD::Oracle
data_sources() Lists all of the databases available to DBD::Oracle
connect() Establishes an Oracle database connection

12 | Chapter1: Perl MeetsOracle

Table 1-1. Main Perl DBI functions (continued)

DBI function Description

disconnect() Disconnects a login session from Oracle

err() Returns the relevant Oracle error code

errstr() Supplies an associated Oracle error message

prepare() Prepares a SQL statement for execution

execute() Executes a prepared statement

do() Prepares and executes a single SQL statement all together
bind_param() Binds a value to a prepared statement

commit() Commits a transaction

rollback() Rolls back a transaction

table_info() Fetches metadata information from a table
fetchrow_arrayref{() Fetches a row of data into a referenced array
fetchrow_array() Fetches a row of data into an array

selectrow_array() Executes prepare(), execute() and fetchrow_array() all in one call

The Oracle Call Interface

As we’ve said, Oracle Corporation’s Oracle Call Interface (OCI) is the component in
the Perl/Oracle architecture that makes the final connection to the Oracle database
servers. This C-based API provides a comprehensive library used to connect into
Oracle from the external world. Use of OCI lets your Perl programs take advantage
of the following OCI capabilities:

High performance

Security features, including user authentication
Scalability

N-tiered authentication

Full and dynamic access to Oracle objects
User session handles

Multi-threaded capabilities

Support for accessing special Oracle datatypes such as LOBs (large objects)
Transactions

Dynamic connection and session management
Asynchronous event notification

Access to other databases

Full character set support

The Perl/Oracle Architecture | 13

For more about OCI, see Chapter 7, Invoking the Oracle Call Interface with Oracle::
OCI, where we describe Oracle::OCI, a new Perl module that provides an even closer
interface between Perl and Oracle. You can get complete information about OCI at
Oracle Corporation’s http://technet.oracle.com pages; in particular, see http://technet.

oracle.com/tech/oci/.

In Table 1-2 we list the main OCI functions to give you a sense of the kinds of Oracle
operations you can invoke from your Perl programs.

Table 1-2. Main OCI functions

0Cl function
OClAttrSet()
OClAttrGet()
0CIBindByName()
0CIBindByPos()
0CIDefineByPos()
OCIDescribeAny()
0ClDescriptorAlloc()
OClDescriptorfree()
OClEnvinit()
OClErrorGet()
OClHandleAlloc()
OClHandlefree()
OClinitialize()
OClLobRead()
OClLobWrite()
0ClLogoff()
OClLogon()
0ClParamGet()
OClParamSet()
OClServerAttach()
0ClServerDetach()
0ClSessionBegin()
0ClSessionEnd()
OCIStmtExecute()
OCIStmtFetch()
0CIStmtPrepare()
OCITransCommit()

Description

Sets handle attributes

Gets attributes from a handle

Links variables to a SQL statement placeholder by name
Links variables to a SQL statement placeholder by position
Links a typed select-list item with the output data buffer
Describes schema objects

Allocates storage for descriptors and LOB locators
Releases the resources taken by descriptors

Allocates the initial OCl environment handle

Returns a buffered error message

Points to an allocated handle

Explicitly releases a memory handle and its resources
Initializes the environment for OCl processes

Reads specified LOB and FILE portions into a buffer

Writes a specified buffer into a LOB

Ends a login session

Logs into the OCl session

Gets the descriptor of a parameter attached to a statement handle
Puts the object retrieval descriptor into an object retrieval handle
Creates the pathway to a data source

Detaches from a data source

Begins a user session for a given server

Ends a user session

Sends an application request to the server

Fetches data rows from previous queries

Prepares a SQL statement for later execution

Commits a nominated transaction

14 | Chapter1: Perl MeetsOracle

At the most basic level, virtually all outside programs—from web applications to
standalone GUI applications—interact with Oracle through this OCI program layer.
Fortunately, the OCI libraries are automatically available in every Oracle database
installation, so no special installation process is required. You’ll generally discover
the appropriate files under the $ORACLE_HOME/lib and $ORACLE_HOME/
include directories, on Unix systems, and under %ORACLE_HOME%\ib and
%ORACLE_HOME%\include on Win32.

Perl for Oracle DBAs

Perl has become an increasingly popular tool for Oracle DBAs who need a quick way
of handling the 101 different jobs a DBA is expected to do every day. Perl is operat-
ing system-independent, powerful, flexible, remarkably quick to code, and extremely
fast in execution. These capabilities are especially important if you are working in a
rapidly changing environment where one day you might be populating a data ware-
house from a difficult data source, and the next you might be generating all of the
information for a dynamic web application—and the whole time you’re performing
all of your usual administrative tasks. That certainly describes the diverse world of an
Oracle DBA!

Of course, the focus of any Oracle site’s business is data. And from the start, Perl was
designed to be a data-processing engine, perhaps the finest and quickest in the
world. It can find data, clean data, parse data, substitute data, print data, eat data,
and spit data out from the other end in the exact format you require. It can do all of
this with text data, binary data, and network data.

There are a variety of ways that Oracle DBAs can combine the power of Perl and
Oracle. We describe four main paths in this book; the following list provides a road
map:

Existing modules and applications
All kinds of excellent Perl modules and complete open source applications are
freely available for Oracle DBAs to use. The chapters in Part II of this book
describe the Perl/Oracle applications that we consider the best of the bunch;
these are listed in Table 1-3 and fall into several categories:

Perl GUI applications
In Chapter 3, Perl GUI Extensions, we describe Perl/Tk, Perl’s own tookit
for developing graphical user interfaces, along with a variety of graphical
Oracle applications and helper modules: OraExplain, StatsView, Orac,
DDL::Oracle, SchemaDiff, Senora, DBD::Chart, SchemaView-Plus, as well
as some Perl GUI integrated development environments (IDEs) and
debuggers.

Perl for OracleDBAs | 15

Perl web-based applications
In Chapter 4, , we discuss the use of Apache with Perl and Oracle and
describe two particular applications, Oracletool and Karma. In Chapter 5 we
show how using the Apache mod_perl module can greatly improve the per-
formance of Perl web-based scripts. And in Chapter 6, Embedded Perl Web
Scripting, we discuss two embedded Perl web scripting applications, Emb-
perl and Mason.

Connectivity tools
In Chapter 2, Installing Perl, we describe how to install Perl DBI and DBD::
Oracle to allow your Perl programs to interact with Oracle databases with
great ease and efficiency. Later chapters describe some additional connectiv-
ity tools. In Chapter 7 we describe the new Oracle::OCI module that pro-
vides higher performance and a true one-to-one mapping with functions of
the Oracle Call Interface. In Chapter 8, Embedding Perl into PL/SQL, we
describe Perl’s extproc_perl, Oracle’s EXTPROC, and the other modules
that allow Perl to be essentially embedded into Oracle’s own PL/SQL lan-
guage.

Database administration scripts

Just about every Oracle DBA has his or her own set of scripts they’ve written to

make their daily lives easier. Many of these DBAs have been kind enough to

share the wealth with their peers. Following this trend, we’ve packaged up our

own set of scripts and modules into an open source collection we call the PDBA

Toolkit. As a side benefit, the toolkit provides us with a living breathing entity

whose code we can use to illustrate the use of Perl. We describe this toolkit in

Part I1I of this book.

Data-processing scripts
Many Oracle DBAs spend at least part of their time dealing with data warehous-
ing as well as database administration. They often need to clean and transform
data that originates in other databases and applications and is now destined for
Oracle. Perl, with its regular expressions and high performance, is one of the
best solutions around for preparing data for use in data warehouse applications.
Data munging is the term used to describe the data cleaning, formatting, and
transformation often required by data warehouses. Appendix C, The Essential
Guide to Regular Expressions, provides an essential guide to Perl regular expres-
sions, and Appendix D, The Essential Guide to Perl Data Munging, summarizes
the many Perl modules available to perform data-processing and data-munging
operations on all kinds of data, including numeric, text, date, and XML formats.

Custom scripts
Helpful as all of these packaged solutions may be, DBAs often find it necessary
to write their own custom queries and scripts to solve their immediate prob-
lems. Every DBA ends up needing to write quick 5- or 10-line ad hoc programs
simply to glue things together in their databases. They also may find that the

16 | Chapter1: Perl MeetsOracle

canned applications and tools available for Oracle are great, but not quite right
for their needs. The nice thing about Perl is that it makes it easy for you to add,
change, or customize. All of the applications we describe throughout this book
are available in source form so you can modify them to suit your needs. Our own
toolkit is designed specifically to accommodate such customization. The modu-
lar nature of the scripts, coupled with the documentation provided in Part III of
this book (see Chapter 13, Extending the PDBA Toolkit, in particular) should
make it easy for you. You’'ll also find the appendixes helpful in learning the
basics of Perl.

Table 1-3 lists all of the applications and tools mentioned in this book. We tried to
include the most up-to-date information possible in this book at the time of publica-
tion, but because most of these programs are continually being enhanced, make sure
to check out the sites listed in the table for current information.

Table 1-3. Perl/Oracle applications and related tools

Application/tool Chapter Description/download site
ActivePerl 1 Precompiled hinary Win32 Perl from ActiveState

http://www.activestate.com
http://aspn.activestate.com/ASPN/Downloads/
http://aspn.activestate.com/ASPN/PPM/FAQ
http://downloads.activestate.com/

Apache 4 Apache web server software

http://www.apache.org/

http://httpd.apache.org/
http://httpd.apache.org/dist/httpd/
http://httpd.apache.org/docs/windows.html
http://httpd.apache.org/dist/httpd/binaries/win32/
http://httpd.apache.org/docs/mod/directives.htm/

Apache mod_perl 5 Apache Perl integration

http://perl.apache.org/
http://www.cpan.org/authors/id/DOUGM/
http://www.modperl.com/
http://www.refcards.com/about/mod_perl.htm!
http://theoryx5.uwinnipeg.ca/ppmpackages (Win32)
http://theoryx5.uwinnipeg.ca/quide/
http://mathforum.org/epigone/modperl

Apache::DBI 5 Caching Perl DBI connections with mod_per!
http://www.cpan.org/authors/id/MERGL/
Apache::OWA 5 Linking Perl to Oracle’s PL/SQL Web Toolkit

http://sourceforge.net/projects/owa/
http://owa.sourceforge.net/
http://www.cpan.org/authors/id/S/SV/SVINTO
http://www.cpan.org/authors/id/J/JI/JIMW/ (libapreq)
http://technet.oracle.com
http://technet.oracle.com/doc/windows/was.21/psqlwtlk.htma

Perl for Oracle DBAs | 17

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool
CPAN (2000+ packages)

Cygwin (and DJGPP)

DBD::Chart (see also, zlib,
gd, and PNG)

DDL::Oracle

Embperl (see also HTML::
Template and Mason)

Exception (see also Perl GUI
debuggers)

extproc_perl (see also Perl
DBI)

gec (see also Unix
freeware)

gd (see also PNG and zlib)

Chapter
1

Description/download site
The Comprehensive Perl Archive Network

http://www.cpan.org

http://search.cpan.org

Unix-like environments for Win32
http://www.cygwin.com/
http://cygwin.com/cygwin-ug-net/using-cygwinenv.htm/
http://www.delorie.com/djgpp/

SQL-like chart generation using Perl DBI
http://www.presicient.com/dbdchart/
http://www.cpan.org/authors/id/D/DA/DARNOLD/
ftp://ftp.uu.net/graphics/jpeg

http://www.ijg.org/
http://www.cpan.org/authors/id/NI-S/ (Tk::JPEG)
Perl package for specific Oracle DDL generation

http://sourceforge.net/projects/ddl-oracle/
http://www.cpan.org/authors/id/R/RV/RVSUTHERL/

HTML embedded Perl system

http://perl.apache.org/embperl/
http://www.cpan.org/authors/id/GRICHTER/ (Apache::SessionX and stable
Embperl source)

http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)
http://www.cpan.org/authors/id/JBAKER/ (Apache::Session)
http://theoryx5.uwinnipeg.ca/ppmpackages (Win32)

Java-like try and catch structures in Perl
http://www.cpan.org/authors/id/P/PJ/PJORDAN/
Oracle Perl Procedure Library (Perl linkage to PL/SQL)

http://www.smashing.org/
http://www.cpan.org/modules/by-authors/Jeff_Horwitz
http://technet.oracle.com
http://download.oracle.com/otndoc/oracle9i/901_doc/appdev.901/a88876/
adg11rtn.htm
http://download.oracle.com/otndoc/oracle9i/901_doc/server.901/a90117/
manproc.htm

http://otn.oracle.com/deploy/security/alerts.htm (Oracle security alerts)

GNU C compiler
http://www.gnu.org/
Graphics drawing packages with Perl

http://www.cpan.org/authors/id/LDS/
http://www.boutell.com/gd/ (gd)

18 |

Chapter 1: Perl Meets Oracle

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool Chapter Description/download site

gdb (see also gcc) 8 GNU debugger (for particular usage with gcc)
http://www.gnu.org/software/gdb/

HTML::Template (and 6 HTML embedded Perl system

Template Toolkit) (see also http://www.cpan.org/authors/id/S/SA/SAMTREGAR/

Embperl and Mason) http://www.cpan.org/authors/id/ABW/

http://www.openinteract.org/, http://openinteract.sourceforge.net/
http://perl.apache.org/features/tmpl-cmp.html

Karma 4 Web tool for Oracle DBAs

http://hypno.iheavy.com/karma/index.html
http://www.cpan.org/authors/id/M/MA/MARKOV/ (MailTools)
http://www.cpan.org/authors/id/KJALB/ (TermReadKey)
http://www.cpan.org/authors/id/GBARR/ (libnet)

Lwp 5 Library for WWW access in Perl

http://www.cpan.org/authors/id/GAAS/ (LWP,URIMIME::Base64,HTML::Parser,
Digest::MD5)

http://www.cpan.org/authors/id/S/SB/SBURKE/ (HTML::Tagset)
http://www.cpan.org/authors/id/GBARR/ (libnet)
http://www.cpan.org/authors/id/KWILLIAMS/ (HTML::SimpleParse)

Linux packages 2 Linux application and package download sites

http://www.redhat.com/apps/download/
http://www.suse.de/us/support/download/
http://www.linux-mandrake.com/en/ftp.php3
http://www.caldera.com/download/mirrors.html
http://www.debian.org/distrib/ftplist
http://www.turbolinux.com/download/
http://www.slackware.com/packages/

MSI (as standard from 2 Microsoft software package installer

Win2000 onward) http://download.microsoft.com/download/platformsdk/wininst/1.1/NT4/EN-US/
InstMsi.exe
http://download.microsoft.com/download/platformsdk/wininst/1.1/WIX/EN-US/
InstMsi.exe

Mason (see also HTML:: 6 HTML embedded Perl

Template and Embperl) http://www.masonhq.com/

http://www.cpan.org/authors/id/J/JS/ISWARTZ/
http://www.cpan.org/authors/id/DEWEG/ (Time::HiRes)
http://www.cpan.org/authors/id/GSAR/ (MLDBM)
http://www.cpan.org/authors/id/ILYAZ/modules/ (FreezeThaw)
http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)
http://www.cpan.org/authors/id/D/DR/DROLSKY/ (Params:: Validate)

MysQL D Open source database

http://www.mysgl.com/
http://sourceforge.net/projects/mysql/
http://www.cpan.org/authors/id/JWIED/ (DBD::mysql)

Perl for OracleDBAs | 19

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool Chapter

NMAKE 6
(see also ActivePerl)

OraExplain 3
(see also Perl DBI)

Orac 3
Oracle::0Cl 7
Oracletool 4

PNG (see also zlib and gd) 3

Perl 1

Perl DBA Toolkit (see also 9
DDL::Oracle)

Description/download site
Pure Perl Win32 package compilation

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/
Nmake15.exe

Perl/Tk Oracle SQL tuning tool
http://www.cpan.org/authors/id/TIMB/

Perl/Tk general Oracle DBA tool
http://www.cpan.org/authors/id/A/AN/ANDYDUNC/
Direct Perl interface to Oracle Call Interface

http://www.perl.com/CPAN/authors/id/TIMB/
http://archive.develooper.com/oracle-oci@perl.org/
http://www.cpan.org/authors/id/T/TB/TBONE/ (Data::Flow)
http://www.cpan.org/authors/id/HVDS/ (C::Scan)
http://technet.oracle.com
http.//technet.oracle.com/tech/oci/
http://otn.oracle.com/tech/oci/htdocs/fag.html
http://www.orafag.org/faqoci.htm

General web tool for Oracle DBAs

http://www.oracletool.com/

http://www.cpan.org/authors/id/GAAS/ (Digest::MD5)
http://www.cpan.org/authors/id/D/DP/DPARIS/ (Crypt::IDEA and Crypt::Blowfish)
http://www.cpan.org/authors/id/LDS/ (Crypt::(B()

Portable Network Graphics (GIF image alternative)

http://www.libpng.org/pub/png/
http://www.cpan.org/authors/id/NI-S/ (Tk::PNG)

The main Perl portals and download sites

http://www.perl.com

http://www.perl.org
http://www.perl.com/CPAN/README.htm!
http://www.perl.com/CPAN/src/stable.tar.gz
http://learn.perl.org/
http://history.perl.org/
http://www.wall.org

http://lists.perl.org/
http://archive.develooper.com/

Our Perl toolkit for Oracle DBAs

http://www.oreilly.com/catalog/oracleper!
http://www.oreilly.com/catalog/oressentials/chapter/defrag.pdf
http://www.cpan.org/authors/id/GBARR/ (TimeDate)
http://www.cpan.org/authors/id/S/SI/SIFUKURT/ (Crypt::R(4)
http://www.cpan.org/authors/id/M/MI/MIVKOVIC/ (Mail::Sendmai)
http://www.cpan.org/authors/id/SBECK/ (Date::Manip)
http://www.roth.net (Win32::Daemon)

20 | Chapter1: Perl MeetsOracle

Download from Wow! eBook <www.wowebook.com>

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool
Perl DBI and DBD::Oracle

Perl DBI ProxyServer
(version numbers may
change; if so, try http://
search.cpan.org)

Perl GUI debuggers
(see also Exception)

Perl IDE tools

Perl SQL tools (see also
Senora)

Perl XML (see later for
specific XML Perl modules)

Chapter
1

3

Description/download site
Perl DBI portals and resources

http://dbi.perl.org

http://dbi.perl.org/doc/fag.html
http://xmiproj.dyndns.org/dbi/faq.html
http://archive.develooper.com/dbi-users@perl.org/
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://xmlproj.com/PPM/ (latest Win32 packages)
http://www.perl.com/CPAN/modules/by-module/DBI
http://www.perl.com/CPAN/modules/by-module/DBD
http://www.cpan.org/authors/id/TIMB/

Proxy serving for Per| DBI

http://search.cpan.org/doc/TIMB/DBI-1.20/1ib/DBI/ProxyServer.pm
http://search.cpan.org/doc/TIMB/DBI-1.20/1ib/DBD/Proxy.pm
http://www.cpan.org/authors/id/A/AM/AMS/ (Storable)
http://www.cpan.org/authors/id/JWIED/ (Net::Daemon and PIRPC—
which contains RPC::PIServer and RPC::PlClient)

Perl GUI debug tools

http://members.tripod.com/~CurtMcKelvey/perldbgui/ (perldbgui)
http://www.cpan.org/authors/id/A/AE/AEPAGE/ (ptkdb)
http://sourceforge.net/projects/open-perl-ide/ (OpenPerlIDE)

Perl GUI development tools

http://sourceforge.net/projects/open-perl-ide/ (OpenPerlIDE)
http://sourceforge.net/projects/kpad/ (KakePad)
http://www.xarka.com/optiperl/ (OptiPerl)
http://www.activestate.com/Products/Komodo/ (Komodo)
http://www.ultraedit.com/ (UltraEdit)

SQL*Plus-like Perl tools

http://www.perldoc.com/perl5.6.1/lib/DBI/Shell.html
http://dbishell.sourceforge.net/
http://piqt.sourceforge.net/
http://sourceforge.net/projects/dsql/

Perl XML resources

http://www.xml.com/pub/q/perlxml

http://xmlxslt.sourceforge.net/

http://perl.apache.org

http://xml.sergeant.org/

http://www.xmlsoft.org/

http://www.xmiproj.com/perl-xmi-faq.dkb

http://www.perlxml.net http://www.cpan.org/modules/by-module/XML/
http://sourceforge.net/projects/perl-xmf:

Perl for Oracle DBAs

21

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool Chapter Description/download site
Perl conversion modules D Perl’s main data conversion modules

http://www.gnu.org/software/recode/recode.html, ftp//ftp.gnu.org/gnu/recode/
http://www.cpan.org/authors/id/CXL/ (Convert::EBCDIC)
http://www.cpan.org/authors/id/COLINK/ (Convert::SciEng)
http://www.cpan.org/authors/id/GENJISCH/ (Convert::Translit)
http://www.cpan.org/authors/id/R/RR/RRWO/ (Convert::Units)
http://www.cpan.org/authors/id/ANDK/ (Convert::UU)
http://www.cpan.org/authors/id/E/ED/EDAVIS/ (Convert::Recode)

Perl date modules (and D Perl’s major date-handling modules
other required helper http://www.cpan.org/authors/id/D/DE/DESIMINER/ (Date::Business)
packages) http://www.cpan.org/authors/id/STBEY/ (Date::Calc and Date::Pcalc)

http://www.cpan.org/authors/id/H/HF/HFB/ (Date::Christmas)
http://www.cpan.org/authors/id/M/MI/MIDI/ (Date::Decade)
http://www.cpan.org/authors/id/RBOW/ (Date::Easter)
http://www.cpan.org/authors/id/B/BB/BBEAUSEJ/ (Date::Handler)
http://www.cpan.org/authors/id/M/MI/MIYAGAWA/ (Date: Japanese::Era)
http://www.cpan.org/authors/id/JTOBEY/ (Date::Simple)
http://www.cpan.org/authors/id/T/TM/TMTM/ (Date::Range)
http://www.cpan.org/authors/id/SBECK/ (Date::Manip)
http://www.cpan.org/authors/id/B/BZ/BZAJAC/ (DateTime::Precise)
http://www.cpan.org/authors/id/GAAS (Mime::Base64)
http://www.cpan.org/authors/id/D/DA/DANKOGAI (Jcode)
http://www.cpan.org/authors/id/ADESC (Devel::CoreStack)
http://www.cpan.org/authors/id/MSCHWERN (Test::Harness and Test::Simple)

Perl numeric modules D Perl’s major numeric modules

http://www.cpan.org/authors/id/L/LU/LUISMUNOZ/ (Number::Encode)
http://www.cpan.org/authors/id/WRW/ (Number::Format)
http://www.cpan.org/authors/id/S/SB/SBURKE/ (Number::Latin)
http://www.cpan.org/authors/id/K/KE/KENNEDYH/ (Number::Phone::US)
http://www.cpan.org/authors/id/W/WI/WIMV/ (Number::Spice)
http://www.cpan.org/authors/id/L/LH/LHOWARD/ (Number::Spell)

Perl/Tk 3 Perl GUI toolkit (derived originally from Tcl/Tk)

http://www.lehigh.edu/~sol0/ptk/ptk.html
http://www.perltk.org/
http://www.oreilly.com/catalog/mastperltk/
http://www.cpan.org/authors/id/NI-S/
http://www.cpan.org/authors/id/SREZIC/

SSL 5 Secure Sockets Layer for Perl and the Web

http://www.openssl.org/ (OpenSSL)
http://www.cpan.org/authors/id/C/CH/CHAMAS/ (Crypt::SSLeay)
http://www.cpan.org/authors/id/SAMPO/ (Net::SSLeay)
http://www.cpan.org/authors/id/A/AS/ASPA/ (10::Socket::SSL)

22 | Chapter1: Perl MeetsOracle

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool
SchemaDiff

SchemaView-Plus (see also
XML::Dumper and
XML:: Parser)

Senora (see also Perl SQL
tools)

StatsView (see also PNG,
Zlib, OraExplain)

Unix freeware (also good
sources for gec binary pack-
ages; see also gcc)

XML::Dumper

XML::Generator::DBI

XML:LibXML

XML::LibXSLT

XML::Parser

XML::XMLtoDBMS (see
also XML::Parser and
XML::LibXML)

Chapter
3

Description/download site

DDL::Oracle and Perl/Tk Oracle schema comparisons
http://sourceforge.net/projects/schemadift/

Perl/Tk Oracle tool for viewing schema connections
http://www.cpan.org/authors/id/M/MI/MILSO
http://dbman.linux.cz (dbMan, earlier related tool)
DDL::Oracle-based SQL*Plus-like tool
http://sourceforge.net/projects/senora/

Perl/Tk statistics for Oracle on Unix

http://www.cpan.org/authors/id/ABURLISON/
http://www.gnuplot.info/
http://sourceforge.net/projects/gnuplot/

Binary Perl packages for Unix

http://sunfreeware.com/ (Solaris)
http://ftp.univie.ac.at/aix/andftp://aixpdslib.seas.ucla.edu/puby/ (AlX)
http://jazz.external.hp.com/src/index.html (HP-UX)
http://freeware.sgi.com/index.html (IRIX)
http://www.openbsd.org/ports.html (OpenBSD)

Dump Perl data to structured XML
http://www.cpan.org/authors/id/E/El/EISEN

DBI and XML linkage package

http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://www.cpan.org/authors/id/KMACLEOD/ (libxml-perl and XML::Parser::
PerlSAX)

http://www.cpan.org/authors/id/K/KR/KRAEHE/ (XML::Handler::YAWriter)
http://www.cpan.org/authors/id/GAAS/ (MIME::Base64)

Alternative Perl XML parser
http://www.cpan.org/authors/id/M/MS/MSERGEANT/ (XML::LibXML and XML::Sax)
http://www.xmlsoft.org (libxml2)

Perl Extensible Stylesheet Language Transformations

http://www.cpan.org/authors/id/M/MS/MSERGEANT/ (XML::LibXSLT)
http://xmlsoft.org/XSLT/downloads.html (libxslt)
http://www.w3.0rg/TR/xslt

http://xmlsoft.org/XSLT/

Perl XML parser
http://sourceforge.net/projects/expat (CXMLparser)
http://www.cpan.org/authors/id/C/C0/COOPERCL
The Perl port of XML-DBMS from Java

http://www.rpbourret.com/xmidbms/index.htm (Perl port accessed from this
page)
http://www.cpan.org/authors/id/GBARR/ (TimeDate)

Perl for OracleDBAs | 23

Table 1-3. Perl/Oracle applications and related tools (continued)

Application/tool Chapter Description/download site

XML::XPath (see also D Perl and XPath

XML:Parser) http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://www.w3.0rg/TR/xpath

Zlib (see also PNG) 3 Gzip’s back-end compression library

http://www.gzip.org/zlib/
http://www.zlib.org
http://www.gzip.org/
http://www.info-zip.org/pub/infozip/
http://www.pkware.com/

a As with most technet.oracle.com pages, this requires password-protected membership, which can be freely acquired from http://technet.
oracle.com/membership/.

For Further Information

We’ve collected what we consider to be the best online and offline resources for Perl
in the following sections. If you run into problems or just want to expand your hori-
zons, do check out the books, web sites, and mailing lists summarized here.

Further Information on Perl

Appendix A summarizes the essential elements of Perl’s syntax, up to and including
its object orientation. It also provides a full guide to the use of the very helpful
perldoc command, which is the best way to access online manual page information
on Perl once it has been installed.

Perl web sites
The following web sites provide good springboards into the world of Perl:
http://www.perl.com

Contains everything you ever wanted to know about Perl.

http://www.perl.org
Another central resource for Perl users.

http://learn.perl.org
Site dedicated to people fresh to Perl.

http://history.perl.org
http://'www.wall.org
Information on the history of Perl.

24 | Chapter1: Perl Meets Oracle

Perl mailing lists

One of the wonderful benefits of open source tools like Perl is the large number of
people out there willing to help you. There are literally hundreds of Per]l mailing lists
to choose from. Fortunately, there is one site for keeping tabs on all of them:

http://lists.perl.org
An excellent central resource for tracking down virtually every kind of Perl mail-
ing list you could possibly think of.

beginners-subscribe@perl.org
Send a blank email here to get attached to the Perl beginners’ mailing list.

beginners@perl.org
Once registered, you can post your questions here.

beginners-unsubscribe@perl.org
When you’re ready to move on to other lists, you can unsubscribe by sending
another blank email to the preceding address.

http://archive.develooper.com
Before posting any questions, you may want to check the Perl archive first.

Perl books

There are enough books on Perl to fill the capacious saddles of several very large
camels. Here we’ll list just a few of our favorite general texts.

http://www.oreilly.com/catalog/lperl3 (the Llama book)
Learning Perl, by Randal L. Schwartz and Tom Christiansen, 3rd ed. (O’Reilly &
Associates, 2001)

http://www.oreilly.com/catalog/lperlwin (the Gecko book)
Learning Perl on Win32 Systems, by Randal L. Schwartz, Erik Olson, and Tom
Christiansen (O’Reilly & Associates, 1997)

http://www.oreilly.com/catalog/pperl3 (the Camel book)
Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant, 3rd ed.
(O’Reilly & Associates, 2000)

http://'www.roth.net/books/extensions2
Win32 Perl Programming: The Standard Extensions, by Dave Roth, 2nd ed. (New
Riders Publishing, 2001)

http://www.oreilly.com/catalog/perlnut
Perl in a Nutshell, by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan
(O’Reilly & Associates, 1998)

http://www.oreilly.com/catalog/advperl (the Panther book)
Advanced Perl Programming, by Sriram Srinivasan (O’Reilly & Associates, 1997)

For Further Information | 25

http://www.effectiveperl.com (the Shiny Ball book)
Effective Perl Programming: Writing Better Programs with Perl, by Joseph N. Hall
(Addison-Wesley, 1998)

http://www.oreilly.com/catalog/regex (the Owls book)
Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools, by
Jeffrey Friedl (O’Reilly & Associates, 1997)

http://www.manning.com/Conway/index.html (the Renaissance book)
Object Oriented Perl, by Damian Conway (Manning, 1999)

Further Information on Perl DBI

If you want to learn more about Perl DBI, first check out Appendix B. It’s likely
you’ll need more detailed information, however, if you’re planning to do anything
complex. Here are some recommended resources.

Perl DBI web sites
The following sites are the best places to go for more information:

http://dbi.perl.org
Central home page for the Perl DBI project and the best place to start

http://dbi.perl.org/doc/fag.html
Central FAQ for Perl DBI

Perl DBI mailing lists

The DBI Users mailing list is the information backbone for the entire DBI commu-
nity, and you’ll find a great deal of help available there. However, it’s generally con-
sidered good form if you at least search the DBI FAQ located at hitp://dbi.perl.org/
doc/faq.html, and possibly the following mail archives, before posting any new ques-
tions:

http://lists.perl.org/showlist.cgi’name=dbi-users
The folks at perl.org maintain the DBI Users mailing list, and you can register
yourself with them at this web address.

dbi-users-subscribe@perl.org
To subscribe to the mailing list, send an empty email here.

dbi-users@perl.org
Once you’ve been successfully registered by perl.org, you can post your Perl DBI
questions and comments via this email link.

dbi-users-unsubscribe@perl.org
To unsubscribe from the mailing list, post an empty email here.

26 | Chapter1: Perl MeetsOracle

http://archive.develooper.com/dbi-users@perl.org
The main archive attached to the central DBI Users mailing list, organized by
date and threaded topic.

http://www.xray.mpe.mpg.de/mailing-lists/dbi
Another searchable archive for the DBI mailing list. Again, you may want to
search through this archive before posting any new mailing list questions.

Perl DBI books

Two O’Reilly books complement the one you’re reading right now. The first con-
tains much more detail on the Perl DBI API; the second also describes Perl DBI, as
well as many other open source technologies (including Tcl and Python) and their
parallel use of OCI:

http://www.oreilly.com/catalog/perldbi
Programming the Perl DBI: Database Programming with Perl, by Alligator Des-
cartes and Tim Bunce (O’Reilly & Associates, 2000).

http://www.oreilly.com/catalog/oracleopen
Oracle & Open Source: Tools and Applications, by Andy Duncan and Sean Hull
(O’Reilly & Associates, 2001).

For Further Information | 27

CHAPTER 2
Installing Perl

Now that you’ve learned how Perl can ease the burden of Oracle database adminis-
tration, you’re probably eager to get started. This chapter explains how to install Perl
for use with Oracle. We’ll cover the following steps:

Installing Perl
If you’re installing Perl on Unix, we recommend that you install directly from
source. If you’re installing Perl on Win32, we recommend that you use the pre-
built ActivePerl distribution, available from ActiveState; ActivePerl has become
the de facto standard Perl version for the Win32 platform.

Installing Perl DBI
Once you’ve installed Perl itself, you need database connectivity for it. We’ll
describe how to install Perl’s generic DBI module, as well as DBD::Oracle, the
Oracle-specific driver for Per] DBI.

Installing Cygwin
Cygwin is a complete Unix-like development environment that you can install
on your Win32 machine. It allows you to combine the benefits of access to Unix
compilers, interpreters, and other tools (e.g., Perl, gcc) with the convenience of
traditional Win32 software (e.g,. Microsoft Word, Excel). We’ll explain how to
install Cygwin and get the various Perl modules running on it.

Installing Perl

We described Perl’s origins and advantages in Chapter 1, Perl Meets Oracle. In this
section, we’ll describe the basics of the installation process for Perl. To obtain Perl
and to get more detailed information about this process, check out these web sites:

http://'www.perl.com
http://www.perl.org
Main Perl portals.

28

http://'www.activestate.com
ActiveState Win32 Perl portal site. You’ll find many other projects, including
ActivePerl, under the main ActiveState portal; most ActiveState products tend to
have fairly fluid web addresses, so we won’t attempt to provide them here.

Installing Perl on Unix

There are three basic ways to get started with Perl on Unix and Linux systems, the
third of which is best for reasons we’ll explain shortly:

1. Find Perl already installed on your system.
2. Download a binary executable that will build Perl for you out of the box.

3. Configure and build Perl yourself from the source code.

On most Unix versions, if you install Perl as the root user and accept the default
installation directories, it will generally embed itself into either one of the following
directories:

fusr/bin
fusr/local/bin

In most cases, this is fine; however, you may wish to install it somewhere else, such
as /u01/app/perl.

There are several reasons why you might want to install Perl in a different location:

* If you're an Oracle DBA who is working on other people’s systems, you may be
denied access to the root user’s system directories.

* You may have theoretical access, but jumping through the corporate hoops to
get actual physical access on some production systems (and having to fill out all
the necessary forms) may just not be worth it.

* Some versions of Perl, may already exist on your system and be used by every-
one else. However, you want your own latest-and-greatest private Perl to do the
work you need it to do, without upsetting the informational applecart. Those
guys in marketing may be happy relying on that ancient Perl 4 workhorse, but
we need something a bit more developed.

There are also several secondary reasons:

* Upgrading module versions, such as DBD::Oracle, when they become available,
will be simpler if you’re in complete control of the Perl installation location.

* Adding new modules also becomes easier if you don’t need to ask people’s per-
mission to do it, or to work within their weekly downtime window (you can
almost guarantee that window will be Wednesday morning at 3:00 AM).

InstallingPerl | 29

* For similar reasons, upgrading Perl itself will also be painless. Your local neigh-
borhood system administrators may even award you bonus points for keeping
off their turf!

Although we’ll assume in the following discussion that you’re installing Perl in
default locations as root (which is most often the case), we’ll indicate the one place
where you can change this default, if you want to install Perl under something more
like the oracle or oramon user, in a nonstandard location.

N
o This chapter assumes that you want to create your own version of
:‘ ~ Perl—one that is distinct from the Perl executables provided automati-
. *
i, cally in Oracle releases beginning with Version 8.1.7. (Later in this

chapter, in the section “Installing Perl from source” we’ll explain why
we recommend that you create your own version of Perl.) You need to
be careful not to get these two versions of Perl confused (people
installing Perl for the first time sometimes do this). One way to keep
the versions straight is to ensure that your own independent version of
Perl comes first in your system’s generic PATH variable.

Finding Perl already installed on your system

If Perl exists somewhere on your system (i.e., the main perl executable program is
available under your operating system, via the PATH environment variable), you can
usually find it by running the following command:

$ perl -v

If you believe that Perl is on your machine, but this command fails to return any-
thing, you may want to discover where Perl is living and then add it to your executa-
bles PATH. To find it, try one of the following commands:

$ type perl

$ which perl
$ whence perl
$ locate perl

If these fail to work, or if Perl is still unavailable on your flavor of Unix, try the ulti-
mate blockbuster approach:

$ find / -name "perl*" -print 2>/dev/null

Click, whirr. Once you’ve found Perl, add its executable directory into your PATH
and then run the perl -v command. What we’re looking for is something like this:

$ perl -v
This is perl, v5.6.1 built for i686-1linux
Copyright 1987-2001, Larry Wall

Perl may be copied only under the terms of either the Artistic License
or the GNU General Public License, which may be found in the

30 | Chapter2: Installing Perl

Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found
On this system using “man perl' or “perldoc perl'. If you have access
to the Internet, point your browser at http://www.perl.com/, the Perl
Home Page.

$

Most Linux machines (depending on the release date of the Linux distribution) have
Perl already on them. If you find Perl 5.6, or above, that’s good enough. For some
bizarre reason, many proprietary versions of Unix fail to come presupplied with Perl,
but that’s OK. It’s much more fun to install from source! We’ll show you how
shortly.

Installing Perl from a prebuilt package

Some Oracle DBAs running Unix systems choose to install Perl from a prebuilt exe-
cutable binary. In general, we recommend against this approach. Even if this option
is available to you, it has several disadvantages in comparison to building Perl from
source, mainly because prebuilt binaries may not match the configuration of your
local system—for example:

* They may implicitly point to libraries that are not available on the particular
machine.

* The original compiler options with which the package was created may not be
supported on your current system.

* They may assume default paths that don’t exist. For example, most of the pre-
built Unix Perl packages assume that the main perl executable is going to live
under /usr/local/bin. This is especially problematic if, as we mentioned earlier,
write access is unavailable to these kinds of directories.

Building from source, as we describe in the next section, is the best way to overcome
local difficulties of these kinds.

If you do need to go down the prepackaged route, for whatever reason, be aware that
most proprietary Unixes do have some great freeware sites. Although we think Perl is
best if built from source on Unix, you need to build it with compilers, and if you
haven’t got one, these sites and their packages are invaluable for providing you with
prepackaged compilers such as gcc. Some of the best sites we’ve found are:

For Solaris
http://sunfreeware.com

For AIX
http://ftp.univie.ac.at/aix

ftp://aixpdslib.seas.ucla.edu/pub

InstallingPerl | 31

For HP-UX
http://jazz.external.hp.com/src/index.html#perl

For IRIX
http://freeware.sgi.com/index.html

For OpenBSD
http://www.openbsd.org/ports.html

For Linux
Virtually every flavor of Linux also has its own home site, which is full of Unix
freeware download opportunities. Here are just some of the possibilities:

http://www.redhat.com/apps/download/
http://www.suse.de/us/support/download/
http://www.linux-mandrake.com/en/ftp.php3
http://www.caldera.com/download/mirrors.html
http://www.debian.org/distrib/ftplist
http://www.turbolinux.com/download/
http://www.slackware.com/packages/

You'll find the appropriate installation instructions at each site, and a web search
should uncover any others. Here we’ll run through the typical steps for Solaris.
These are only guidelines; be sure that you obtain, and read carefully, the most up-
to-date installation information for your own platform.

1. Download the latest Perl package for your version of Solaris from the web site.
2. Unzip the download (using either gunzip or gzip -d) as the root user.
3. Use pkgadd -d to add the package to your system.

For example, the following commands would install the standard Perl 5.6.1 package
as the root user:

$ gzip -d perl-5.6.1-s0l18-sparc-local.gz

$ pkgadd -d perl-5.6.1-s0l18-sparc-local
These kinds of steps (as specified on the appropriate site FAQ or within any accom-
panying README files) will build a fully functioning Perl system for you, adding the
Perl executable to a directory like /usr/local/bin/perl. You’ll follow similar steps for
most of the other Unixes.

A

iy Using some download browser screens, the prebuilt packages will
.‘s‘ occasionally download without the *gz suffix. This confuses the
" Wk gunzip program. If this problem occurs, you can solve it by simply

renaming the downloaded file with the additional *gz suffixed
extension.

32 | Chapter2: Installing Perl

Installing Perl from source

This third option is the one we recommend for Unix. To use our PDBA Toolkit most
effectively, we recommend that you install at least Perl 5.6 from source. It’s true that
you may have older versions of Perl on your system, or versions built from prepack-
aged executables. However, we need to lay a specific version of Perl DBI on top of
Perl, and for that reason we must ensure that Perl 5.6 has been set up correctly for
your machine. The best way of doing this is by building up from source.

Obtaining the required C compiler. You must have a C compiler before you can com-
plete your Perl installation. Fortunately, Linux virtually always comes with a gcc C
compiler already on board, and most proprietary Unix types often come with their
own, which is usually called cc. Even if you already have a C compiler, though, you
may want to get hold of gecc because most open source project installations are built
and tested with it. Using gcc, rather than any other C compiler, automatically elimi-
nates many compiler incompatibility problems.

The gcc compiler is the creation of the GNU project, which was started in 1984 by
Richard M. Stallman with the goal of developing a completely free Unix-like operat-
ing system. This project culminated in the development of the various GNU/Linux
operating systems, better known by their generic name “Linux” after their core ker-
nel developed by Linus Torvalds. You can check out the GNU project’s definition of
the word “free,” get information about gec, and learn much more at:

http://www.gnu.org

Although gec is usually the right choice, always read the appropriate README files
within the stable.tar.gz Perl distribution for each operating system. For instance,
here’s what the README.aix file says about using gec:

Perl can be compiled with either IBM’s ANSI C compiler or with gcc. The former is
recommended, as not only can it compile Perl with no difficulty, but also can take
advantage of features listed later that require the use of IBM compiler-specific com-
mand-line flags.

With AIX, you may have difficulties unless you do use the proprietary cc compiler, as
the note suggests. Most HP platforms are also better served with HP’s “official” C
compiler, which you may have to purchase as an extra-cost item.

v
NN

If you enjoy a challenge, and you’d like to boot-strap gcc from its own
source code using your own proprietary cc compiler as the bootstrap-
e per, check out the GNU web site for details.

You won’t need to compile gcc from source (unless you enjoy Catch-22-type chal-
lenges) because virtually every flavor of Unix has a gecc binary package built for it
already by the open source community. You can get such packages from the free-
ware sites listed in the previous section.

InstallingPerl | 33

For example, at the time this book went to press, the following sites contained the
latest gcc package for three major commercial Unix flavors.

http://sunfreeware.com
For Solaris

http://ftp.univie.ac.at/aix/aix432
For AIX

http:/ljazz.external.hp.com/src/gnu/download2_95_2.html
For HP-UX

You’ll find appropriate README installation instructions at each site. Here, we’ll
run through the typical steps for Solaris. These are only guidelines. Be sure you
obtain the most up-to-date installation information for your own platform, from the
site where you get the gcc package:

1. Download the latest gecc package, for your version of Solaris, from the
sunfreeware.com site.

2. Unzip the download using either gunzip or gzip -d as the root user. This file will
be called something like gcc-3.0.3-s0l8-sparc-local.gz.

3. Use pkgadd -d to add the package to your system.

For example, if you're logged on as the root user, the following commands will
install the gcc package:

gzip -d gcc-3.0.3-s0l18-sparc-local.gz
pkgadd -d gcc-3.0.3-s018-sparc-local

The actual executable will usually get dispatched to /usr/local/bin/gcc.

As a final compilation caveat, note that the default Perl installation process looks for
a generic cc compiler, unless you alter this behavior by following the detailed instruc-
tions in the Perl INSTALL file. To make sure you still pick up gcc anyway, move your
old cc compiler somewhere safe, such as cc.old, or place a new cc location higher up
in your PATH. Now we symbolically link in the new cc file to point at the real gec
compiler, to achieve a situation similar to the following:

$ type cc

cc is /home/oracle/bin/cc

$ 1s -1 /home/oracle/bin/cc

/home/oracle/bin/cc -> gcc

$ type gcc

gcc is /usr/local/bin/gcc

Obtaining the source for Perl. Once the compiler is ready, it’s time to get the Perl source
code itself. To obtain the latest version, visit CPAN, the Comprehensive Perl Archive
Network:

http://www.perl.com/CPAN/README.html

34 | Chapter2: Installing Perl

This will probably direct you to download the most recent stable version of Perl—for
example:

http://www.perl.com/CPAN-local/src/stable.tar.gz

Once you’ve obtained your own copy of stable.tar.gz, follow these basic steps to
install Perl:

1.

Download the zipped tar file (or “tarball,” as we’ll call it from now on) into a
temporary directory accessible to the root user.

. Unpack the main bundled file into its own directory:

1s *.gz

stable.tar.gz

gzip -d stable.tar.gz
1s *.tar

stable.tar

tar xvf stable.tar

. Change into the new Perl directory once the extraction process has completed,

and then carefully work through the instructions in the README and INSTALL
files:

1s

perl-5.6.1

cd perl-5.6.1
vi README INSTALL

. These instructions ask us to run an intelligent and friendly configuration pro-

gram, Configure, a sort of Hitchhiker’s Guide to the Perl installation process. By
now, this program has been run, quite literally, a few million times, so there are
few installation issues the program has failed to cope with. You should have no
problems running it, especially if you’re happy with a totally default install. For
re-installations, the following preparation step also ensures that no previously
existing master configuration files will interfere with the process:

1m -f config.sh Policy.sh

If you wish to install Perl as a non-root user within a nonstandard area, this is
the place where we deviate from the path of root enlightenment. Pick your tar-
get installation directory (say, /u01/app/perl) and then run the Configure pro-
gram slightly differently, perhaps as an oracle or oramon user:

$./Configure -Dprefix=/u01/app/perl

This tells Perl all it needs to know. When you run make install shortly, /u01/app/

perl will become the parent directory where Perl will get installed.
To get back to the main flow, root users will simply run the following:
sh Configure -de

(If you use sh Configure -des, the final “s” will take all the defaults for your
system.)

InstallingPerl | 35

5. Answering the configuration questions will only take a few minutes (if in doubt,

simply accept the defaults supplied). Once this Q&A session is completed, we're
ready to begin the build and installation stages. Make sure any configuration
errors are dealt with before you proceed with each next step (although you’re
unlikely to encounter any unless your machine or workstation is fairly nonstan-
dard). Run through the next few steps:

$ make

$ make test
$ make install

. Once you’ve completed these, Perl should now be installed. Check it out with

the perl -v command, as described earlier. Make sure it’s the one you were
expecting—at least the 5.6 version.

Installing Perl on Win32

For Win32, although you can build from source (if you have the relevant Win32
compilers, or you can use Cygwin (as described later in this chapter), most people
use the prebuilt ActiveState binaries, and that’s what we’ll do here.

Follow these steps:

1. Consult the main portal page for ActiveState to see all of the latest information

for installing ActivePerl (and many other products, including ActivePython and
ActiveTcl):

http://www.activestate.com
You’ll be able to go from there to pages like this:

http://aspn.activestate.com/ASPN/Downloads/ActivePer
http://aspn.activestate.com/ASPN/Downloads/ActivePerl/More

. You can download the latest binary executable build of ActivePerl from a web

address such as the following:
http://downloads.activestate.com/ActivePerl/Windows/5.6

The download file will be named something like the following:
ActivePerl-5.6.1.628-MSWin32-x86-multi-thread.msi

. You will need the appropriate MSI Microsoft Windows program installer. If it’s

not already available within your particular Win32 system (it comes as standard
with Windows 2000), you’ll need to obtain it. You’ll generally find that the
ActiveState site is the best place to direct you to the latest location and version
for this purpose. We provide the current Microsoft addresses, but note that
these do tend to move around a bit. If the following URLs are invalid, the
ActiveState Perl download pages will contain the latest address:

36

Chapter 2: Installing Perl

http://download.microsoft.com/download/platformsdk/wininst/1.1/NT4/EN-US/
InstMsi.exe

For WinNT

http://download.microsoft.com/download/platformsdk/wininst/1.1/W9X/EN-US/
InstMsi.exe

For Win98 and Win95

Install the MSI Microsoft installer itself by double-clicking on it in Windows

Explorer (this installation may be almost instantaneous).

4. Once the MSI program is confirmed as having been installed, double-click on

the actual ActivePerl download, in Windows Explorer, as in Figure 2-1.

5. After answering some questions about where you want Perl to be installed and
where you accepted the defaults, Win32 Perl is then installed directly onto your

system, in the standard Win32 way.

Once the process is complete, you can then test your Perl installation with the

perl -v test (also shown in Figure 2-1).

Because of the standard security architecture of Win32 systems, net-
work shares and shared drives in a cluster are sometimes unavailable
to the SYSTEM user. Therefore, any Perl scripts running from a sched-
uler or as a service will require that Perl be installed on a local drive.
The C:\ drive is often a safe bet (this is generally the default), and this
is where we always install Perl.

BN Eaplommy

Dietkic
=] My Compeder

3 IC1

=2 3% Plooew)

B ActivePer Build G20 Setup

|=[o] =]

| Fle Edr ‘iew Go Favoites Took Heb Ex Tinstaling ActivePer] Build 628 %
Fudmz

Flaase wal wids the Selup Wisard installs ActivePer| Bubd 628. This may Lake
several minutes.

hatus:
NNNNNNENNNNENNEN

wlti thread
re detail)

seState Tool Corp. htep:s

copied only unde terms of wither
Public Livense hich may be Found in

- &
wyuu

tu
hu Perl Home Page.

Figure 2-1. Installing ActivePerl

Installing Perl

37

We hope you won’t encounter any problems getting Perl installed. But if you do, and
you can’t get the necessary help from the README and INSTALL files or here in this
book, go to the Perl information sources listed in Chapter 1.

Installing Perl DBI

Now that you’ve installed Perl itself, you need to set things up so your Perl programs
can communicate with your Oracle database. The best way to do this is via the magic
of the Perl DBI module and its Oracle-specific database driver, DBD::Oracle. These
modules let us gain access to our target database through the Oracle Call Interface
provided by Oracle Corporation. The architecture for this arrangement, which takes
full advantage of the object-oriented features available within Perl 5, is shown in
Figure 2-2. This figure also demonstrates how the same Perl DBI interface can be
used, with other drivers, to connect to other databases, and how all of these drivers
are hidden from your Perl scripts by the DBI package.”

This section focuses on the installation of Perl DBI. For more information about Perl
DBI’s capabilities, see Appendix B, The Essential Guide to Perl DBI, and the book
and online references listed in Chapter 1. For complete online information, go to
http://dbi.perl.org.

We’ll show how to install the DBI modules for both Unix and Win32.

Before we get to the DBI and DBD::Oracle modules, however, we need to take a step
back to discuss the methodology we’ll be using for installing Per] modules onto Unix
systems, both here and in the rest of the book.

Methods for Installing Perl Modules

There are two basic approaches to installing Perl modules (for example, Perl DBI,
DBD::Oracle, and the many other modules we’ll be discussing in later chapters) on
Unix systems. The first is what some people call the traditional method. The second
is the CPAN method. We recommend the traditional method, as we describe in the
next section, but because the CPAN method is quite popular, we’ll describe that one
here as well.

The traditional method

Briefly, the traditional method consists of the following steps:

1. Download a module’s tarball from cpan.org.
2. Unpack it.

* You can even access different database types within the same Perl script using DBI. Doing so can be espe-
cially useful when you want to transfer information from one database type to another without having to use
Oracle’s SQL*Loader product.

38 | Chapter2: Installing Perl

Download from Wow! eBook <www.wowebook.com>

e perli Databases --------------------- >
DBD::Oracle ‘HHH} Ogale H'w d;)tr:slaese ‘
Perl 5 Perl E
ipt [pgy mp o wimh(oofn o s ‘
. MysQL
DBD::mysql ‘HH“} ClientLibrary H'U dzmigl;e ‘

Figure 2-2. The Perl DBI architecture

3. Build it.
4. Test it.
5. Install it.

This process often requires specifying the following steps on the command line (once
the module tarball has been downloaded from the CPAN site, http://www.cpan.org).

$ gzip SomeModule-1.00.tar.gz # Unzip archive
$ tar xvf SomeModule-1.00.tar # Unpack archive

$ cd SomeModule-1.00 # Enter archive

$ perl Makefile.PL # Configure the build

$ make # Build, or compile, the module
$ make test # Test the module's compilation
$ make install # Install the tested module

There are a lot of keystrokes here. However, there is a way to cut down on this effort,
and that’s to use the CPAN module described in the next section.

The CPAN method

The CPAN module (a separate entity from CPAN itself) provides a streamlined way
to install Perl modules. You can learn the details of this built-in module by running
the following commands:”

$ perldoc perlmodinstall
$ perldoc CPAN

* The perldoc (Perl documentation) program itself is installed automatically with Perl, as part of the general
Perl development environment.

Installing Perl DBI | 39

If you have a valid Internet connection open, you will have two ways of using CPAN.
You can use either an interactive shell or a direct command-line instruction. We’ll
load up two modules in the following sections using these methods.

R
s

The CPAN module comes prebundled with Perl. When you run its

s shell (described in the next section) for the first time, it will ask you a

Ny

& B B . . .
o3, one-time series of short configuration questions. Once you’ve com-
pleted these, you’re ready to start installing online!

The interactive CPAN shell

First, we’ll try the interactive CPAN shell, and install Number::Format, a helpful Perl
module for manipulating number and string displays, particularly financial data:

1. We enter the shell via the following command:

$ perl -MCPAN -e "shell"
cpan shell -- CPAN exploration and modules installation (v1.59 51)
ReadlLine support enabled

cpan>

2. We then install Number::Format with a straightforward instruction at the cpan>

prompt. This sets off a train of events in which CPAN goes off to the nearest
cpan.org mirrors, First, it interrogates the Comprehensive Perl Archive Network,
as to whether our target module really exists. After validating this fact and a few
other related pieces of information, it automatically downloads the latest exist-
ing tarball from the mirror and installs it for you. It does all this via some Perl
magic of which Mithrandir himself would be proud:

cpan> install Number::Format

CPAN: Net::FTP loaded ok

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/authors/0imailrc.txt.gz

Going to read /home/andyd/.cpan/sources/authors/0imailrc.txt.gz

CPAN: Compress::Z1ib loaded ok

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/modules/02packages.details.txt.gz

Going to read
/home/andyd/ .cpan/sources/modules/02packages.details.txt.gz

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/modules/03modlist.data.gz

Going to read /home/andyd/.cpan/sources/modules/03modlist.data.gz

Running install for module Number::Format

Running make for W/WR/WRW/Number-Format-1.44.tar.gz

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/authors/id/W/WR/WRW/Number-

Format-1.44.tar.gz

CPAN: MD5 loaded ok

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/authors/id/W/WR/WRW/CHECKSUMS

Checksum for

40

Chapter 2: Installing Perl

/home/andyd/ .cpan/sources/authors/id/W/WR/WRW/Number -
Format-1.44.tar.gz ok
Scanning cache /home/andyd/.cpan/build for sizes

CPAN.pm: Going to build W/WR/WRW/Number-Format-1.44.tar.gz

Writing Makefile for NumberFormat
/usr/bin/make -- 0K
Running make test
No tests defined for NumberFormat extension.
/usr/bin/make test -- OK
Running make install
Writing /usr/lib/perls/site perl/5.6.1/1686-
linux/auto/NumberFormat/.packlist
Appending installation info to /usr/lib/perl5/5.6.1/1686-
linux/perllocal.pod
/usr/bin/make install -- OK
cpan>
Although the preceding is a lot of output, it has taken our fingers relatively few
keystrokes to get Number::Format installed. In addition to the interrogation
shown here, notice the three build and installation steps we’ve highlighted—

make, make test, and make install—all done automatically.

3. Once we've finished installing new packages, we simply quit out of the shell:

cpan> quit
Lockfile removed.

$
Number::Format (and any other requested modules) is now installed, as if you

had done it by hand.

CPAN from the command line

Using CPAN directly from the command line is even easier than using the interactive
CPAN shell. We'll use it to get another useful Perl module, the Convert::EBCDIC
bundle, which deals with IBM mainframe EBCDIC data and its conversion to and
from ASCII formats. Follow these steps:

1. This time, we’ll install our target module directly, with a single command at the
operating system prompt:
$ perl -MCPAN -e "install 'Convert::EBCDIC'"

2. This runs through a processing operation that’s similar to the shell method
shown earlier:

Going to read /home/andyd/.cpan/sources/authors/0imailrc.txt.gz
CPAN: Compress::Zlib loaded ok
Going to read

/home/andyd/ . cpan/sources/modules/02packages.details.txt.gz
Going to read /home/andyd/.cpan/sources/modules/03modlist.data.gz
Running install for module Convert::EBCDIC
Running make for C/CX/CXL/Convert-EBCDIC-0.06.tar.gz
CPAN: Net::FTP loaded ok

Installing Perl DBI | 41

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/authors/id/C/CX/CXL/Convert-

EBCDIC-0.06.tar.gz

CPAN: MD5 loaded ok

Fetching with Net::FTP:
ftp://ftp.demon.co.uk/pub/CPAN/authors/id/C/CX/CXL/CHECKSUMS

Checksum for /home/andyd/.cpan/sources/authors/id/C/CX/CXL/Convert-

EBCDIC-0.06.tar.gz ok

Scanning cache /home/andyd/.cpan/build for sizes

CPAN.pm: Going to build C/CX/CXL/Convert-EBCDIC-0.06.tar.gz

Writing Makefile for ConvertEBCDIC
/usr/bin/make -- OK
Running make test
No tests defined for ConvertEBCDIC extension.
/usr/bin/make test -- OK
Running make install
Writing /usr/lib/perls/site perl/5.6.1/1686-
linux/auto/ConvertEBCDIC/.packlist
Appending installation info to /usr/lib/perl5/5.6.1/1686-
linux/perllocal.pod
/usr/bin/make install -- OK
$
Convert::EBCDIC should now be fully installed. (We discuss both Number::For-
mat and Convert::EBCDIC in Appendix D, The Essential Guide to Perl Data

Munging.)

The traditional method

As you can see, the CPAN installation method is very convenient. However, like
many Perl developers, we’ve chosen to use the older paradigm because it gives us
better control and is more reliable.

Many of the modules we’re going to discuss in this book have compilation routes
that deviate from the norm. CPAN is a fire-and-forget missile. You press the button,
and away it goes, but it always expects our target to be in view. If the target is else-
where, it’s intelligent enough to try to adapt, but it may still fail to do exactly what
you wish, and consequently miss the mark. On the other hand, because of the
greater number of steps required by the traditional method, we actually achieve bet-
ter granularity when we use that method, and we find it particularly helpful when
explaining Perl to others. We can hop between steps and offer you more advice on
debugging, alternative location installations, and other compilation tips (particularly
in places where the Perl module is a glue layer camouflaging the more difficult APT of
a passenger C library, which itself needs compilation).”

* You can think of the difference between the CPAN and traditional methods as analogous to the old conflict
between what’s called, in military circles, Sigint (Signals Intelligence) and Humint (Human Intelligence). Sig-
int, or CPAN, is easier to deploy and gather information from, whereas the traditional cloak-and-dagger
Humint, pays for its greater management overhead with a greater depth of penetration.

42 | Chapter2: Installing Perl

Thus, from here on, we’re going to sidestep the CPAN module and stick mainly to la
methode traditionelle as we discuss Perl installation. However, if you ever get jealous
of Win32 people using PPM (the Perl Package Manager, which we describe in the
later section, “Installing Perl DBI on Win32”), nothing stops from you using CPAN;
we promise to turn a blind eye, especially as we use PPM quite often.

Installing Perl DBI on Unix
In this section, we’ll explain how to install Per] DBI using the following tarballs:

DBI-1.20.tar.gz
DBD-Oracle-1.12.tar.gz

The central locations for these are:

http://www.perl.com/CPAN/modules/by-module/DBI
http://www.perl.com/CPAN/modules/by-module/DBD

You can obtain the relevant interface and driver packages by clicking on and saving
the files from the appropriate links. Save them to a Perl module repository.

Installing Perl DBI

Once you have the relevant downloads, you can begin the Perl DBI installation.
Before starting, always scan through the relevant README files; the following
instructions do change gradually over time. If any problems occur with your installa-
tion, you’ll find that the solution is most likely buried deep within either the DBI or
the DBD::Oracle README files. Follow these steps:

1. As a sanity check, make sure that the Perl version you installed earlier is set up
correctly. Do this as the same user with which you installed Perl:
$ type perl
perl is hashed (/usr/bin/perl)
$ perl -v
This is perl, v5.6.1 built for i686-linux.........
2. If this looks good, carry on with the Perl DBI installation by unpacking the tar-
ball and checking the documentation:

$ gzip -d DBI-1.20.tar.gz
$ tar xvf DBI-1.20.tar
$ cd DBI-1.20
$ vi README
3. If you have no special requirements (as detailed in the README file), follow the
standard Perl installation instructions.” If any step fails, you will need to sort out
what’s causing the problem before you can move on:

$ perl Makefile.PL

* If you installed Perl earlier in a nonstandard directory as a non-root user, all subsequent module installations
will automatically feed themselves into the correct library locations, and no further intervention will be
required on your part.

Installing Perl DBl | 43

This step may produce an informational note similar to the following:

*** Note:

The optional PIRPC-modules (RPC::PlServer etc) are not installed.

If you want to use the DBD::Proxy driver and DBI::ProxyServer

modules, then you'll need to install the RPC::PlServer,

RPC::P1Client, Storable and Net::Daemon modules. The CPAN

Bundle::DBI may help you.

You can install them any time after installing the DBI.

You do *not* need these modules for typical DBI usage.
The DBI::ProxyServer and DBD::Proxy combination is an alternative approach
to the one we describe in this section. It lets you avoid using DBD::Oracle on
remote Oracle clients. We’ll describe this approach, as well as the details of the
dbiproxy daemon program, later in this chapter; the dbiproxy daemon is also dis-
played in Figure 2-4. To get dbiproxy to work, you’ll need to install four more
packages before installing DBI (remember that these are optional and unneces-
sary for typical DBI usage). You can always come back to these packages at a
later time; for now, let’s move on.

4. Having configured Perl DBI, let’s build, test, and install it.

$ make
$ make test
$ make install

Perl DBI should now be installed. But we need to keep the bubbly on ice, for a little
while longer. The next stage is to pair DBI up with its partner, the DBD::Oracle
driver.

Installing DBD::Oracle

Follow these steps to install the DBD::Oracle module:

1.

At this point, make sure you have a test Oracle database running, with the
appropriate TNS listener up. Also, if you’re the root user, make sure you have
the usual Oracle environment variables set up: ORACLE_HOME and ORACLE_
SID (you may choose to use TWO_TASK, instead of ORACLE_SID, depending
on your setup). You particularly need ORACLE_HOME to locate the OCI code
libraries. Note that DBD::Oracle is similar in concept to the Type II fat JDBC
drivers for use with the java.sql database connectivity package in Java. It needs
at least Oracle client libraries available, in order to compile successfully:"

$ ORACLE_HOME=/u01/app/oracle/product/8.1.5
$ export ORACLE_HOME

$ ORACLE_SID=orcl

$ export ORACLE SID

* That is why DBI::ProxyServer and DBD::Proxy may be of interest for remote clients. They let you sidestep
the requirement for Oracle client libraries at the remote end (see Figure 2-4).

44

Chapter 2: Installing Perl

2. To make sure the DBD::Oracle driver is working correctly (before its full installa-
tion in the make test step described later), you’ll also need to set up the follow-
ing special ORACLE_USERID environment variable. (Simply change the scott/
tiger@orcl string on your own installation to a valid connection string on your
own test database.)

$ ORACLE_USERID=scott/tiger@orcl
$ export ORACLE_USERID

3. As a final environmental gotcha, you may also need to have your LD_LIBRARY_
PATH environmental value pointing to all of the right little places on various
Unix flavors. This will help ensure that DBD::Oracle will pick up the correct
Oracle libraries:

$ LD _LIBRARY PATH=$LD LIBRARY_PATH:$ORACLE_HOME/lib
$ export LD_LIBRARY PATH

4. We’re now ready to unpack DBD::Oracle:

$ gzip -d DBD-Oracle-1.12.tar.gz
$ tar xvf DBD-Oracle-1.12.tar
$ cd DBD-Oracle-1.12
$ vi README
5. As the Captain himself might have once said, “Transporter room, this is Kirk.
Configure, build, and install”:

$ perl Makefile.PL

$ make

$ make test

$ make install
If you do encounter any errors with this installation (particularly on the make
test step), you must sort them out before running the final make install step—
even if the errors appear to be nonfatal. That way, you’ll have greater confi-
dence when you’re running production DBI scripts later on. Following this error
hit list should remove most of the gremlins:

a. Ensure that ORACLE_USERID is set correctly, as described earlier.

b. Check that LD_LIBRARY_PATH can access the libraries residing in
$ORACLE_HOME/lib.

c. Make sure your Oracle database is up and running with adequate memory
available in the shared pool, particularly if you know that the machine’s
memory is tight.

d. Check that the correct Oracle listener is responding correctly. You can do
this by connecting to it via a SQL*Plus session, from the same machine on
which you’re installing DBD::Oracle.

e. Scan through the README files again with a fine-toothed comb.
If you can’t solve your problem (which should be a very rare case), you may be able

to get help from the DBI users mailing lists or from the helpful information in the
DBI FAQs. We explain how to access these at the end of Chapter 1.

Installing Perl DBI | 45

Once you’ve successfully completed the make install step, you’ll find plenty of up-to-
date Perl DBI documentation automatically loaded onto your system. You can ensure
that the documentation has been loaded by running the following pair of commands:

$ perldoc DBD::Oracle
$ perldoc DBI

Installing Perl DBI on Win32

In contrast to the Unix installation, installing Per] DBI using ActiveState’s version of
Perl is very straightforward. We recommend that for Win32 you use the PPM (Perl
Package Manager) module, which installs automatically alongside ActivePerl with its
utility ppm program (which runs it).

PPM simplifies the tasks of locating, installing, upgrading, and removing software
packages on Win32. It determines whether the most recent version of a software
package is installed, and can install or upgrade that package from a local or remote
host. PPM is very similar to the interactive CPAN shell module described earlier.
Although PPM is usually run via its ppm interactive shell program, it can also be used
directly on the command line. PPM uses PPD (Perl Package Description) files con-
taining an extended form of the Open Software Description specification,” for infor-
mation about software packages. These description files are written in XML. For
more information on PPM on Win32, run the very helpful perldoc command; we’ll
say more about perldoc in Appendix A, The Essential Guide to Perl:

DOS> perldoc PPM
We've chosen to use PPM ActivePerl packages, instead of hand-crafting Perl module
installations, for the following reasons:
* Most Win32 users don’t have a development environment in which to compile
and test source code installations.

* Many Perl modules on Unix require the manual compilation of libraries such as
zlib for compression, expat for XML parsing, or gd for dynamic image creation.
All ActivePer] modules have precompiled these libraries for you into DLLs,
where necessary, before you download them. These will save you a significant
amount of work over compiling DLLs of your own.

* Just as compiling from source is the standard method for installing Perl on Unix,
the de facto standard method on Win32 is to use PPM.

Running PPM

For a comprehensive guide to installing Perl modules on Win32, check out the fol-
lowing site:

* http://'www.w3.0rg/TRINOTE-OSD.html

46 | Chapter2: Installing Perl

http://aspn.activestate.com/ASPN/Products/ActivePerl/fag/ActivePerl-faq2.html

Unless you’re accessing the Internet through proxies, as we’ll discuss shortly, the fol-
lowing steps should take only a few minutes:

1. As with CPAN, make sure your PC is connected to the Internet before you run
ActiveState’s PPM. (Note that PPM itself was automatically installed when you
loaded ActivePerl earlier.) If you’re connected through a proxy, you’ll need to set
the Win32 environment variable HTTP_proxy to the name of your proxy server.
You may also need to set the variables HTTP_proxy_user and HTTP_proxy_
pass, if your server requires a username and password. If you need additional
information, check out this web site: http://aspn.activestate.com//ASPN/Products/
ActivePerl/fag/ActivePerl-faq2.html#ppm_and_proxies

2. Now start up an MS-DOS window and type the PPM command shown here at
the command-line prompt:
C:\> ppm
This will bring up the PPM program prompt.
3. Install the ActivePer]l DBI package as follows:
PPM> install DBI
4. When this completes, type:
PPM> install DBD-Oracle8
This should load the latest Oracle DBD::Oracle package.

5. Alternatively, if Oracle8 (or later) is unavailable on your system, you may wish
to load a slightly earlier DBD::Oracle package instead:
PPM> install DBD-Oracle

6. Your Perl DBI installation process should now be complete. You can quit and
prepare for the heady excitement of the “Hello World” example coming up.

Getting the latest PPD files

For the very latest Perl DBI and DBD::Oracle packages on Win32, you can go
beyond ActiveState and turn to a knight in shining armor, Ilya Sterin. Ilya regularly
provides the latest binary compilations at the http://xmlproj.com/PPM web page.
Check this site first! If the PPD files you’re looking for are there, you can run the fol-
lowing PPM commands to obtain the very latest DBI and DBD::Oracle downloads:

DOS> ppm

PPM> remove DBD::Oracle

PPM> remove DBI

PPM> set repository XMLPROJ http://xmlproj.com/PPM/
PPM> install DBI-1_20

PPM> install DBD-Oracle-1_12

PPM> quit

Installing Perl DBI | 47

Running Perl DBI

Would this book be complete without a “Hello World” example? Of course not, so
here goes! Our very simple Perl DBI script (in Example 2-1) will simply connect to
the orcl Oracle database as the scott user, run through a straightforward SQL cursor
on the DUAL table via a prepared statement, and then print out the result before log-
ging off. We’ll run the same script on both Unix and Win32 to demonstrate Perl’s
operating system independence:

Example 2-1. Our first Perl DBI script, HelloWorld.pl

#!perl -w

use strict;

use DBI;

Connect to Oracle database, making sure AutoCommit is
turned off and potential errors are raised.

my $dbh = DBI->connect('dbi:Oracle:orcl’, 'scott', 'tiger’,
{ RaiseError => 1, AutoCommit => 0 });
Create the SQL.

my $sql = qq{ SELECT 'Hello World' FROM DUAL };
Prepare the SQL and execute.

my $sth = $dbh->prepare($sql);
$sth->execute();

Fetch output rows into array, plus prepare a
print formatter for the results.

while (my($helloWorldString) = $sth->fetchrow array) {
Print out the result.

print $helloWorldString, "\n";
}

$dbh->disconnect(); # Disconnect

Example 2-1 may look a little scary, but after reading Appendix B, you’ll quickly be
able to reduce it to the following:
#lperl -w

use strict;
use DBI;

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',
{ RaiseError => 1, AutoCommit => 0 });

print $dbh->selectrow_array(qq{ SELECT 'Hello World' FROM DUAL });

$dbh->disconnect();

48 | Chapter2: Installing Perl

Note the following about Example 2-1:

* If you know some Perl already, you may notice how we’ve only imported the
DBI module, within the script, via Perl’s use command. The Perl DBI package
takes care of picking up DBD::Oracle, for us when we run the DBI->connect call.
(The dbi:Oracle:orcl parameter string cleverly indicates that we want to use
DBD::Oracle rather than any other database driver.)

* You may also wish to change the orcl, scott, and tiger information strings to
something more appropriate for your own target database before running the
program.

Before we run this script under either Unix or Win32, we need to do the following:
1. Make sure ORACLE_HOME is set within the command shell environment, to
ensure that the DBD::Oracle driver can locate the OCI libraries.
2. Make sure the target database is up and ready.
3. Check that the relevant database listener is up and running; you can do this by

trying to connect to the target database via a remote SQL*Plus session.

We should now be ready to run the HelloWorld.pl Perl script under both Unix and
Win32.

Running a Perl Script on Unix

Follow these steps to run a Perl script on a Unix system:

1. Log in to Unix as the Oracle user. If necessary with your particular version of
Unix, make sure that the LD_LIBRARY_PATH environment variable is set cor-
rectly by adding SORACLE_HOME/lib to it.

2. Make sure the Perl executable program is within your PATH:

$ type perl
This should return something similar to the following:
perl is hashed (/usr/bin/perl)

3. Ensure that you’re in the directory where you’ve written the HelloWorld.pl
script.

4. Now simply type:

$ perl HelloWorld.pl
(You may want to use the optional -w flag, as in perl -w HelloWorld.pl, to make
explicit any warnings.)
If you make the HelloWorld.pl file executable, you can also use the shebang syn-
tax on line 1, #!/perl -w, to run the program directly:

$ chmod +x HelloWorld.pl
$./HelloWorld.pl

Running Perl DBI | 49

5. The resulting output should be:
Hello World

OK, so it’s lacking in wild inspiration, but from little acorns grow. You can see
our output in Figure 2-3, along with the corresponding Win32 version.

Running a Perl Script on Win32
Follow these steps to run a Perl script on a Win32 system:

1. Go to the directory where you’ve created the HelloWorld.pl script (or copied it)
from your Unix system.
C:\> cd Perl\eg
2. Enter the following:
C:\Perl\eg> perl HelloWorld.pl
(Some Win32 systems associate the .pl suffix with the Perl interpreter, which
means that you may be able to drop the use of the explicit perl command.)
3. You should now see the following output generated:
Hello World
Again, this is demonstrated in Figure 2-3.

Now we can break out the bubbly!

DBI by Proxy

One of DBD::Oracle’s major limitations is its reliance on the presence of at least Ora-
cle client libraries for successful compilation. Indeed, here’s what the Version 1.12
DBD::Oracle README file has to say:

Install enough Oracle software to enable DBD::Oracle to build. That usually includes
Pro*C. That’s not very specific because it varies so much between Oracle releases.

If you have an Oracle server but no client machines possessing on-board Oracle soft-
ware, this is a problem. It’s also a problem if you have a client firewall that DBD::
Oracle fails to break through. Fear not, for there is a potential solution at hand—
Jochen Wiedmann’s amazing DBI::ProxyServer and DBD::Proxy module set, which
comes automatically within the DBI tarball. For DBI 1.20, you can read about both
modules here:

http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBI/ProxyServer.pm
http://search.cpan.org/doc/TIMB/DBI-1.20/lib/DBD/Proxy.pm

(Try searching on http://search.cpan.org if these version-specific documents have
been superseded.)

The idea is to set up a proxy server daemon, dbiproxy, that runs on your Oracle
server machine. On your remote clients, you use DBD::Proxy instead of DBD::

50 | Chapter2: Installing Perl

e [oracle@localhost perlld
5 MS-DOS Prompt [oracle@localhost perll$
[oracle@localhost perll$

[oracle@localhost perll$
: n [oracle@localhost perll$
::;::&::g; [oracle@localhost perlld
:\Perl-eg> [oracle@localhost perll$
NPerlueg> [oracleBlocalhost perll$ echo $ORACLE_HOME
:\Perl-eg> Aulldappdoracles/products/8,1,5
:“Perlieg’> [oracle@localhost perll$ LD_LIBRARY_PATH=$LD_L IBRARY_PATH:$0RACLE_HOME1ib
:sPerlseg’ [oracleBlocalhost perll$ export LI_LIERARY_PATH
~Perl-eg> [oracle@localhost perll$ type perl
:\Perl-eg> perl iz hashed {‘usr/bindperl}

iNPerlieg> [oracle@localkost perll$ perl HelloMorld.pl
- . per perl Helloblorld.p
inPerlueg> Hello World

;:;::&::g; [oracle@localhost perll$

B " [oracle@localhost perll$
::;::&::g; [oracle@localhost perll$
~Perlieg> perll$
~Perlieg> perll$
~Perlieg> perlls
~Perlieg> [oracleBlocalhost perll$ [l
~Perlieg>
~Perlieg>
:»Perluegrperl HellolWorld.pl

Hello Yorld

C:sPerlueg>

Figure 2-3. HelloWorld.pl running under Win32 and Unix

Oracle. This module connects across the network to the dbiproxy daemon, which
passes through the SQL requests to a server-configured DBD::Oracle driver, thereby
allowing proxy access to the Oracle database. This setup is displayed in Figure 2-4.

In order to use the ProxyServer system over a network, we need to install several Perl
packages:

* Storable (as used by the following PIRPC packages); you can find this at http://
www.cpan.org/authors/id/KWILLIAMS.

* Net::Daemon.
* PIRPC (which contains the RPC::PlServer and RPC::PIClient subpackages).

You can find these at http://www.cpan.org/authors/id/fWIED.

Installing Cygwin

Cygwin is a free, open source Win32 porting layer for Unix applications, originally
developed by Cygnus Solutions (now a part of Red Hat, Inc.) The Cygwin library
brings to Windows the Unix system calls and environment that Unix programs
expect. This makes it fairly easy to port Unix applications to Win32 without having
to make extensive changes to the source code.

Cygwin is an increasingly popular solution for Win32 users who want at least occa-
sional access to the compilers, scripts, and favorite Unix commands (e.g., grep, ps,
sed) that their Unix counterparts take for granted. Of course, Linux is often a viable
choice for PC users, but many of those users aren’t willing to give up Microsoft
Word, Excel, and the other standard Windows programs. Cygwin is a nice compro-

Installing Cygwin | 51

_B :’""""""""T\ _B
Perl DBI | DBD::Proxy || q— oa | Orade Perl
script ‘ 4 databas script

DBD::Oracle
DN
DBI Perl
DBI
Client N
Perl | DBI jwi DBD:Proxy o — 3 ‘
script ey .
— dbiproxy daemon
Client Main Oracle server Client

Figure 2-4. DBI:ProxyServer and DBD::Proxy architecture

mise. You can install it and have it available when you need to run a Unix program,
without completely changing your environment. It’s like having an extra driver in
your bag of golf clubs; you may not need it all the time, but every now and then it is
awfully useful!

If you’re going to be using Perl on a Win32 platform, you may find Cygwin particu-
larly useful. Because the gcc compiler comes with Cygwin, you’ll be able to compile
Perl, Perl DBI, and/or DBD::Oracle from source if you wish, rather than having to
use the prebuilt binaries available from ActiveState. That way, you can customize
Perl as needed to suit your own environment. And Cygwin also extends your reach;
some of the Oracle applications we describe in this book, such as Oracle::OCI
described in Chapter 7, Invoking the Oracle Call Interface with Oracle::OCI, or the
latest XML parsers described in Appendix D (and many other open source applica-
tions as well), are yet to be available as Win32 executables. New Perl modules
requiring C libraries don’t tend to be available on ActivePer] for some time because
of the required development lead-in time. You can keep ahead of the game with Cgy-
win.

You can learn much more about Cygwin at:

http://www.cygwin.com

Installing Perl under Cygwin

First of all, visit the http://www.cygwin.com site and check out the latest download
instructions for Cygwin. These are continuously updated to ease Cygwin’s installa-
tion, which gets easier by the month. The following are the steps we took to install
the latest version available to us:

52 | Chapter2: Installing Perl

. Create a new directory on your PC that’s ready for the Cygwin downloads:

C:\>mkdir cygwin

C:\>cd cygwin

C:\cygwin>

. Download the setup program. Instead of downloading a single massive tarball,
we chose to download setup.exe, a sort of traffic-cop program designed to direct
the rest of the installation proper, in a manner conceptually similar to the Perl
configure program. We got hold of setup.exe from this URL:

http://www.cygwin.com/setup.exe

. Run the setup program. Once we had downloaded setup.exe, we ran the pro-
gram by double-clicking it inside the C:\cygwin directory in Windows Explorer.
The first screen we saw is shown on the left in Figure 2-5.

. We then pressed Next->, taking us to the screen on the right in Figure 2-5,
which provided a range of three options. We decided to download our required
packages from the Internet, and then install them later—you may prefer to
install directly from the Internet. Choose the approach that suits you best.

. We then moved progressively through the screens in Figures 2-6, choosing Inter-
net Explorer IES settings, to overcome any potential proxy difficulties. As
before, you may prefer alternative options.

. The next stage was the pop-up list of Cygwin mirrors, shown on the left side in

Figure 2-7. All the Cygwin packages, shortly to be downloaded, come from one
of these mirrors.

Cygwin Setup Cygwin Setup [x]
o= Cygwin Met Release Setup Program =
C C ™ Install from Intermet

Setup.exe version 2125210

Copyright 2000, 2001 Red Hat Inc. ¢ Download from Intemet

. i i
hitp: sources. redhat. com/cpgwin/ Istall from Local Directory

Cancel Cancel

Figure 2-5. First steps—Setting up Cygwin

| R . o] B Lirsaepiny : E oo
Cherpan C ks
Dislit Teut e Typa: ™ DO ¥ Lrix © Usn HTTR/ETE Prowy
IntsdFes ©A O udMe T Y
e |) e} ook [lioas] | coed | ok [l | | oo |

Figure 2-6. Determining download locations and options

7. After we chose a convenient mirror, the main package selection screen appeared.

Note that the setup.exe program will already have worked out the absolute base
set of packages you need to get Cygwin up and running. The rest are optional.

Installing Cygwin | 53

Cygwin Setup E3 /W, guin 5 ctup E

c.. S braites it E Select packages to donnoad @ O Categony
T/ p.nt =
n'; m;a:if’amp] Category Curent Hew Src? Package) |
fip A/ ket ad ip Admin
fip /g v, hieron.co.p Archive
fip /g st 0.
ftp: ing 1L 90.p Base
fip v ishe.p Database
fip. /g senel ne.p Devel
fipi¢/ting.asehinel ot p
fis /g sstem orp & 2524 O autocontdevel Development version of the automalic ¢
/st s com.pe 2134 O autoont-stable: Stable version o the automalic sanfigu
,f‘;) ,;';f‘:;i:fg‘f e &155 [automake devel: Development version of a tool for gene
Pl /11 = i pt & 1455 01 sutomekestsble: Stable version of 2 ool or generating
et & 010383 01 liink GNU Intemationalzation urime lbrary
& 010401 01 libint: BN Intemationalization e brary
ERRE D1 mktsmp: Allows sate temp fle/dir crsation from shell scr
CEpTd ok bae
Ediors
c-Baok [Hew | cancel | e
Graphics —
Interpreters —
4 | 3

&3 = click to choose action, (p) = previous version, [x] = experimental
c-gack | et | Cancel_|

Figure 2-7. Choosing download packages

To get a real development environment going, we need more than the economy
model cup-holder allocation of one for the driver. We need swing-out tables,
portable showers, and a whole army of oil-damped cup-holders, all over the
vehicle!

. Click on the Category name tags of the main package selection screen shown in

Figure 2-7. These include Admin, Archive, Base, Database, and Devel. Go ahead.
Open them all up. In the early days, Cygwin used to be a single download, but it
took 3.9812 eons to bring back the whole caboodle over a home Internet con-
nection. A single rogue disconnection could lose the entire shooting match, forc-
ing you to start all over again. Thankfully, the various bits and pieces of Cygwin
are now available as separate items.

. The packages we recommend you choose for a minimalist Perl-based develop-

ment environment are detailed in Table 2-1. In compiling this list, we’ve tried to
identify what’s truly necessary and what’s nice to have, balancing both against
the restrictions of bandwidth. The safest bet, if you have both the time to spare
and the hard disk capacity available, is to simply get everything. (If you don’t
have time or space for that now, though, you can always pick up the missed
packages later on. Cygwin’s setup.exe program is clever enough to determine
what you’ve already got, and what you need. In addition, it will even flag the lat-
est versions of programs as they become available on the Cygwin home site.)

Table 2-1. Cygwin packages for Perl development

Category Packages required

Base Al

Devel Al

Editors vim—uvi Improved (not that we're die-hard vi fanatics, but we do need a text editor)
54 | Chapter2: Installing Perl

Download from Wow! eBook <www.wowebook.com>

Table 2-1. Cygwin packages for Perl development (continued)

Category Packages required

Graphics All (for possible use with DBD::Chart and other Perl-based graphics packages that rely on these
libraries)

Interpreters Perl (fairly essential, this one)

Libs All (although in a crunch you may want to come back later for the OpenGL, OpenSSL, and Tcl/Tk librar-

ies; make sure you do get all the Win32 libraries)

10. To save further time and hard disk space, you may want to avoid selecting the
source code options until you need to dig down into programs of interest later
on.

11. Once you've selected what you want, click on Next-> on the main packages
selection screen in Figure 2-7, and let the download begin. At this point, you
may need to go to your Win32 Start bar at the bottom of the screen in order to
bring up the minimized Cygwin progress window—it may have disappeared
behind all your other windows. Cygwin’s setup.exe will now weave its gold and
silvery magic, while we go for a nice hot cup of tea, or some other alkaloid-based
stimulant.

12. Once we’re back, and Cygwin has done its stuff, we just need to do a little
housekeeping. Those who downloaded the packages, rather than installing
directly, will have to rerun the first stages of the setup.exe process. This time, we
install from locally supplied packages instead of downloading from the Internet.
Installation should then take place, as shown in Figure 2-8.

Cygwin Setup Cygwin Setup [%] Cygwin Setup
Inistalling.. Iristallation Complete
E pert5.B.1-2 tar b2 E
C:/cygwindib/per5/5.E.1/epgwin-multi/overoad. ¥ Create Desktop [con
Packa: MM @090 I &g enie

<--Back Mest > I Cancel

Figure 2-8. Completing the Cygwin installation

13. At some point, you should also have been asked if you wanted Cygwin to be
added to the Start menu and a Cygwin shortcut placed on the desktop, as in the
center screen of Figure 2-8. Once these options are installed, use either route to
bring up a Cygwin shell window. For good measure, check to see if Perl has been
installed as expected. You can do this with the following command:

$ perl -v
Perl should now be confirmed as available under Cygwin, and we should have
a full GNU-like development environment for compiling both DBI and DBD::
Oracle.

Installing Cygwin | 55

Unix-like file security is only possible for Cygwin under NTFS parti-
tions on the various Windows NT-related platforms. To effectively use
1+ file security commands such as chmod, you also need to add the ntsec
* flag to the CYGWIN environment variable—for example:

$ export CYGWIN="$CYGWIN ntsec"

You can read more about the CYGWIN variable and its many other
options at http://cygwin.com/cygwin-ug-net/using-cygwinenv.html.

Installing Perl DBl under Cygwin
Follow these steps to install Perl DBI under Cygwin:

1. Download the latest Perl DBI and DBD::Oracle tarballs to C:\cygwin from:
http://'www.cpan.org/authors/id/TIMB

2. Now unpack the DBI tarball (once again, we used Version 1.20):

$ gzip -d DBI-1.20.tar.gz
$ tar xvf DBI-1.20.tar
$ cd DBI-1.20

3. Next, compile DBI:
$ make

4. You may get a few warnings with make under Cygwin, but everything should
still be OK, as the DBI.dII file should get compiled as necessary. The final part of
the output should look something like this:

cp dbish blib/script/dbish

/usr/bin/perl -I/usr/1ib/perl5/5.6.1/cygwin-multi
-I/usr/1ib/perl5/5.6.1 -MExtUt

ils::MakeMaker -e "MY->fixin(shift)" blib/script/dbish
Manifying blib/man3/DBI.ProxyServer.3

Manifying blib/man3/DBD.Proxy.3

Manifying blib/man3/DBI.Format.3

Manifying blib/mani/dbish.1

Manifying blib/man3/DBI.Shell.3

Manifying blib/man3/DBI.3

Manifying blib/man3/DBI.FAQ.3

Manifying blib/man3/Bundle.DBI.3

Manifying blib/man3/Win32.DBIODBC.3

Manifying blib/mani/dbiproxy.1

Manifying blib/man3/DBI.W320DBC.3

Manifying blib/man3/DBI.DBD.3

$
5. Now test and install:

$ make test
$ make install

56 | Chapter2: Installing Perl

Writing /usr/lib/perl5/site_perl/5.6.1/cygwin-multi/auto/DBI/.packlist
Appending installation info to /usr/lib/perl5/5.6.1/cygwin-multi/perllocal.pod

$
We’re done!

Installing DBD::Oracle under Cygwin

The installation of DBD::Oracle is a little more involved than that of Perl DBI. Fol-

low these steps:

1. Unpack as usual:

$ cd C:/cygwin

$ gzip -d DBD-Oracle-1.12.tar.gz
$ tar xvf DBD-Oracle-1.12.tar

$ cd DBD-Oracle-1.12

2. Read through some important README information, particularly the

README.wingcc file:”
$ vi README README.win32 README.wingcc

. Create the liboci.a file, as instructed in README.wingcc, and place it some-
where such that Cygwin’s make compilation utilities can find it later on, such as
fusr/local/lib. We did this via the following steps:

$ cd C:/cygwin/DBD-Oracle-1.12

$ dlltool --input-def oci.def --output-lib liboci.a

$ 1s -la liboci.a

-IW-T--T-- 1 andyd None 260806 Dec 28 14:40 liboci.a

$ mv liboci.a /usr/local/lib
. The required definitions archive is now available for other compilation tools,
such as make, to view. Before beginning compilation, however, make sure that
you can access all of the required Oracle client libraries, especially for the make
test step. Change values where appropriate:

$ ORACLE_HOME=C:/ORANT

$ export ORACLE_HOME

$ ORACLE_SID=orcl

$ export ORACLE SID

$ ORACLE_USERID=scott/tiger@orcl

$ export ORACLE_USERID
. Because ActivePerl is the usual Win32 environment for DBI, Cygwin compila-
tion can sometimes lag slightly behind other more typical Unix-style operating
systems. For instance, the latest flavor of DBD::Oracle available at the time we
carried out this installation was DBD-Oracle-1.12. This had slightly altered an
older part of the Makefile.PL file from DBD::Oracle 1.08, a version we knew

* Those new to the vi editor can read some great help pages at http://www.vim.org/html/quickref.html and http:
/twww.vim.org/html/help.html.

Installing Cygwin | 57

would compile without problems. The old code in Makefile.PL from DBD::
Oracle 1.08 was:
die gq{ The $ORACLE ENV environment variable value ($0H) is not valid.
It must be set to hold the path to an Oracle installation directory
on this machine (or a compatible archtecture).
See the README.clients file for more information.
ABORTED!
} unless -d $0H;
This had become updated to:

die gq{ The $ORACLE ENV environment variable value ($0H) is not valid.
It must be set to hold the path to an Oracle installation directory
on this machine (or a compatible archtecture).
See the README.clients file for more information.
ABORTED!
} unless (($os eq 'VMS') ? -d $OH : -d "$OH/1lib/.");
Notice the more complex unless condition. Although the rest of our Cygwin
compilation will look for important locations, such as /lib, under SORACLE_
HOME/OCI80, the code shown previously prechecks its location directly under
$ORACLE_HOME, where it will fail to find it under certain Oracle versions. It
then aborts the build operation. (This is version-specific however, and anything
after Oracle8i Version 8.1.5 seems to revert back to the Unix-style directory
structures.)

A w
y

You’ll probably have no problems of your own. This is just an exam-
ple of the kind of thing you have to look out for, especially if you use
< 9k earlier versions of Oracle.

. To get around this problem, we commented out the previous section in Makefile.

PL and set it to this:

#die qq{ The $ORACLE ENV environment variable value ($0H) is not valid.

It must be set to hold the path to an Oracle installation directory

on this machine (or a compatible archtecture).

See the README.clients file for more information.

ABORTED!

#} unless (($os eq 'VMS') ? -d $OH : -d "$0H/1lib/.");
OK, this hack lacks splendor, but it does remove an immediate problem, and
we're confident that it doesn’t create other problems elsewhere. You may have
your own little niggles to solve too, but ice-cool code warrior perseverance will

see you through.

7. We can now begin the compilation run:

$ perl Makefile.PL

8. This produces rather “interesting” output:

Using DBI 1.20 installed in
/usr/lib/perls5/site_perl/5.6.1/cygwin-multi/auto/DBI

58

Chapter 2: Installing Perl

10.

Configuring DBD::Oracle ...

>>> Remember to actually *READ* the README file!
Especially if you have any problems.

Using Oracle in C:/ORANT

Can't stat C:/ORANT/rdbms: No such file or directory

I can't find the header files I need in your Oracle installation.
You probably need to install some more Oracle components.

I'11 keep going, but the compile will probably fail.

See README.clients for more information.

Found OCI80 directory

Using OCI directory 'OCI80'

Using liboci.a (did you build it?)

System: perl5.006001 cygwin nt-4.0 loreley 1.3.2(0.3932)
2001-05-20 23:28 1686 unknown

Compiler: gcc -02 -DPERL_USE_SAFE_PUTENV -fno-strict-aliasing
-I/usr/local/inc

lude

Linker: /usr/bin/1d

Sysliblist:

Warning: If you have problems you may need to rebuild perl with
-Uusemymalloc.

Checking if your kit is complete...

Looks good

LD_RUN_PATH=/usr/local/lib

Using DBD::Oracle 1.12.

Using DBI 1.20 installed in

/usr/lib/perls/site perl/5.6.1/cygwin-multi/auto/DBI

Writing Makefile for DBD::Oracle

*** If you have problems...

read all the log printed above, and the README

and README.help files.

(0f course, you have read README by now anyway, haven't you?)
At first, this looks a little ugly, especially the fact that C:/ORANT/rdbms does not
exist! Did we cause this with our hack? No, the preceding is absolutely fine and
to be expected. We can ignore the C:/ORANT/rdbms problem—the compilation
will later find everything it needs under C:/ORANT/OCI80/include. These kinds
of warnings are only here because of the strange hybrid nature of a Unix-style
Cygwin running on a Win32 box, with its own particular complexities.

. We’re now ready for compilation, with make—though did you also notice that

reminder about liboci.a? Note also that the LD_RUN_PATH is set to /usr/local/
lib. This is where we should have placed liboci.a. Now let’s go for the compi-
lation:

$ make

Again, we’ll get more warnings than is usual under Unix, but as long as the
liboci.a file is in /usr/local/lib (or possibly /usr/lib, if this should fail to work),

Installing Cygwin | 59

11.

there should be no real worries, and the correct Oracle.dll file should be pro-
duced. It is possible, however, that you might encounter OCI8 problems because
the latest Oracle client libraries may be unavailable. For example, if you get
errors saying that certain OCI definitions are undeclared (such as OCI_HTYPE_
and OCI_DTYPE_ values), you should check to see if they’re declared in oci.h,
which should be under the following directory:

$ORACLE_HOME/OCI80/include

If they’re undeclared, you’ll have two choices. You can either get more up-to-
date Oracle client libraries or go back a step and run the following commands,
which allow you to use the older Oracle7-style OCI libraries:

$ make clean

$ perl Makefile.PL -8

$ make
If the rogue definitions are declared in oci.h, you may need to check that the gen-
erated Makefile is including the appropriate C header file directories. More
debug details should be available within the online DBD::Oracle documenta-
tion, which comes with the tarball.
Once we’ve got everything ship shape, we can then run the two final installation
instructions:

$ make test
$ make install

We should then be able to run the program in Example 2-2, which is illustrated
in Figure 2-9. We ran it with the following command:

$ perl cygwinDBI.pl

C:/CYGWIN/DBD-Oracle-1.12 =] E3

andydBfhome C:/CYGWINsDBD-Oracle—1.12
$ perl cyguinDBI.pl

Figure 2-9. Perl DBI running under Cygwin

Example 2-2. Running DBI under Cygwin—cygwinDBI.pl

#lperl -w

use strict;
use DBI;

my $dbh = DBI->connect('DBI:Oracle:orcl', 'scott', 'tiger',

my $msg

{RaiseError => 1, AutoCommit => 0});

60

| Chapter2: Installing Perl

Example 2-2. Running DBI under Cygwin—cygwinDBLpl (continued)

$dbh->selectrow_array(
"SELECT SYSDATE || ' Hello Cygwin DBI! :-)' message FROM DUAL"
)s

Lets have some formatting fun! :-)

my $msg_len = length($msg);

$underline = '=' x ($msg_len + 6);

print "\n", $underline, "\n",

u|| u) vy $m5g_1en, " ||u, u\nu,
u|| n’ $msg’ n H") ||\n||)
u|| n) oy mg_1en, n ||u’ u\nu’

$underline, "\n\n";

$dbh->disconnect;

To further investigate some of the formatting operations shown in Example 2-2, try
the following command to see the Perl online documentation (and see Appendix A

for a full description of perldoc):

$ perldoc perlop

Now that Perl is well and truly on board, we’re ready to sail out from the Perl havens
and head towards an open sea of exploration and destiny. In the next few chapters,
we’ll examine a variety of Perl modules that extend the combined power of Perl and

Oracle.

And Then There’s DJGPP

In case Cygwin isn’t enough for you and you’re still feeling a little cramped creatively,
yet another open source Win32 GNU compilation environment is available. This is
DJGPP (which stands for D] Delorie’s GNU Programming Platform), a toolset related

in spirit to Cygwin. You can learn more about it at:

http://www.delorie.com/djgpp/

There’s even an online Perl document dedicated to building DJGPP Perl under DOS:

$ perldoc perldos

You may wish to give DJGPP a try; in Perl, there really is always more than one way to

do it!

PART Il
Extending Perl

This second part of the book describes a wide variety of Perl modules and applica-
tions that Oracle DBAs will find helpful. It consists of the following chapters:

Chapter 3, Perl GUI Extensions, describes Perl/Tk, an extensive GUI-based
toolkit for Perl, as well as a number of applications that provide Oracle DBAs
with graphically oriented tools for performing database administration. In
addition to Perl/Tk, this chapter covers OraExplain, StatsView, Orac, DDL::
Oracle, SchemaDiff, Senora, DBD::Chart, SchemaView-Plus, and a variety of
Perl GUI integrated development environments (IDEs) and debuggers.

Chapter 4, Perl Web Extensions, discusses the relationship between Perl and
the Apache web server, and focuses on two Oracle applications that use a
web browser as their user interface: Oracletool and Karma.

Chapter 5, Embedding Perl into Apache with mod_perl, explains how the use
of Apache’s mod_perl module can greatly improve the performance of Perl
web-based CGI (Common Gateway Interface) scripts used with Oracle. This
chapter also covers several related Apache modules: Apache::Registry,
Apache::DBI, and Apache::OWA (used to connect mod_perl to Oracle’s
PL/SQL Web Toolkit).

Chapter 6, Embedded Perl Web Scripting, describes two applications,
Embperl and Mason, that demonstrate the advantages of embedded
scripting, a method that allows Perl code to be embedded within web pages.
These tools provide a mechanism for filling your production web pages with
dynamic Oracle data and creating your own Oracle web tools, while
separating content from design issues.

Chapter 7, Invoking the Oracle Call Interface with Oracle::OCI, covers
Oracle::OCI, a Perl module that provides a more extensive interface to
Oracle’s OCI than is possible with Perl DBI.

Chapter 8, Embedding Perl into PL/SQL, discusses extproc_perl, a Perl
module that communicates with the Oracle PL/SQL language’s external

63

procedure C library system (known as EXTPROC). This module and the
others described here allow Perl code to be embedded directly in PL/SQL
programs.

CHAPTER 3
Perl GUI Extensions

In Chapter 2, Installing Perl, we looked at standard Perl and its database connectiv-
ity module, Perl DBI. The command-line interface available in Perl and Perl DBI has
served developers well for many years. But over time, people have become more
accustomed to graphical user interfaces (GUIs), and there has been a movement
towards GUI facilities for Perl. Oracle DBAs in particular appreciate applications that
give them an easy-to-use graphical interface for managing their databases and a way
to visually inspect difficult-to-interpret database data. In this chapter we’ll look at
Perl/Tk, an extensive GUI-based toolkit, as well as at a number of applications
(many of them based on Perl/Tk) that provide Oracle DBAs with the graphical inter-
faces they find so useful. We’ll cover:

Perl/Tk
A popular toolkit often used to build GUIs in Perl for both Unix and Win32.

OraExplain
A Perl/Tk SQL tuning tool for Oracle that explains SQL execution plans. OraEx-
plain was the first major canned application that combined Perl DBI and Perl/Tk
for Oracle. It also inspired many other Perl/Tk applications.

StatsView
A statistics-gathering tool written in Perl/Tk for Oracle DBAs who also perform
Unix system administration. This tool collects all kinds of useful statistics and
then displays them in enhanced graphical format, courtesy of the gnuplot pro-
gram.

Orac
A GUI wrapper program built using Perl/Tk that provides a useful way to main-
tain a repository of configurable SQL scripts for interrogating and managing
Oracle databases.

DDL::Oracle
A nongraphical Perl package that reverse-engineers Data Definition Language
(DDL) statements. This back-end Oracle package often drives Perl/Tk scripts in
order to help them provide visual DDL aids for Oracle DBAs.

65

SchemaDiff
A Perl package built on DDL::Oracle and Perl/Tk that compares different Ora-
cle schemas.

Senora
An interactive Oracle shell program that provides a flexible and extensible alter-
native to SQL*Plus.

DBD::Chart
A Perl driver interface that renders graphs and charts. DBD::Chart is another
excellent supplementary module for visualizing complex information; it is often
used to generate back-end images for use by Perl/Tk.

SchemaView-Plus
Another program built on Perl/Tk that compares different Oracle schemas. This
program is also built on the Perl DBIx extension, DBIx::SystemCatalog.

Perl IDEs and GUI debuggers
Open source integrated development environments providing graphical inter-
faces for editing and debugging Perl code.

In the next chapter, we’ll move on to look at the Perl extensions and applications
that use the Web, rather than custom-built GUISs, as their user interface.

Perl/Tk

The Perl/Tk module, developed Nick Ing-Simmons, is one of the most popular and
useful of the Perl extension modules. Perl/Tk is a toolkit that gives Perl the ability to
create interactive and full-fledged GUI-driven applications. Writing GUIs can be
complex, but Perl/Tk makes it easy by making available standardized libraries of
reusable GUI code (widgets and controls) that you can select as appropriate.

For those interested in writing Oracle DBA GUI applications of their own, we’ll try
to cover all the bases in this chapter, but we’ll mostly focus on the tools currently
available for those simply looking for ready-to-use database administration and tun-
ing programs. For more information on generic Perl/Tk issues, these are the online
and book resources we consider to be best:

http://www.lehigh.edu/~sol0/ptk/ptk.html
Stephen Lidie’s central portal, for all things Perl/Tk.

http://www.perltk.org
Didier Ladner’s central Perl/Tk resource.

http://www.oreilly.com/catalog/mastperltk
For those who prefer information in book form, we thoroughly recommend
Mastering Perl/Tk, by Nancy Walsh and Stephen Lidie (O’Reilly & Associates,
2002). As one of us helped technically review this book, we must admit a bias,
but it’s the definitive text.

66 | Chapter3: Perl GUI Extensions

For a quick example of what Perl/Tk can do for you, take a look at the widgets dem-
onstration program in Figure 3-1, which comes automatically with the Perl/Tk instal-
lation.

=l 3 Image D emonstration #2 _[O|
This demonatration alloves youto view images using a Tk "phota” image. First
type & directory name in the listhox, then type Return to load the directory into
the listhox. Then double-click on a file name in the listhox to see that image

‘widget Demonstration
File Help
PerliTk Widget Demonstrations

Directary:

This: application provides a front end for seversl short scripts thet

demonstrate what you can da with Tk widgets. Each of the numbered C:/Perl/site/lb/Tk/demas/images
lines below describes & demonstration; you can click on i 1o invoke the
demonstration. Once the demonstration window sppears, you can click
ihe: "See Code” bution to see the PerliTk code that created the
demonstration. I you wish, you can edil the code and click the "Rerun
Dema button in the code window to reinvoke the demonstration with the
modiified code

Labels, buttens, checkbuttons, and radiobuttons
1. Labels (text and images)
2. Buttons
3. Checkbuttons (sslect any of & group)
4. Radiohuttons (select one of & group)
5 A 15-puzzle game made out of buttons
6. Iconic buttons that use bitmaps
7. Two labels displaying images
8. A simpls user interface for] viswing images

Disrniss See Code

Figure 3-1. The Perl/Tk widget program’s image interface

Installing Perl/Tk under Unix

As with virtually every other Perl module we’ll discuss in this book, you can install
Perl/Tk from the online CPAN system in the following way:

$ perl -MCPAN -e "shell"
cpan shell -- CPAN exploration and modules installation (v1.59 51)
ReadlLine support enabled

cpan> install Tk <RETURN>

However, to gain far more control over the install and its tests, and to access all of
the install information for the various Unix flavors, get hold of Perl/Tk’s latest tar-
ball from the following web site:

http://www.cpan.org/authors/id/NI-S

Once you’ve downloaded the CPAN source into the temporary directory of your
choice, you can install Perl/Tk manually as follows (we’ve demonstrated this with
the Tk800.023.tar.gz file):

$ gzip -d Tk800.023.tar.gz
$ tar xvf Tk800.023.tar
$ cd Tk800.023

Always comb religiously through the README and INSTALL files to make sure
nothing special is required for your machine’s setup:

$ vi README INSTALL

Perl/Tk | 67

Download from Wow! eBook <www.wowebook.com>

Once you’re happy with your setup, you can proceed. Perl/Tk follows the usual pat-
tern for installing most Perl modules. However, it is a large body of code, in compari-
son to most other Perl modules, so it often takes a few minutes to install, and you
must ensure that the user running make test has access to the appropriate X Win-
dows server, by running a command such as xhost +. Once the testing is complete,
you’ll also need to install Perl/Tk as root:

$ perl Makefile.PL

$ make

$ make test

$ make install
We’re now all set! All that rigid command-line discipline is about to change. Assum-
ing that the installation ran typically smoothly, Perl/Tk is now installed and ready to
GUL

Installing Perl/Tk on Win32

The corresponding ActiveState installation on Win32 is straightforward. Simply con-
nect your PC to the Internet, as in Chapter 2, and then run through the following
PPM commands, much as you did when installing Per] DBI and DBD-Oracle:
1. Fire up an MS-DOS command window and run PPM:
C:\> ppm
2. Now install ActivePerl’s remotely accessed Perl/Tk package by typing:
PPM> install Tk
This may take slightly longer to load than your average ActivePerl package, as
it’s very large, but should still only take a few minutes.
3. When the command completes, enter:
PPM> quit
Perl/Tk should now be installed.

Combining Perl/Tk and Perl DBI

To try Perl/Tk on for size, let’s try searching for the widgets program demonstrated
in Figure 3-1 as follows:
Unix
From the Perl/Tk installation location, look for the ../demos directory, change
directory into there, and then type perl widget.
Win32
Go to the C:\Perl\bin directory and type either perl widget or widget.bat.

Those of you who are rolling your own might like to run through Example 3-1. This
follows the general Perl/Tk program algorithm shown in Figure 3-2.

68 | Chapter3: Perl GUI Extensions

Start Perl script

| Create MainWindow |

Subroutine 1
Do something...

Some subroutine
Call EXIT
Subroutine n
Do something...
Event loop ‘

| Run MainLoop i \
v

Loop until EXIT called

EXIT Call subroutines

N
N

Figure 3-2. The basic structure of Perl/Tk programs

Example 3-1. HelloPtk.pl—trying Perl/Tk on for size
#!/usr/bin/perl

use strict;
use warnings;

Step 1: Get hold of the main Perl/Tk package.
use Tk;

Step 2: Create the Main Window. Use the name of the program,
held in the special Perl variable $0, to create the title.

my $mw = MainWindow->new(-title=>$0);
Step 3: Pack a label onto the screen to hold our initial message.

$mw->Label(-text=> "Hello Perl/Tk", -anchor=>'center'
)->pack(-side=>"top");

Perl/Tk | 69

Example 3-1. HelloPtk.pl—trying Perl/Tk on for size (continued)

Step 4: Create a button to neatly exit the program.

$mw->Button(-text=>'Exit',

-command=>\&doExit)->pack(-side=>"bottom");

Step 5: Launch the Perl/Tk looping process, to display window.MainLoop();

Step 6: Create an exit subroutine.

sub doExit { exit 0; }

We’ve run through the following program steps in a little more detail:

1.
2.

The first part of the program picks up the main Tk package.

We then construct the main window and store its handle within a traditionally
named $mw variable. (We've also made use of the built-in $0 Perl variable,
which automatically contains the name of a Perl script.)

. We create our label, “Hello Perl/Tk”, and place it at the top of the screen.

4. To close the program neatly, in accordance with Figure 3-2, we attach an exit

button to the doExit() subroutine. If we decide to extend the program later on,
you can also add any special cleanup code that is necessary.

. Now we can enter Perl/Tk’s main looping process. This takes care of all the hard

work of tracking mouse movements, button commands, and so on. Once the
program’s widgets are laid out, the MainLoop traffic cop directs the Perl GUI
script to wherever the user desires to go.

. Finally, we code our special exit command. Although the exit subroutine is fairly

basic in our prototype, you can place any necessary cleanup code here later on—
for example, a graceful database disconnection. We run the program via the fol-
lowing command:

$ perl HelloPtk.pl

You can see HelloPtk.pl in action in Figure 3-3 on both Win32 and Unix.

!E‘E [@ + Konsole <2> o H]

B @I 5 M File Sessions Setings Help r r
u oracle@linu: "> Hello PerliTk
oracleBlinux: >
Eraolelinnies i
oracle@linux: >
o AL oracleBlinux: >
oracle@linu: ">
Emtl oracleBlinux:”> perl HelloPtk.pl &
[1] 4931
oracle@linux:”> [l
D New' @Konso\e |

Figure 3-3. HelloPtk.pl under both Win32 and Linux

Exciting as HelloPtk.pl may be, both in looks and execution, the real fun begins
when we start to combine Perl/Tk with Perl DBI. In Example 3-2 we’ve expanded

70

Chapter 3: Perl GUI Extensions

HelloPtk.pl to work out the time according to SYSDATE. You can see this program at
work in Figure 3-4.

+ Konsole <2> = 0O x
File Sessions Seftings Help

What's the Time, according to Oracle?

—

racle@linue: ™y - Exit |
racle@linue: ™y

racle@linux: ™y 12:14:29
racle@dlinux:™ perl WhatI=TheTime,.pl &

[1] 5014

racle@linux:™>

Figure 3-4. WhatIsTheTime.pl in action, under Unix

Example 3-2. WhatlIsTheTime.pl—Combining Perl/Tk and Perl DBI
#!/usr/bin/perl

Step 1: Get hold of the main Perl/Tk package, DBI, and set the
Oracle Environment, plus set the database connection and SOL.

use Tk;
use DBI;
use strict;
use warnings;
my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger’',
{ RaiseError=»1, AutoCommit=>0 });
my $sql = qq{ SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') FROM DUAL };
my $mw = MainWindow->new(-title=>$0); # Set the main window up
Step 2: Get the latest time from the Oracle database.
my oracleTime;

getTheOracleTime();

Step 3: Pack a simple button onto the screen, to ask Oracle for the
current SYSDATE time. Assign the appropriate callback.

$mw->Button(-text=>"What's the Time, according to Oracle?",
-command=> \&getTheOracleTime)->pack(-side=>"top"');

Step 4: Pack a label onto the screen holding the SYSDATE time.
$mw->Label (-textvariable=> \$oracleTime, -anchor=»'center’
)->pack(-side=>"bottom"');

Create another button to neatly exit the program.

$mw->Button(-text=>'Exit',
-command=>\&doExit)->pack(-side=>'bottom');

Per/Tk | 7

Example 3-2. WhatlIsTheTime.pl—Combining Perl/Tk and Perl DBI (continued)
Launch the Perl/Tk looping process, to display the window! :-)

MainLoop();
Step 5: Create the two required subroutines.

sub getTheOracleTime {
my $sth = $dbh->prepare($sql);
$sth->execute();
($oracleTime) = $sth->fetchrow array();

sub doExit {
$dbh->disconnect(); # A clean and graceful disconnection 8-)
exit;
}
In the following list we’ve indicated the main differences between this program and
the original HelloPtk.pl skeleton:

1. We acquire Perl DBI, connect to the database, and create our SQL.

2. We call getTheOracleTime() to initialize the $oracleTime variable.

3. We create a button to call getTheOracleTime() and change the display.
4

. We need to create a display label, referencing the $oracleTime variable. The text
changes, as appropriate, whenever the call button is pressed.

5. Finally, we add the new getTheOracleTime() function and remember to discon-
nect cleanly from the database when the doExit() function is called.

6. We run the program by typing the following at the command line:
$ perl WhatIsTheOracleTime.pl

Although this is a rather stripped-down example, it does show how easy it is to
quickly combine Perl/Tk and Perl DBI in order to develop your own applications.
Before you know it, you’ll have built an entire collection of Perl/Tk widgets that do
all sorts of wonderful things—and you’ll fail to understand how you ever lived with-
out them.

OraExplain

OraExplain, an Oracle tuning tool that DBAs can use to explain SQL execution plans
and examine their SQL cache, was the first widely available tool that combined Perl/
Tk and Perl DBI. OraExplain was created by Alan Burlison, a Solaris kernel gate-
keeper for Sun Microsystems, and Tim Bunce quickly added the original ora_explain.
pl module to the DBD::Oracle driver download bundle. So when you obtain DBD::
Oracle, you’ll get OraExplain automatically (at least if you’re installing on Unix).

72 | Chapter3: Perl GUIExtensions

iy If you’re on Win32 and using ActivePerl’s DBD-Oracle8 package,
.‘s\ you’ll find that OraExplain fails to come with the download. How-
~* ‘ak ever, you can get hold of the source bundle containing the precursor

file, ora_explain.PL, from the following site:
http://www.cpan.org/authors/id/TIMB/

If you use WinZip or another decompression tool, you’ll find the ora_
explain.PL file within the main unload directory, as shown in
Figure 3-5.

o DED Dracie 1 TZITEH ora_explain - connected lo orcl as SYS - [O=]
File Actions Options Help File Help
> ‘ Duety Plan for select statement. Cost = 10
=| B NESTED LOOPS
Open Favaites Add Esract View CheckOut Wizl B- NESTED LOOPS
Nome [Tpe % [Modiied [Size[R.] Packed] = t L ek e s
FIXED TABLE FIXED INDEX #1 of 815 X§KSUPR
i) dbdinep.c CFile 29008001 2039 E6974 0% BEOT4 - *
ocif e C File 29/08/01 20033 1759 0% 175% EF V\‘EWM SUERASEEL
[ocia.c CFie 31/08/011655 52708 0% 52,708 (ERERE:
] aci et DEF File 02/05/00 2222 5743 0% 5743 B- SE’“ (SRR E57
[#] Changes File I/08/0117:27 30568 0% 30568 (FTE TEEILE FULL. 5SS IOHELEE
=] iaen Fiie 0205002227 1284 0% 1264
[2] Manifest Fiie 29/08/01 0104 706 0% 7B GQuery Step Details
[#] Rieadne Fiie 0205002227 1688 0% 1698 Cost: 10 (Estimats of the cost of this step)
=] Readme File 29/08/01 16:29 4654 0% 9654 Cardinality: L (Estinated muber of rows fevched by this step)
- Fie 12/05/00 22:26 7'335 0% 7'335 J | Bytes: 60 (Estimated muuber of bytes fetched by this step)
[# Todo File 30/08/01 1008 1486 DX 1466 S0L Edior
5] dbdimp.h HeaderFles 30/03/011648 9868 0% 9868 celect ;*t QEDERED */ s.wsername "Hold Ussz®, :.omaser "08 User®,
5] ocitiace.n HeaderFles 30/03/0116:48 11204 0% 11.204 s.serials "Ser#, s.sid "Bid",
[Oracleh HeaderFles 02/05/002227 2402 0% 2402 M.sql text "SQL Text®, nwlis.prograu,’'l’) "Program’,
S bindpl PeiFile Qs Eer 108 0% 1081 nvl(= mackine, 7'} "Machina', = process ‘Foreground Process,
3 commitpl Perl Fils 0205/002227 1426 0% 1426 [Bopis oachgrowmad fpid
* rom wisession 5,
2 curet pl PelFie 0S06/01 0935 2300 0% 2300 viprocess B, visglarea X
2 expl Perl File 02/05/00 22.27 1,283 0% 1,283 where =.osuser like lower(nvl{ ? ,'%'}}
9 Makefile PL Perl File 31/08/0117:27 43744 0% 43744 and s.username like UPPER{nvl{ % ,'%'})
3 mktable. ol PelFie 02/05/002227 2475 0% 2475 e
PelFie 02/05/002227 62280 0% E2260 and = type I= 'BACKGEOUND'
3 oradump el PeilFie 02/05/002227 1208 0% 1208 ¥ and =.sql_sddress = x.address
‘ 3 and =.sql_hash_value = x.hash_value
Selected 1 fie, G1KE [Totel 46 fies, 519€B Q9 /| |xeeroy =i
Explain Clear 5L Cache

Figure 3-5. Finding and running OraExplain

Follow these installation steps:

1. Once you've extracted, or located, the ora_explain.PL precursor file, run the fol-
lowing command:

$ perl ora_explain.PL
2. This extracts the actual ora_explain application. Now we can run it:
$ perl ora_explain
The rest of the steps should be fairly straightforward once you’ve connected to

your target Oracle databases. Check out the program and consult the instruc-
tions provided with it if you need help.”

* The program may ask you to run the utlxplan.sql file, which is normally available from $ORACLE_HOME/
rdbms/admin (on Unix) or %ORACLE_HOME%\rdbms\admin (on Win32). This happens if the DBA user
you’ve logged in as requires it to create the PLAN_TABLE object for EXPLAIN PLAN usage.

Orabxplain | 73

StatsView

After his triumph with OraExplain, Alan Burlison went on to create yet another
superb Perl/Tk application, StatsView, a program designed for use by both system
administrators and Oracle DBAs using Unix systems. If you serve both functions at
your site, we feel confident that you’ll love StatsView too. Although StatsView is
aimed clearly at Solaris, the program’s Oracle-based monitoring is equally applicable
to other Unix operating systems, so we thought we’d install it on Linux to see how
far we could push it.

Like many of the best things in life, StatsView comes with a few challenges:

* You have to preinstall the gnuplot command-driven plotting program, which
itself relies on various C libraries, depending on how you configure it. The
gnuplot program plots functions and data points in many different formats in
either GIF or PNG image formats. See Figure 3-6 for a typical example.

* You'll also need an extra Perl/Tk module containing cutting-edge widgets.

o Orach: Datafile 10 activity firstTestoar 19 = £
Data | wntarval |

Sefect the value you wish to see on the plot

+ Reads/Sec
e Writes/Soc
o Blocks ReslSec
- Blocks Written/Sec

Sebect e inns you wish Lo see o Whe ot

W h0Zirbs1orcl.or

W Nisyslorc.om

o 3Nmp] orcd.orm

o hul-Vusriorcl.or
Spocily a patlem b selecl mulliphe ilens
Pattem: Hesect

_i Logarithméc scaling?

113600 15800 11240;00 1;42:00 11;4dz00

oty |] e o] Tine

Figure 3-6. StatsView and some gathered tuning figures

Although installing StatsView requires some special challenges, it comes with a sil-
ver lining. In the course of getting StatsView to work, you’ll have installed some of
the best Perl and C libraries around for performing graphical information plotting on
both Unix and Win32. Here’s where you start going beyond Perl Imperial Trooper
rank and start heading towards Perl Sith Lord status!

The first thing we need to do for StatsView is to get hold of the extended Tk::GBARR
Perl/Tk module and layer it over the standard Perl/Tk Unix distribution. We’ll
describe that task and the other installation procedures in the following sections.

74 | Chapter3: Perl GUIExtensions

Installing Tk::GBARR

Although the main Perl/Tk download may seem to possess virtually all of the screen
widgets you could possibly need, after a while you may require more specialized
options. Many packages on CPAN provide additional functionality; check under the
main /Tk module directory on CPAN.

One of the most popular packages is Slaven Rezic’s Tk::GBARR package, which con-
tains many varied Perl/Tk widgets created by one of Perl/Tk’s prime movers. Many
of these widgets provide capabilities beyond those in standard Perl/Tk distributions.
Most of the Tk::GBARR widgets, such as Tk::ProgressBar, do eventually become part
of the standard distribution, but if you want to get ahead of the game, you can find
Tk::GBARR at:

http://www.cpan.org/authors/id/SREZIC
Follow these installation instructions:

1. Download and unpack the latest tarball from CPAN:

$ gzip -d Tk-GBARR-2.05.tar.gz
$ tar xvf Tk-GBARR-2.05.tar
$ cd Tk-GBARR-2.05
2. Check for the latest notes, where to post potential errors, and so on, and then
install the program in the usual manner. Once again, note that during the make
test step you’ll see lots of GUI examples popping up, albeit this time very briefly:

$ vi README

$ perl Makefile.PL

$ make

$ make test

$ make install

3. Subject to our usual warnings that you must deal with any unlikely errors before

going on, you can now consider Tk::GBARR to be installed, ready for use with
StatsView.

Downloading StatsView
Get StatsView itself from the following location:
http://www.cpan.org/authors/id/ABURLISON

Unpack it according to the standard cavalry drill:

$ gzip -d StatsView-1.4.tar.gz
$ tar xvf StatsView-1.4.tar
$ cd StatsView-1.4

StatsView | 75

The need for PNG

When we installed StatsView, we faced something of a dilemma. Although Stats-
View assumes that gnuplot will use the GIF graphics file format, there are some rea-
sons why you may prefer to use another format. GIF presents a problem because the
Lempel Ziv Welch (LZW) algorithm that underlies the GIF format is patented (see
the sidebar, “The LZW Patent Issue”). To avoid patent complications, many people
prefer to use the freely available PNG™ and JPEGT formats.

In fact, the PNG graphics format came about largely as a result of patent issues.
Many people were interested in developing an alternative, freely available format that
could be using in place of LZW. After an initial technical paper from Thomas Bou-
tell describing a proposed format, a number of like-minded developers got together
to work on the new format, culminating in Guy Eric Schalnat’s creation of the libpng
library.

To avoid patent issues ourselves, we’ll load up the PNG library and its required com-
pression companion, zlib, for use with gnuplot.

Installing zlib

Used by PNG to compress its graphics, zlib is an open data-compression library that
has now been ported to virtually every kind of operating system. You can get hold of
the latest zlib package, generally called zlib.tar.gz, from here:

http://www.gzip.org/zlib
http://www.zlib.org

Created originally for PNG, zlib is maintained by Jean-loup Gailly, the primary
author of gzip (http://www.gzip.org), and gzip coauthor Mark Adler, the original
author of Zip (http://www.info-zip.org/pub/infozip). Unsurprisingly, zlib is the back-
end engine of the gzip program, decoupled and morphed into an independent library
for other open source projects requiring compression (i.e., virtually everything using
the Internet). zlib thus contains the same lossless deflationary compression algo-
rithms employed by both Zip and gzip, and as originally used in PKWARE#* (http://
www.pkware.com). (For some help with compression terminology, see the sidebar,
“Lossless versus Lossy,” later in this chapter in the discussion of DBD::Chart.)

* You can find out much more about PNG (Portable Network Graphics) at the following page: http:/www.
libpng.org/pub/png.

T The Joint Photographic Experts Group designed this image standard, which is named for them. You can find
out more at the following two sites: http://www.ijg.org/, and http://www.jpeg.org.

1 PKWARE was founded in 1986 by Phil Katz, a pioneer of compression software, who developed the .zip file
format in 1989. This inspired the Zip and GNU Zip (gzip) open source projects that use unpatented com-
pression algorithms. These algorithms are an alternative to LZW, a patented algorithm used in the compress
executables found with most proprietary Unix distributions. See the discussion in the sidebar, “The LZW
Patent Issue.”

76 | Chapter3: Perl GUIExtensions

To install zlib, run through the following steps to configure the Makefile:"

1. Decompress the original zlib.tar.gz tarball. This should unpack into a directory
with a version number, such as zlib-1.1.3 as follows:

$ gzip -d zlib.tar.gz
$ tar xvf zlib.tar

$ cd z1ib-1.1.3

$ vi README

$./configure

Before compilation, make sure to read the Makefile to see whether you’d like to
change any compile options:
$ vi Makefile
2. Once you’re happy with Makefile, move straight into a tested compilation:
$ make test
You're trying to create an output response such as:

inflate with dictionary: hello, hello!
¥% z1ib test OK ***

3. Now it’s time to install:
$ make install

This copies zlib.h to fust/local/include, and the library archive libz.a to /usr/local/
lib. zlib is now accessible to other bodies of code that rely upon it, such as PNG.

Installing PNG
You can get hold of the latest libpng tarball from the following pages:
http://www.libpng.org/pub/png
1. We begin our dance with the usual introductions:
$ gzip -d libpng-1.0.12.tar.gz
$ tar xvf libpng-1.0.12.tar
$ cd libpng-1.0.12
$ vi README INSTALL
2. You'll find all sorts of Makefile versions in the /scripts directory, for different
Unix flavors. Choose your poison and copy it to the main download directory.
Look it over carefully to ensure that it’s right for your system:
$ cp scripts/makefile.linux makefile
$ vi makefile
3. Following the advice given within the file, we manually pointed the following
variables at places matching our immediately previous installation of zlib:

* We install zlib and PNG automatically for Win32 later when we download ActivePerl’s GD.pm module for
use with DBD::Chart. This has the required binaries built in.

StatsView | 77

The LZW Patent Issue

Compression is the process that reduces the physical size of blocks of information. It
is vital to storing and transmitting data, particularly graphics data and data being trans-
ferred over networks. A number of compression algorithms have been widely adopted.
One of the most popular, the LZW (Lempel Ziv Welch) algorithm, is used in the GIF
graphics file format, the Unix compress utility, and many other pieces of software.

LZW is named after its developers: Abraham Lempel and Jakob Ziv, who first pro-
posed substitutional compression in 1977 and 1978, and Terry Welch who modified
the LZ-78 variant to create the algorithm in 1984. Unisys acquired the patent on the
compression algorithm that came to be known as LZW.

For many years, developers used the LZW algorithm freely. But on December 28, 1994
came an announcement by CompuServe that it would start trying to collect royalties
on the use of the company’s GIF graphics file format because of its underlying use of
LZW. CompuServe and others had been under increasing pressure from Unisys, the
LZW patent holder. With the popularization of the Web, use of GIF and other tech-
nologies using LZW were booming. Despite a lot of complaint and controversy among
developers and users, Unisys’ patent and licensing agreements held up. The company
did compromise by not seeking fees on products using LZW that were delivered prior
to 1995.

Ultimately, the LZW patent controversy led developers to seek out and develop their
own compression algorithms and tools—for example, PNG and zlib.

ZLIBLIB=/usr/local/lib
ZLIBINC=/usr/local/include

Make sure you’re also happy with the default installation file destinations:

prefix=/usr/local
INCPATH=$(prefix)/include
LIBPATH=$(prefix)/1lib

4. Let’s make and test PNG:

$ make test

Look for an output similar to the following:

tIME = 7 Jun 1996 17:58:08 +0000
libpng passes test

5. Also check to make sure that the two PNG files produced by this installation,

pngtest.png and pngout.png, are identical. You can view this PNG image in
Figure 3-7; the image is also borrowed by the Tk::PNG installation we’ll be
doing later for Perl/Tk.

78

Chapter 3: Perl GUI Extensions

6. You’ll find other assorted tests mentioned within the INSTALL file. Once you’re
happy with these, install PNG properly:
$ make install
All of the necessary libraries and include files should now go to /usr/local/include
and /usr/local/lib, as with zlib earlier.

Figure 3-7. PNG, JPEG, and gd test images

Installing gnuplot
For all the latest information and downloads relating to gnuplot, check out:

http://www.gnuplot.info
http://sourceforge.net/projects/gnuplot

For GIF usage, gnuplot uses an old version of gd, which itself is no
longer available from Thomas Boutell’s gd site. This is because gd now
only deals with PNG and JPEG images, which is why we’re avoiding
the use of GIFs with gnuplot.

In the future, the gnuplot team may be forced, for patent reasons, to
withdraw the old gd downloads they maintain. They recommend that
you switch to using PNG as soon as you can; most of the latest
browser technologies now support PNG. (We’ll be installing the more
modern PNG-based gd program later, when we install Lincoln Stein’s
GD.pm program for use with Perl/Tk.)

1. Let’s get straight into the installation game:

$ gzip -d gnuplot-3.7.1.tar.gz
$ tar xvf gnuplot-3.7.1.tar
$ cd gnuplot-3.7.1

2. Next, we check out the OREADME and OINSTALL files:
$ vi OREADME OINSTALL
3. Following their advice, we checked the term/png.trm file and found nothing
problematic there. By default, the gnuplot compilation checks all the directories
such as /usr/local/lib and /usr/local/include, where we’d installed our required
PNG and zlib library files. We were able to configure without incident. Notice
that we deliberately fail to include the old GIF-based gd program.

StatsView | 79

$./configure --without-gd --with-png
$ make

. Optional tests are provided:

$ cd demo
$../gnuplot simple.dem

If the ../gnuplot simple.dem step fails to work first time, and you’re running an
X11 display, it may be because gnuplot requires the currently uninstalled
gnuplot_x11 driver program. You may therefore have to update your PATH,
unless you’ve previously installed an earlier gnuplot version:

$ PATH="pwd"/..:$PATH

$../gnuplot simple.dem
(This test problem will resolve itself once you’ve fully installed gnuplot.)

. Once gnuplot is executing successfully, you can run several other sample pro-

grams too from the same directory:
$../gnuplot fit.dem

. Once you're happy with these demonstrations, install gnuplot under /usr/local/

bin:
$ make install

Now we can get back to the StatsView installation directory.

Installing StatsView

Now we’re back to more mainstream Perl territory. After the final make install step,
StatsView produces a program called sv, which is placed into the /usr/local/bin direc-

tory:

$cd..

$ perl Makefile.PL
$ make

$ make install

Now we can test this initial Linux-PNG setup in the following way:

1. First of all, the main /usr/local/bin/sv program uses a Solaris-based ps -ef com-

mand to check whether the Oracle background processes are running. This com-
mand was unavailable on our Linux system, so we moved to /scripts within the
StatsView unload directory and copied the original sv program to a new one of
our own, lin_sv.

$ cd scripts

$ cp sv lin sv
We then edited this file to replace the ps -¢f command with a ps aux one. You
might like to try something similar on your own operating system, if you hit the
same kind of OS-specific problem.

80

| Chapter3: Perl GUI Extensions

2. Before testing the program, also make sure that your target database is running
with an appropriate listener.
3. Next, as the root user, create a statistical information storage directory:
$ pwd
$ mkdir StatsViewTest
4. Ensure that your environment is set correctly, especially PATH, to help DBD::
Oracle and your own system pick up the sv and lin_sv programs:

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5
$ export LD_LIBRARY PATH=$ORACLE_HOME/lib
$ export PATH=.:/usx/local/bin:$PATH
5. Finally, we ran our slightly Linux-modified copy of the sv program:

$ cd scripts
$./1in_sv &

6. The first thing we did was set up a file for the monitor to store information in.
We did this by clicking Monitor, then Start. On the resulting Output tab we
selected an Interval of 10 seconds and a Samples rate of 60, and then pressed
Browse to nominate a file in which to save the results (see Figure 3-8).

- & Monitor
'« Save Statistics M =] B3 3 B =1 Ed
Outputl Unix | Oracle |
Directory: JiStatsViewTest | |
Enter the Oracle User ID, Passwond and Instance Name
User |system
Passwaord [

]
File name: IﬁrstT991 Save |

Files of type: ~| cancer | W Buffer Cache W Data Dictionary Cache
| Dalafile IfO i Dynamic Extension

W library Cache W Shared Pool

i Tablespace 110

E= ==

Datahase |orc|

Select the Dalabase statistics you wish to monitor

File Monitor

Monitoring running
00:09:26 left

Figure 3-8. Setting up the StatsView monitoring process

7. We also chose all of these available monitoring options and then set the monitor
going:
Buffer Cache
Datafile I/O
Library Cache
Tablespace I/O
Data Dictionary Cache
Dynamic Extension
Shared Pool

StatsView | 81

After 10 minutes, the monitoring completed automatically. We then moved to the
second stage of StatsView to graphically view the information collected:

1. Drill down onto the menu option, File, then Open File... to choose the nomi-
nated storage file.

2. Click down on whichever monitor option is of interest; we chose Datafile I/O.
Now a gnuplot graph will appear (as in the earlier Figure 3-6).

Orac

Orac is a tool developed by one of your authors, Andy Duncan. It is based on Perl/
Tk and its many widgets, and it employs Perl DBI to connect to the Oracle database.
It is basically a GUI wrapper containing a large repository of prepared, configurable
SQL scripts that allow Oracle DBAs to interrogate and manage their databases.
Using Orac, users can rapidly apply these scripts to any target databases without
having to copy them from one machine to another via complicated directory struc-
ture installs and environment variable setups. If these scripts are no longer up-to-date
because of changes to the Oracle data dictionary, they can be modified or changed
directly within the repository. Orac makes it easy for you to make changes to the
scripts.

A w
iy Orac owes a great debt to many people besides its main author. Andy
.‘s‘ received early input from Dave Ensor, coauthor of Oracle Design

(O’Reilly) and from Tim Bunce, chief creator of Perl DBI and coau-
" thor of Programming the Perl DBI (O’Reilly).

Many of Orac’s central scripts were based largely upon those pack-
aged up by Brian Lomasky in his book, Oracle Scripts, for which he
graciously gave permission for adaptation and use within the Orac
program. As the program grew, Guy Harrison, author of the excellent
Oracle SQL: High Performance Tuning (Prentice Hall), also allowed his
very fine tuning scripts to be adapted for use within Orac.

Since Orac was first released on CPAN, many other Oracle DBAs have
contributed additional useful scripts. Orac has become a real commu-
nity effort.

Installing Orac
You can download the Orac tarball from here:

http://www.cpan.org/authors/id/A/AN/ANDYDUNC

Installing Orac on Unix

Once Orac has been downloaded, unpack it, and set the environment. Once this is
completed, we can then simply run it with a single command:

82 | Chapter3: Perl GUI Extensions

Download from Wow! eBook <www.wowebook.com>

$ gzip -d Orac-alpha-1.2.6.tar.gz
$ tar xvf Orac-alpha-1.2.6.tar
$ cd Orac-alpha-1.2.6

Before you actually run the program, make sure your environment can run both ordi-
nary Perl DBI and Perl/Tk scripts. Ensure that ORACLE_HOME is set to make sure
DBD::Oracle works correctly, underneath Perl DBI.

$ export ORACLE_HOME=/u01/oracle/8.1.5

Installing Orac on Win32

For Win32, simply unpack the tarball into its own directory with your favorite unzip
program. If you have Perl DBI and Perl/Tk both working on your machine, Orac
should be ready to fire up straight out of the box, once you’ve personalized it as
described in the next section. (You may have to set ORACLE_HOME via the Regis-
try, the system environment, or AUTOEXEC.BAT in order to get Perl DBI connect-
ing to Oracle properly.)

Personalizing Orac

On a server system, Orac allows each of its users to save his or her own personalized
options, such as font, background color, and so on. It then stores these in various
locations depending upon the operating system:
Unix

Your personal options are hidden within the SHOME/.orac directory.

Win32 (business systems with the USERPROFILE environment variable)
Personal options are stored within the % USERPROFILE%/orac directory.

Win32 (home systems, without the USERPROFILE environment variable)
Options are stored within the directory from which you launch Orac.

Alternatively, personal options can be stored in a named directory. To do this, set the
following environment variable before running the program on Unix:

$ export ORAC_HOME=/my_personal_options_directory/orac_profile

To carry out a similar operation on Win32 (especially if you're on a non-USERPRO-
FILE system like Win98), edit your AUTOEXEC.BAT file to preset your environ-
ment when booting up:

DOS> set ORAC_HOME=C:\Temp\Orac

Running Orac

Within the Win32 environment, double-click on the orac_dba.pl program icon, or on
either Unix or Win32 command lines, run the following command:

$ perl orac_dbal.pl

Orac | 83

Because Orac also works with other databases, the first time you log in to the pro-
gram, choose Oracle as your default database. Following the subsequent user login
dialog, you’ll be given access to a wide range of menu-driven options designed for an
Oracle DBA (see Figure 3-9) summarized in Table 3-1.

| Fie Dol Gwahes et Use o Lech Tuw Chal SOL My Tak @ o

[Grnc|EmEE IR EEEEN

25,008 Total £.37N Uped

20Z.708 Total 201,030 Used
]

Recod ol 128 o " £.16N Uaed
e 10,008 Toral LABH Oned

TR W W T BN D SELECT ENP.ENMHO, ENP,ENANE,

bl Zd

4.008 Total 0,07 Used

Figure 3-9. Some of the options under Orac

Table 3-1. Orac’s main user options for Oracle DBAs

Main menu Description

File Provides individual user customizations and general program help.

Devel Collection of GUI screens based on the DDL::Oracle AP!.

Structure Options to access the current physical structure of the database.

Object Daily DBA tasks and problem solving, such as DDL generation to create the entire database in a single
script and PL/SQL debug options.

Lock Investigates the various types of locking going on in a target database. Especially useful in panic sta-
tions.

Tune Tuning options, including a SQL Cache Browser and physical 10 graphs.

soL Gateway to Thomas Lowery’s GUI shell program for direct database work.

My Tools Facility for storing your own favorite DBA scripts and rerunning them as GUI reports driven by automati-

cally generated buttons and menus.

DDL::Oracle

The DDL::Oracle back-end module developed by Richard Sutherland was initially
designed to reverse-engineer Oracle DDL (Data Definition Language) from Oracle8i
databases, although its functionality is expanding and the module now offers other
additional features for Oracle DBAs. It currently resides on a SourceForge web site,
but you can still get the latest tarball from the Perl CPAN site:

84 | Chapter3: Perl GUIExtensions

http://sourceforge.net/projects/ddl-oracle
http://www.cpan.org/authors/id/R/RV/RVSUTHERL

The DDL::Oracle object-oriented module is designed for use by other scripts (such as
Orac or debug.pl, as we describe later), rather than as a standalone program. The
SourceForge site also provides many of the facilities you’ll find useful if you start
using DDL::Oracle in a serious way with your own scripts (as we hope you will),
including a mailing list:

ddl-oracle-users@lists.sourceforge.net

Installing DDL::Oracle on Unix

If you download DDL.::Oracle directly, you can install it with the following steps:

$ gzip -d DDL-Oracle-1.10.tar.gz
$ tar xvf DDL-Oracle-1.10.tar

$ cd DDL-Oracle-1.10

$ vi README

The installation of DDL::Oracle follows the usual Perl pattern:

$ perl Makefile.PL

$ make

$ make test

$ make install
Once DDL::Oracle is installed, you can view its documentation from within the
installation directory (see Appendix A, The Essential Guide to Perl, for much more
information about the perldoc program):

$ perldoc DDL::Oracle

Using DDL::Oracle with Orac

You can use DDL::Oracle in many different ways, though mainly through other pro-
grams that make use of its facilities. The DDL::Oracle download bundle supplies a
number of example scripts that can be used as templates for your own DDL::Oracle-
scripts. We'll discuss some of these scripts—in particular, defrag.pl, in later sections,
but first we’ll show how DDL::Oracle is typically used within other programs. We’ll
start with Orac, which we introduced earlier in this chapter.

Example 3-3 shows how the Orac program uses DDL::Oracle to drive the Devel
menu; note that all of the options you see here are direct mappings from DDL.::
Oracle’s AP1. DDL::Oracle can create DDL for virtually every kind of object in the
database and in many different ways (e.g., CREATE or DROP statements). To illus-
trate its use, we’ll work through some cut-down code used to create the output in
Figure 3-10.

DDL:Oracle | 85

[2lcreaTe TaBLE srove.dept
i

dmptr MumnER (2] NOT MULL
dnare VARCHARZ (1%
VARCHARZ (13)

PETINCREASE 50
FREELISTS
FREELIST GROUPI

LESPACE

Figure 3-10. DDL::Oracle driving the Orac Devel menu

Example 3-3. Usage of DDL::Oracle within the Orac program

Step 1: We bind the left-hand scroll list to the right-hand text
screen. If double-clicked, we go to the related subfunction.

$window->{text}->bind(
'<Double-1>', # Links a double-click to the command below
sub{
Step 2: As soon as the user double-clicks, lock out
all other commands until we're done.

$window->Busy(-recurse=>1);
$self->{Main_window}->Busy(-recurse=>1);

Step 3: Here's the money shot. Configure DDL::Oracle,
using its full API driven by other Perl/Tk buttons.
DDL: :0racle->configure(

dbh => $self->{Database_conn}, # database

resize => $resize, # handle

schema => $schema,

prompt => $prompt,

heading => o,

view => $view,

blksize =»> $Block_Size,

version => $0racle_Version

);

Step 4: Create a new DDL::Oracle object dependent
upon whatever live table or object was double-clicked.

my $obj = DDL::0racle->new(
type => $obj_type,
list => [[$main::v_sys,

86 | Chapter3: Perl GUI Extensions

Example 3-3. Usage of DDL::Oracle within the Orac program (continued)

$window->{text}->get('active'),
11);
my $sql;

Step 5: Depending upon the exact type of DDL required,
use DDL: :Oracle to generate the DDL and fill $sql.

if ($action eq "drop"){
$sql = $obj->drop;

} elsif ($action eq "create"){
$sql = $obj->create;

} elsif ($action eq "resize"){
$sql = $obj->resize;

} elsif ($action eq "compile"){
$sql = $obj->compile;

}

Step 6: Output the DDL text generated and then move
the cursor to the bottom of the text panel.

$current index = $text->index('current'); # Current mark

$text->insert('end’', $sql . "\n\n");
$self->search text(\$text, $current index);
$text->see(g{end linestart});

Step 7: Remove screen lock, to choose further options.

$self->{Main_window}->Unbusy;
$window->Unbusy;

})s
Here’s what’s going on in this code.

1. The code in Example 3-3 is basically a scroll widget bind command on the left
side of the screen. This is filled with a table list, and the binding is attached to a
text widget on the right side of the screen. Whenever an object such as the table
SCOTT.DEPT is double-clicked, the defined subcommand runs. This fills up the
text widget with DDL output.

2. Following the double-click operation, we lock the program. This turns the cur-
sor into an hourglass or watch, depending on your operating system.

3. We then configure the new DDL::Oracle object. This derives its values from the
radio buttons, seen displayed at the bottom of Figure 3-10. (The database han-
dle provided by Perl DBI was previously stored in $self->{Database_conn} by the
object-oriented orac_Oracle.pm module.)

4. Next, we find out what was actually double-clicked in the left-hand scrolling
screen list generated earlier by a simple piece of SQL such as the SELECT
TABLE_NAME FROM USER_TABLES statement.

DDL:Oracle | 87

5. Depending upon what kind of DDL we need, (determined from the higher Perl/
Tk radio button set), we take the DDL text generated from $obj and store it in a
simple Perl string variable, named $sqgl. (In this case, we wanted to view the DDL
necessary to CREATE the DEPT table.)

6. The required DDL is then pasted to the right-hand text scroller.

7. On task completion, we unlock the screen to await further user instruction.

Installing DDL::Oracle on Win32

There is an ActivePerl package for DDL::Oracle. To obtain it, simply connect your
PC to the Internet, as described in Chapter 2, and run ppm:

C:\>ppm

PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install DDL-Oracle

Install package 'DDL-Oracle?’ (y/N): vy
Installing package 'DDL-Oracle’...

Writing C:\Perl\site\lib\auto\DDL\Oracle\.packlist
PPM> quit

As well as grabbing the DDL::Oracle module files, this ActivePerl installation also
provides some of the most important sample scripts that come with Richard Suther-
land’s main source code download on Unix (see Table 3-2).

Table 3-2. DDL::Oracle download example scripts

Script Purpose

ddl.pl Generates various types of DDL for a single, named object.
copy._user.pl Generates for new users, with identical privileges from other users.
defrag.pl (reates command files to defragment Oracle tablespaces.

query.pl Generates DDL for a specified list of objects.

Using DDL::Oracle as a Batch and List Processor

One important thing that differentiates DDL::Oracle from other available freely
available tools is its batch orientation. If you’re ever in a situation where you need to
create many different scripts (for backups, performance tuning, or any other pur-
pose) for your DBA work and you find yourself cutting and pasting from one script
to another, you probably need DDL::Oracle. By using DDL::Oracle in batch mode,
you can concentrate on solving your problem and let DDL::Oracle do the hard work
on the back end, generating the actual DDL code required.

DDL::Oracle can also be used as a list processor. In this mode you can send it a list
of objects or components for which to generate DDL—for example, all the tables in a
particular tablespace. One of the most useful of the helpful sample scripts provided

88 | Chapter3: Perl GUIExtensions

with the program is defrag.pl, which you can use for reorganizing these tablespaces.
We'll take a quick look at this script in the next section.

defrag.pl

There are many different options for running defrag.pl, all of which you can read
about by issuing this command:

$ perl defrag.pl --help

We ran the following command to generate defragmentation scripts for our USERS
tablespace:

$ perl defrag.pl --user=system --password=manager --sid=orcl \
--tablespace=USERS

defrag.pl completed successfully
on Sun Mar 24 12:34:49 2002

This operation created the following list of files:

defrag USERS.sh

defrag USERS.shl

defrag USERS.sh2

defrag USERS.sh3

defrag USERS.sh4

defrag USERS.sh5

defrag USERS_drop_all.sql
defrag USERS_add_tbl.sql
defrag USERS_add_ndx.sql
defrag_USERS_exp.par
defrag USERS_imp.par

These scripts are essentially designed to export the target data, drop the objects,
recreate the resized and defragmented objects, and then import the data once again.
There are several different types of scripts:

Shell scripts
Let’s look at a sample from the defrag USERS.sh2 script:

Step 2 -- Use SQL*Plus to run defrag USERS drop all.sql
which will drop all objects in tablespace USERS
sqlplus -s / << EOF
SPOOL /u02/tools/DDL-Oracle-1.10/defrag USERS drop all.log
@ /u02/tools/DDL-Oracle-1.10/defrag_USERS_drop_all.sql
EOF

DDL:Orade | 89

SQL scripts
Let’s examine part of the defrag_ USERS_drop_all.sql script mentioned:

PROMPT DROP TABLE demo.customer CASCADE CONSTRAINTS
DROP TABLE demo.customer CASCADE CONSTRAINTS ;

PROMPT DROP TABLE demo.department CASCADE CONSTRAINTS
DROP TABLE demo.department CASCADE CONSTRAINTS ;

Export/Import parameter files
Finally, here’s a short sample from the defrag_ USERS_imp.par file:

log = /u02/tools/DDL-Oracle-1.10/defrag USERS imp.log
file = /u02/tools/DDL-Oracle-1.10/defrag_USERS.pipe
TOWS =y

commit =y

ignore =y

buffer = 65535

analyze =n

recordlength = 65535

full =y

When you’re ready to defragment, you simply execute the following command:
$./defrag USERS.sh

This executes everything else needed to reorganize your tablespace. Defragtastic!

SchemaDiff

DDL::Oracle is a very helpful resource, and many of the new Oracle tools coming off
the open source Perl conveyer belt from SourceForge.net and FreshMeat.net are based
upon it. In this section we’ll take a look at one of these tools, Alistair Orchard’s
SchemaDiff program, which you can use to compare different Oracle schemas.

Installing SchemaDiff
You can obtain SchemaDiff from:
http://sourceforge.net/projects/schemadiff

We downloaded SchemaDiff-2.3.0.zip and ran it on Win32, after having expanded it
into the C:\SchemaDiff directory. (It works equally well on Unix.)

We already had the SCOTT user set up on the ORCL database. We decided to set up
the IRISH user on the MYDB database with exactly the same structure. Once we’d
done this, we ran the following SQL while logged on as IRISH:

DROP TABLE EMP;

CREATE TABLE EMP

(EMPNO NUMBER(4) CONSTRAINT PK_EMP PRIMARY KEY,
ENAME VARCHAR2(10),

90 | Chapter3: Perl GUIExtensions

JOB VARCHAR2(9),

SSN VARCHAR2(50),

MGR NUMBER(4),

HIREDATE DATE,

SAL NUMBER(7,2),

COMM NUMBER(7,2),

DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO REFERENCES DEPT);
DROP TABLE EMP2;
CREATE TABLE EMP2

(EMPNO NUMBER(4) CONSTRAINT PK_EMP2 PRIMARY KEY,

ENAME VARCHAR2(10),

JOB VARCHAR2(9),

MGR NUMBER(4),

HIREDATE DATE,

SAL NUMBER(7,2),

COMM NUMBER(7,2),

DEPTNO NUMBER(2) CONSTRAINT FK_DEPTNO2 REFERENCES DEPT);

We wanted to check to see if SchemaDiff would notice that IRISH has the SSN
(Social Security number) column added to the standard EMP table, and see if it
would also spot the extra EMP2 table.

Running SchemaDiff

Let’s see how SchemaDiff behaves with the database and user described in the previ-
ous section.

1. To get going, just start up the program:
$ perl SchemaDiff.pl
This will generate the left screen in Figure 3-11. Fill this in appropriately, con-
necting to the target databases as a DBA user.

SchemaDdl Canfig Mappinge i . SchemaDil Conlig Opbons. DU encl V5 DHZ: mydh M=l 5
il = o= | ot e s OwaTese -y
e [Gl oot e "
Py “'I = GeanlOL g a1 pgz PeeeSOL i Mo
Schams Paend [~ SctemaPaseant [| [085WME JIORSEIE ST Chock Sawate oy 7 o Fistan Coken Dot 7 oy ™ W
PO M—-I 08 (TP pADaBK I Coken Y e
TUDENT
o o [~ TV TSt)
LT TR T| vty e [
ot DBT fcorracs 002 [FaTasen =
Careater| JEEE msm
[
(] I [I —I

Figure 3-11. Setting up SchemaDiff

2. On the second screen, use the selection boxes to link the two target schemas, in
this case SCOTT=IRISH.

3. The third screen now allows you to choose options for generating various report
formats and DDL files to upgrade one schema or the other, depending on which
you prefer to be dominant.

SchemaDiff | 91

When running SchemaDiff, we opted for the HTML report option and for the DDL
scripts to be written from the point of view of the IRISH schema. You can see part of
the HTML summary in Figure 3-12, along with some of the DDL generated within
the IRISH.sql file.

Tl o BN Sowch Vew Iosh Mooos Lonigus Wndw Heo olelx|

REATE TAHLE ehp -
HUMBER (£3] HOT WULL
— \‘A!";l;gi' l}]“:
orel SCOTT vs IRISH (Sun Mar 24 1507:35 2002, 3 T
WIMEER (4)
Tables pendes = HUMBER (7.2
NUMBER (7.21
T - T, WIMBER (2}
g T DI TR e s -
ore SCOTT TRISH gy dh. TRISH
[[Engpe 1
a0
PCT 10
IMITI S 1
Codimas saguts MATTRANS 255
S —— STORAGE
[Unifue Cobumns Differences in Colmns hetween [Unique Colamns in L
fin oreLSCOTT Databases ercl. SCOTT va mydb JRISH mydb IRISH 3
= i,
| | Differences for Table/View:EMT | Tuble/View:EMT' 'iﬂ
| | [Cobamn: COND 5w 1
i 1F ¥ detault
EED Dozt orm SRR | oconie
TABLESPACE users
I} | _'_IJ

Figure 3-12. Typical SchemaDiff output

You’ll find that plenty of other fine treasures can be hauled from SchemaDiff. Check
out its Mother-of-Perl SourceForge foundry for the latest version.

Senora

Another helpful DDL::Oracle-based product is Martin Drautzburg’s Senora, an alter-
native to Oracle’s own SQL*Plus.

Installing Senora
You can get hold of Senora here:
http://sourceforge.net/projects/senora

We downloaded the senora-0.4.tgz tarball:

$ gzip -d senora-0.3.tgz
$ tar xvf senora-0.3.tar
$ cd senora

$ vi README.txt

To access Senora, type in something similar to this statement:

$ perl Senora.pm scott/tiger@orcl

92 | Chapter3: Perl GUI Extensions

You will now see a doppelganger screen that looks amazingly similar to something
you may have seen somewhere before:

SEN*Ora: Release 0.4.0.0.4 - Production on Mon Dec 31 21:53:26 CET 2001
(c) Copyright 2001 Miracle Exploration. No rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
PL/SOL Release 8.1.7.0.0 - Production

0:scott@orcl>

Senora and SQL*Plus

The output in the previous section looks remarkably like SQL*Plus? Why, in the
name of the two Larrys, would we bother changing to something new when
SQL*Plus comes with all versions of Oracle (and is likely to be included at least until
Kurt Vonnegut’s Ice-9 has been invented, the whole world has become an icy lake
and even the Oracle database has gone open source)? Well, Senora author Martin
Drautzburg does put forward some arguments for consideration:

Extensibility
Like most of us, you may love SQL*Plus to bits, but even those devoted to
SQL*Plus have to admit that it lacks extensibility. You have to get hold of tools
like TOAD or SQL*Navigator to do anything beyond basic SQL*Plus—and even
these tools are impossible to extend. If you don’t want to pay for a commercial
product, you just have to hope and pray that the noncommercial version of
TOAD you download every month will now provide the features you need. And
you may not yet be in a position to write your own tools with Perl/Tk. Senora
fills the gap by giving you much of the browsing and analyzing capabilities of
these tools without the need to acquire any other tool or hand over your credit
card number.

Plug-ins
You can extend Senora by providing your own plug-ins, or maybe collecting
other people’s plug-ins from a growing Senora library. Who said the Napster
spirit was dead? Most of Senora’s core functionality is written as plug-ins provid-
ing additional commands to a basic Senora module. We’ve defined the main
plug-ins in Table 3-3.

Unix-style options
Many appreciate Senora’s Unix-style switches, provided via other plug-ins
directly accessible from the Senora command line. This means you can have a
single script with 10 different switch-dependent options, rather than 10 different
scripts.

Senora | 93

Flexible outputs
Senora also attempts to provide more flexible (and perhaps friendlier) report for-
matting than SQL*Plus, with columns tending to be only as wide as maximally
necessary and linebreaks tending to come after blank lines, rather than splitting
headers and columns.

Legacy scripts
Senora can run most existing SQL*Plus scripts, including those using @ and
@@, DEFINE, ampersands (&), and bind variables.

Running Senora

Let’s take a look at the plug-ins available through Senora (see Table 3-3) and then see
how some of them work.

Table 3-3. Senora plug-ins

Senora plug-in Description/commands/aliases
DataDictionary Pulls the code of procedures or lists all objects according to a pattern:
pull, Is, set ddView
Bind Declares and prints out bind variables:
print (p), variable (var)
Sqlplus Provides many SQL*Plus-style cloned commands:
show user (id), describe (desc|d), prompt, head, set server output (so), exec, define, list (1), spool (spo),
column, show errors
SessionMgr Connects and disconnects sessions:
disconnect (dis), connect (conn|c), quit (exit|q)
MainLoop Executes SQL scripts:
set verify, startRel (@@), start (@)
Tuning Provides many highly useful tuning output commands:
show parameter (sp), ps, kept, xqueries (xq), waits, cstatement (cs), validate (vi), rollSegs, locks, space,
hwm, stat, xplain, jobs
PluginMgr Enables help and the addition of further plug-ins:

help (he), register, set pluginCode

We particularly like the Is option provided by the DataDictionary plug-in, illustrated
here:

0:scott@orcl> 1s

Table/Bonus Table/Dept
Table/Emp Index/Pk_Dept
Index/Pk_Emp Table/Salgrade

The DataDictionary plug-in is standard with Senora. To add a new self-documented
plug-in, you register it interactively via the shell command prompt. For example, the
Tuning.pm module is an optional extra plug-in, and you can use the PluginMgr

94 | Chapter3: Perl GUI Extensions

register command to set it.” You may also need to be connected as a DBA user when
using the tuning options, because many of the commands—for example, xgseries
(xq), which is illustrated here—access DBA-type tables:

$ perl Senora.pm system/manager@orcl

0:system@orcl> register Tuning
Tuning registered
0:system@orcl> xq
Order by "rds/x1" desc (top 10)

Username |reads|exec|loads|rds/X1|cmd|statement |

SYS |1452 |389 |1 [3.73 |3 |select /*+ index(idl ub1$ i idl u]
: : : : 1 ub11) +*/ piecet,length,piece fr:

tom idl ub1$ where obj#=:1 and:

: part=:2 and version=:3 order by :

. piece#t :

10 rows selected.
system@orcl>

We like Senora a lot, and we think you will too.

DBD::Chart

If you’re an Oracle DBA who needs to visualize and report upon lots of complex
information, particularly performance statistics, in graphical form, you will benefit
from the amazing DBD::Chart. Just two of its many possibilities are displayed in
Figure 3-13.

DBD::Chart provides a mechanism within Perl for rendering pie charts, bar charts,
line, point, area, and candlestick graphs, and HTML image maps via the use of SQL.
The neat thing about DBD::Chart is that it uses Perl DBI methods to create charts
directly, rather than requiring you to invoke yet another programming interface. For
example, a SELECT statement is used to output a particular chart type, and the
WHERE clause is used to determine its dimensions.

If you tried to produce a chart without DBD::Chart, you’d have to select database
row information into Perl arrays and then process the arrays separately to create the
charts via a special Perl charting API. With DBD::Chart, you can do all this in one
operation that is very SQL-like. For example, when you create a new chart, you do it
with a CREATE statement just as if you’re creating a table. When you insert informa-
tion into the chart, you do this with an INSERT statement, as if you’re adding a row
to a table. This is a very neat idea. We particularly like it because virtually all of the
dynamic charts we ever create come directly from databases.

* If you want to write your own Senora plug-ins, use the Tuning.pm file as a skeleton.

DBD:Chart | 95

More SQL*Plus Clones

A number of other more generic SQL*Plus-like Perl DBI tools are available. You might
want to check out the following:

http://www.perldoc.com/perl5.6.1/lib/DBI/Shell.html
The dbish program is a command-line interface for Perl DBI itself; it comes with
the Perl DBI download (so you probably already have it!). The program has
evolved greatly over the years from the original pmsgl script written by Andreas
Konig. Its current incarnation has benefited from input from Tim Bunce, Jochen
Wiedmann, Adam Marks, and most recently, Tom Lowery.

http://dbishell.sourceforge.net
Vivek Dasmohapatra’s dbishell database shell program includes specific support
for Oracle, MySQL, Sybase, and PostgreSQL. It also provides a generic driver for
every other DBI database type.

http://pigt.sourceforge.net
Lorance Stinson’s Perl Interactive Query Tool (PIQT) is similar to dbishell, but it
has more of a Lisp-like syntax.

http://sourceforge.net/projects/dsql
Daniel Tamborelli Alvarenga’s SQL Query Tool works for MySQL, Oracle, Post-
greSQL, SQL Server, ODBC, and all supported Perl DBI drivers.

2000

1300

1800

ies 1700

1500

1500 [

1400
1300

o 1200 1
1100
1000
300
800
700
600
500 F
a0
300
200 SR
10 Stonenendt

Sanple Pie Chart Visitors Per Saturday
CopuniahtiC) 2002, Jared SHL Capuriaht(C) 2002, R Dumcan

Figure 3-13. Two examples of what DBD::Chart can do

DBD::Chart is particularly useful with either Perl/Tk or Perl CGI, when run in con-
junction with Perl DBI. (Image maps can also be linked to CGI programs, with
HTML usage.) You can see from the following breakdown of the code used to gener-
ate the two images in Figure 3-13 just how close DBD::Chart is to ordinary DBI. (See
Appendix B, The Essential Guide to Perl DBI, for a summary of the DBI APL.)

96 | Chapter3: Perl GUI Extensions

Download from Wow! eBook <www.wowebook.com>

1. Obtain Perl DBI and connect with the DBD::Chart driver:

use DBI;
use strict;
my $dbh = DBI->connect('dbi:Chart:', undef, undef,
{ PrintError => 1, RaiseError => 1 });

2. We now can create a pie chart, with various rugby football information, in
exactly the same way we might create an Oracle table with DBD::Oracle, and
then select from it afterwards:

my @game plan = qw(points possesion penalties goals turnovers yardage);
my @game values = (70, 64, 18, 16, 19, 22);
$dbh->do('CREATE TABLE gamepie (
Segment varchar(10),
First integer)');
my $sth = $dbh->prepare('INSERT INTO gamepie VALUES(?, ?)');

for (my $i = 0; $i <= $#igame_plan; $i++) {
$sth->execute($game_plan[$i], $game values[$i]);
}
$sth = $dbh->prepare(
"SELECT PIECHART, IMAGEMAP FROM gamepie
WHERE WIDTH=700 AND HEIGHT=600 AND
TITLE = 'Sample Pie Chart' AND
SIGNATURE = 'Copyright(C) 2002, Jared Still' AND
3-D=1 AND
COLORS=(red, white, blue, lyellow, lgray, pink)"
)5
$sth->execute;
my $row = $sth->fetchrow arrayref;

3. Having created the chart in memory via the use of SQL, we now output it to a
PNG file. We then drop the memory structure, as if dropping a table:

open(PIE, '>gamepie.png');
binmode PIE;

print PIE $$row[0];

close PIE;

$dbh->do('DROP table gamepie');

4. We now create a three-axis bar chart. In this particular example, we’ll cover
ancient English sites of special interest (at least to one of the authors):

$dbh->do('CREATE TABLE spiritaxis (
Month char(3),
Visitors integer,
Monument varchar(11))');

my @months = gw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
my @monuments =
qw(Stonehenge Avebury SilburyHill Glastonbury WhiteHorse);
$sth = $dbh->prepare('INSERT INTO spiritaxis VALUES(?, ?, ?)');
foreach my $month (@months) {
foreach my $visitors (@monuments) {

DBD:Chart | 97

$sth->execute($month, 1 * int(rand(2000)), $visitors);
}
}
$sth = $dbh->prepare(
"SELECT BARCHART, IMAGEMAP
FROM spiritaxis
WHERE WIDTH=700 AND HEIGHT=600 AND
TITLE = 'Visitors Per Saturday' AND
SIGNATURE = 'Copyright(C) 2002, Andy Duncan' AND
X-AXIS = 'Month' AND
Y-AXIS = 'Visitors' AND
Z-AXIS = 'Monument' AND
COLORS=(white) AND
SHOWGRID = 1"
)s

$sth->execute;
$row = $sth->fetchrow arrayref;

5. As before, we output the chart’s memory structure into a file and then reclaim
the memory by dropping the table:
open(BAR, '>spiritaxis.png');
binmode BAR;

print BAR $$row[0];
close BAR;

$dbh->do('DROP table spiritaxis');

DBD::Chart is an amazing piece of work. May it live long and prosper. In the follow-
ing sections we’ll explain how to install this tool.

Preparing DBD::Chart

DBD::Chart possesses an almost infinite number of uses, limited only by the SQL
you can choose to fill it. It’s available here:

http://www.presicient.com/dbdchart
http://www.cpan.org/authors/id/D/DA/DARNOLD

Although DBD::Chart itself is 100% pure Perl, it does rely on one other Perl module,
GD.pm, which itself requires several other non-Perl C libraries. Fortunately, these
libraries are all open source and either available to compile from source on Unix, or
built into the precompiled GD.pm ActivePerl package.

Installing DBD::Chart on Unix

GD.pm relies upon three separate C libraries. Fortunately, we’ve already installed the
ones required for zlib and PNG (see the earlier discussion under StatsView) so we
only need one more library (we also recommend a JPEG library for completeness).
Just to give you a sense of the scope of DBD::Chart, we’ve included every download

98 | Chapter3: Perl GUI Extensions

in Table 3-4 for use with either Perl CGI or Perl/Tk. Collect your unclaimed tarballs,
and then we’ll work through the entire shooting gallery.

Table 3-4. DBD::Chart’s related Unix downloads

Download Download addresses Example tarball
Zlib http://www.gzip.org/zlib/,http://www.zlib.org Zlib.tar.gz

PNG http://www.libpng.org/pub/png libpng-1.0.12.tar.gz
jpeg-6b ftp://ftp.uu.net/graphics/jpeg, http://www.ijg.org jpegsrc.v6b.tar.gz
gd http://www.boutell.com/gd gd-1.8.4.tar.gz
GD.pm http://www.cpan.org/authors/id/LDS GD-1.33.tar.gz
Tk::PNGa http://www.cpan.org/authors/id/NI-S Tk-PNG-2.005.tar.gz
Tk::JPEG http://www.cpan.org/authors/id/NI-S Tk-JPEG-2.014.tar.gz

a Although Tk::PNG and Tk::JPEG are only required for the use of DBD::Chart with Perl/Tk modules, we thought it would be useful to include
them here as part of the full set.

JPEG

To complement our PNG library, we can load up JPEG support from the Indepen-
dent JPEG Group (IJG). Although the lossless PNG graphics format is better for
sharp letters and line drawings, JPEG’s lossy nature allows you to create massively
compressed files while still retaining a human perception of high quality (see the
sidebar for a definitions of these terms).

This quality makes JPEG a very popular image content system for photographic
usage on the Internet. Because the Tk::;JPEG module is currently more widely avail-
able than Tk::PNG, particularly within ActivePerl, it’s also a good format to use with
Perl/Tk canvas applications. Let’s take a look:

1. Read carefully through the install.doc document to ensure that the configuration
provides all the options you require:
$ gzip -d jpegsrc.véb.tar.gz
$ tar xvf jpegsrc.véb.tar
$ cd jpeg-6b
$ vi README install.doc

2. You may be able to move straight into the following commands:

$./configure

$ make

$ make test
The test step compares several JPEG files, which come with the download, with
program compilations. Several of these test images should resemble the rose seen
earlier in Figure 3-7, which is also borrowed by Tk::JPEG for its own testing.
Note, however, that the various .jpg files will be of different physical sizes
because of lossy compression.

DBD:Chart | 99

Lossless versus Lossy

You will often hear the terms “lossless” or “lossy” used when referring to graphics
images or compression algorithms. Lossless decompression preserves every part of an
original file so it can be reproduced exactly as it was, no matter how small the com-
pressed file gets. Think of lossless compression as being like a squashed-up handker-
chief stuffed very small into a pocket; it can be uncompressed later as a complete, flat-
ironed handkerchief. With lossy compression, on the other hand, the reduced storage
technique throws away bits of the original file so when it is uncompressed it looks
essentially the same, but lacks the completeness of the original.

The trick to saving room is to throw away only those bits that aren’t essential later on.
Think of someone making an annotated sketch of your monogrammed handkerchief.
Embroiderers can take this sketch and stitch you another monogrammed hanky with-
out needing to see the complete original. All they need are the cloth dimensions and
the position, size, color, and shape of your initials. The stitch technique may be entirely
different, but the difference may be visible only under a microscope. And the storage
required for the embroidering instructions is massively reduced, or “lossy,” leading to
much cheaper information transmission for the price of an invisible reduction in simi-
larity to the original.

3. Once the testing is complete, we can move on to the installation:
$ make install
$ make install-lib
Our default installation, on Linux, put the library and C header files into /usr/lib
and /usr/include rather than /usr/local/. You will want to be aware of this during
installation, so we can pick up the library correctly later.

The gd library

Next we load up Thomas Boutell’s gd library. The reason this library is required here
is because it drives Lincoln Stein’s GD.pm Perl package, which itself is relied upon by
DBD::Chart. A splendid web of intrigue, indeed! Follow these steps:

1. Unpack the download:
$ gzip -d gd-1.8.4.tar.gz
$ tar xvf gd-1.8.4.tar
$ cd gd-1.8.4
2. The best help is available by browsing the download’s index.html file. In accor-
dance with the instructions provided, we changed the Makefile in several ways.
We added the JPEG library to the main required libraries:
#LIBS=-1gd -lpng -1z -1m
LIBS=-1gd -1png -1z -1ljpeg -1m

100 | Chapter3: Perl GUI Extensions

Because the JPEG libraries and C header files had defaulted to be installed
in /usr/lib and /usr/include, our Makefile had to be adjusted accordingly:

INCLUDEDIRS=-I. -I/usr/include/freetype2 -I/usr/include/X11 \

-I/usr/X11R6/include/X11 -I/usr/local/include -I/usr/include

LIBDIRS=-L. -L/usr/local/lib -L/usr/lib -L/usr/lib/X11 -L/usr/X11R6/lib
(When you install JPEG on your own setup, your defaults may set to /usr/local/
lib and /usr/local/include. 1f this happened, then the previous changes to
INCLUDEDIRS and LIBDIRS will be unnecessary.)

3. We then tried:

$ make
$ make install
This installed the main gd library and header files in the following places:
/usr/local/lib/libgd.a
/usr/local/include/gd.h
4. When you install gd, you also obtain the gddemo program. If you run this pro-
gram, you’ll find that it creates a new PNG file, demoout.png, directly from a
supplied one, demoin.png, which is a snazzy picture of a space shuttle:
$./gddemo

If this fails to work the first time, you may have to play around with the LD_
LIBRARY_PATH variable, for example:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

The new file should be the original space shuttle, but overlaid with decorative
imagery, as seen earlier on the right side of Figure 3-7.

GD.pm

Although he is better known for his work with CGL.pm and mod_perl (covered in the
following chapters), Lincoln Stein has also created another great piece of work in
GD.pm. This program provides a Perl front end to Thomas Boutell’s gd C library.
Follow these steps:

1. Because we’re relying on the gd module’s being available, this step differs from

the standard vanilla Perl configuration:

$ gzip -d GD-1.33.tar.gz

$ tar xvf GD-1.33.tar

$ cd GD-1.33

$ perl Makefile.PL
The preceding step will ask various questions. Your mileage may vary. (Before
completing the installation of GD.pm, you may wish to acquire FreeType and
XPM (X PixMap) support. Information is available in the GD.pm download bun-
dle. If you aren’t interested, just say no):

Build JPEG support? [y]

Build FreeType support? [y]
Build XPM support? [y]

DBD:Chart | 101

2. Next, compile and test the module:

$ make
$ make test

During the test stage, we’re looking for output similar to the following:

All tests successful, 2 subtests skipped.
Files=1, Tests=10,
0 wallclock secs (0.49 cusr + 0.06 csys = 0.55 CPU)
3. You may also want to complete an optional step to provide a helpful GD.html
documentation file in the current directory:

$ make html
4. We’re now ready to:
$ make install

The GD.pm Perl package should now be loaded and ready to fire.

Completing the DBD::Chart installation
We can finally nail the main event:

$ gzip -d DBD-Chart-0.60.tar.gz

$ tar xvf DBD-Chart-0.60.tar

$ cd DBD-Chart-0.60

$ vi README

$ perl Makefile.PL

$ make

$ make test # There may not be too much here just yet! 8-)
$ make install

DBD::Chart is now fully installed. If you want to test this program, the best way is to
go to the /examples directory, move all the current *png files to another directory,
and then run all the example Perl programs to create new PNGs—for example:

$ cd examples

$ mkdir tmp safe

$ mv *.png tmp_safe

$ perl simpcandle.pl
You should now find a handful of PNGs in the current directory, similar to those we
first showed you in Figure 3-13. For specific DBD::Chart use with Perl/Tk programs,
such as Orac, we also need to install the Tk::JPEG module. While we’re at it, we’ll
also compile the Tk::PNG module here for Unix—it’s bound to turn up as a package
on ActivePerl sooner or later for Win32 users (it will make lossless PNG usage on
Perl/Tk that much more attractive).

102 | Chapter3: Perl GUI Extensions

Tk::PNG
Follow these steps to install Tk::PNG:

1. Everything should run smoothly during this installation, because TK::PNG is
expecting the zlib and PNG libraries to be just where we put them earlier. Well,
that’s the plan. For variations, scan the README file thoroughly for complete
information:

$ gzip -d Tk-PNG-2.005.tar.gz
$ tar xvf Tk-PNG-2.005.tar

$ cd Tk-PNG-2.005

$ vi README

$ perl Makefile.PL

$ make

2. The make test step should pop up the PNG picture we showed back in
Figure 3-7, as also used by the original libpng installation:

$ make test

All tests successful.

Files=1, Tests=4, 2 wallclock secs

(0.33 cusr + 0.03 csys = 0.36 CPU)
3. Now carry out the install:

$ make install

Tk::JPEG

1. Let’s wrap up by installing Tk::JPEG:
$ gzip -d Tk-JPEG-2.014.tar.gz
$ tar xvf Tk-JPEG-2.014.tar
$ cd Tk-JPEG-2.014
2. As with the PNG installation, the make test step should pop up the JPEG picture
of the rose, shown in Figure 3-7, as seen with the earlier installation of the JPEG
libraries. If this occurs, the launchpad is ready:
$ perl Makefile.PL
$ make

$ make test
$ make install

Installing DBD::Chart on Win32

In absolute contrast with the Unix installation of DBD::Chart, the DBD::Chart instal-
lation on Win32 via ActiveState is a miniscule effort. The folks at ActiveState have
locked up the hard work of installing the C libraries deep inside their GD.pm
package.

DBD:Chart | 103

To install DBD::Chart on Win32, follow these steps:

1. As earlier with the Perl/Tk download, connect your PC to the Internet and run
the PPM program:
C:\> ppm
2. Now install the ActivePerl GD and Tk::JPEG packages by typing:

PPM> install GD
PPM> install Tk-JPEG
PPM> exit

For those who have waded through the Unix install, we’re embarrassed to say
that this is really all you have to do to get zlib, PNG, JPEG, gd, and GD.pm onto
Win32. When the revolution comes, there shall be a reckoning!

Loading DBD::Chart for ActivePerl

Although ActiveState may lack a DBD::Chart package in its library, the package is
relatively straightforward to add because it’s 100% pure Perl:

1. Get hold of the latest download file, such as DBD-Chart-0.60.tar.gz, from:
http://www.cpan.org/authors/id/D/DA/DARNOLD

2. Unzip the tarball to the a temporary directory, such as:
C:\DBD-Chart-0.60
3. Go to the main ..\DBD directory where ActivePerl keeps its modules, and copy
in DBD::Chart’s main Chart.pm module. For example:

C:\DBD-Chart-0.60> cd C:\Perl\site\1lib\DBD
C:\Perl\site\1ib\DBD> copy C:\DBD-Chart-0.60\Chart.pm .

4. Now create a new subdirectory under .\DBD, itself named Chart:
C:\Perl\site\lib\DBD> mkdir Chart
5. Enter this subdirectory, and copy Plot.pm to it from the.\Chart directory within
the download area:

C:\Perl\site\1ib\DBD> cd Chart
C:\Perl\site\1lib\DBD\Chart> copy C:\DBD-Chart-0.60\Chart\Plot.pm .

This completes the Win32 installation of DBD::Chart. (We’'ll cover another way
of installing larger pure-Perl modules, using NMAKE, in Chapter 6, Embedded
Perl Web Scripting, where a slightly longer setup can save a lot of copying by
hand.) To test our Tk::JPEG system, we fired up Orac to see if it could detect
both DBD::Chart and Tk::JPEG as being successtully installed. The resulting,
slightly lossy tablespace allocations chart is displayed in Figure 3-14.

SchemaView-Plus

SchemaView-Plus is another helpful Perl/Tk tool for Oracle DBAs that allows you to
examine different database schemas and save them for future reference. It also

104 | Chapter3: Perl GUI Extensions

% Drac TableSpace Allocations Chart - [Of =]
R S S

THD%
RES
TEHP
T00LS
USERS

B FREE
TableSpace Allocations

< |*]

12

Figure 3-14. DBD::Chart examines tablespace allocations

provides insight into the world of Perl and XML data parsing. SchemaView-Plus was
written by Milan Sorm, who also developed the dbMan application (see http://
dbman.linux.cz), also written in Perl/Tk. (The SchemaView-Plus tool also uses the
Perl DBIx extension, DBIx::SystemCatalog.)

Installing SchemaView-Plus on Unix

In addition to downloading SchemaView-Plus itself, you’ll need to obtain several
additional modules. Table 3-5 lists the locations for the software you’ll need to
install.

Table 3-5. Description and downloads for SchemaView-Plus

Clibrary/Perl module Description/download address

expat XML parser C library
http://sourceforge.net/projects/expat
XML::Parser Parses XML
http://www.cpan.org/authors/id/C/C0/COOPERCL
XML::Dumper Dumps Perl data to structured XML
http://www.cpan.org/authors/id/E/EI/EISEN
SchemaView-Plus Examines different database schemas

http://www.cpan.org/authors/id/M/MI/MILSO

SchemaView-Plus | 105

Appendix D, The Essential Guide to Perl Data Munging, describes how to install
expat and its dependent XML::Parser Perl module, along with other XML modules;
expat and XML::Parser must be installed prior to using SchemaView-Plus. In addi-
tion, we need to install XML::Dumper as follows:

$ gzip -d XML-Dumper-0.4.tar.gz

$ tar xvf XML-Dumper-0.4.tar

$ cd XML-Dumper-0.4

$ perl Makefile.PL

$ make

$ make test
$ make install

Now let’s install SchemaView-Plus itself:

1. With the XML system set up, we can now get to SchemaView-Plus:

$ gzip -d SchemaView-Plus-0.10.tar.gz
$ tar xvf SchemaView-Plus-0.10.tar
$ cd SchemaView-Plus-0.10
$ perl Makefile.PL
$ make
$ make test
$ make install
2. Make sure we can find the svplus program and set ORACLE_HOME:

$ export PATH=/usr/local/bin:$PATH

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5

$ export LD_LIBRARY PATH=$LD LIBRARY PATH:$ORACLE HOME/lib

$ svplus
Many different schema-related options are available via SchemaView-Plus, and walk-
ing through them when the program is installed is the best way to discover them. To
give you a flavor of the program, we’ve included two screenshots in Figure 3-15, one
for Unix and one for Win32.

Installing SchemaView-Plus on Win32
To install SchemaView-Plus on Win32, do the following;:
1. Obtain the XML::Dumper package from over the Internet at ActiveState (XML::

Parser comes preloaded with ActivePerl):

C:\>ppm

PPM> install XML-Dumper

Install package 'XML-Dumper?' (y/N): vy
Installing package 'XML-Dumper'...

“iiting C:\Perl\site\lib\auto\XML\Dumper\.packlist

PPM> quit
2. Next, download and extract SchemaView-Plus to a suitable directory.
3. Run the program like this:

C:\SchemaView-Plus-0.10>perl bin/svplus

106 | Chapter3: Perl GUI Extensions

SchemaView Pl ETSEsRl=sE] Wil . SchemaView Plus [svplusTestUnix] M =] 3
Fle Schema Database Window Help Hel Schoma fl Oetahacoll Mndow D
= TowH
CONTINENT TOMN_NAME
CONTINENT_MNAME COUNTRY_NAME
CONTINENT_DESC
TOWN
TOWN_NAME
TOAN DESC COUNTRY NAME
COUNTRY_NAME COUNTRY_DESC
CONTINENT_NAME
COUNTRY
COUNTRY_MNAME
COUNTRY_DESC CONTIMENT
| CONTINENT_NAME COMTIMENT_NAME
CONTINENT_DESC
‘ ol | on— '

Figure 3-15. SchemaView-Plus examining table relationships

Open Source Perl IDEs

Even with all of the wonderful applications profiled in this book, you might still find
that none are quite right for your own database administration needs. If you have a
serious itch you really need to scratch, you might eventually decide that you need to
do some coding of your own. Fortunately, this is becoming easier all the time.

Most Perl devotees are still wedded firmly to the command line and to the use of text
editors like vi or emacs for development. However, for those accustomed to the typi-
cal Win32 code development style, Open Perl IDE offers an excellent development
alternative. Open Perl IDE is an integrated development environment (IDE) for writ-
ing and debugging Perl scripts with any standard Perl distribution under Win32. This
open source software is written in Delphi 5 Object Pascal and Perl. In addition to
providing a complete development environment, it also offers excellent Perl code
debugging facilities.

To install Open Perl IDE, follow these steps:

1. Go to:
http://sourceforge.net/projects/open-perl-ide
We downloaded the following file to its own newly created directory:
C:\OpenPer1IDE\Open Perl IDE 0.9.8.168a.zip
2. Double-click on this and check the readme.txt file.
3. Unpack to the same directory.

Open Source Perl IDEs | 107

4. Double-click on the PerlIDE.exe program. The IDE should now be up and run-
ning, as shown in Figure 3-16.

&= Open Perl IDE <basicDBI pl> - [C:\0OpenPerllDE\basicDBI_pl]

le Edit Seach Proect Fun Window Help A
Djemesme @ c(SE v [#F=a0
Desklap: [Defaut jl basicDELpl | Helawardpl|
Variables | Braakpoints | Modulss i[use strict: =
z|use DBI;
Hame Type |V 5
4(my jcbh = DEI-»connect| 'dbi:Oracle:orel', 'scott', 'tiger',
5 { RaiseError =» 1, AutoCommit =» 0 }
6 j || die "Datshase connection not made: $DET::errstr”;
o
8|my §sth = $dbh-sprepars| @ISELECT * FRON EMP) J;

8| fsth-rexecute (] ;

11|my Grow:

1z |while(Brow = §sth-»fecchrow() | {
13 print "Browin";:

14}

16|5dbh->disconnece ()

Figure 3-16. Open Perl IDE in action with Perl DBI

Other Perl IDEs you might want to consider include:
Kake Pad

http://sourceforge.net/projects/kpad
OptiPerl

http://www.xarka.com/optiperl

Komodo
http://www.activestate.com/Products/Komodo
UltraEdit
http://www.ultraedit.com

Open Source Perl GUI Debuggers

A number of excellent Perl GUI debuggers provide graphical interfaces for diagnos-
ing problems in your Perl programs. The quickest way to get up to speed on the gen-
eral topic of debugging in Perl is to type the following commands:

$ perldoc perldebug
$ perldoc perldiag

108 | Chapter3: Perl GUI Extensions

Perlish people tend to use command-line debug programs with major sprinklings of
print statements. But several open source GUI debugger programs are out there that
you might want to consider. We’ve listed the best-known in Table 3-6.

Table 3-6. Open source Perl GUI debugging programs

GUI Description

perldbgui A GUI for the standard Perl debugger:
http://members.tripod.com/~CurtMcKelvey/perldbgui

ptkdb This can work with Apache Perl scripts and is shown in Figure 3-17:

http://www.cpan.org/authors/id/A/AE/AEPAGE

Open Perl IDE This IDE, described in the previous section, can help write and debug Perl programs:
http://sourceforge.net/projects/open-perl-ide

ArsrfocalMbpertisite perf 6 ABE - BmocTHLpim
fle Contrel Data Stack Pookmarks Windows 5 Ilﬂl ek
Swhlmmlmi-mmlml]Qﬁlo"'l [-l\-?l| I
Gow | gearch | Regos | Eges | ENRY Mo m|m|| g | s
Grlmnmnm::l. ok e || = M=
00003 uze strice: Enter Expr: || 836k sub cannect_cached (
s B e e M S i oo | e

“Dtu él [13=>]dbi_connect_wathod] = ‘comnect_ca

r-:comct(dbu Gracle orcl’, ‘scott’, ‘tige clans-rcannect (Sdsn, Susec, Epass. Sattr),

aseEreor = 1i Mw‘-nnlr. = n1 i~ (08365 |

} ll din mn- eannnetion =
+ $DBL; errste” sub connoct.
90012 my Sath = Sdbborprepace(G(SELECT * PROK BXF) .

- Gpass, Sattr, Sold driver) = o_
IJW 3 Gath-Jemecuts:

¥ awitch sehl_drun« sEattr if called in old styl
(Sold_driver. Satte) = (§atte. Sold driver) if Sak

my Scoomect mokh s (rof &utr) ? &'ur 3({dhi em
Scormect_meth ||= Sconnect_via, # fallBack

(e |
_| (00018 Sdbh-sdisconnect()

TP i = o B

P e = f—]

Figure 3-17. ptkdb—Stepping into the DBI module

Open Source Perl GUI Debuggers | 109

CHAPTER 4
Perl Web Extensions

This chapter describes the basics of web-based Oracle applications whose output or
interface is viewed through a web browser, rather than through the graphical user
interfaces (GUIs) offered by the applications described in Chapter 3, Perl GUI Exten-
sions. The advantage of employing a web solution is that you need to deploy it only
once, at one web address, and thereby provide a tool that anyone with a web browser
can access from anywhere on the network. Using the web as an interface can make
life a lot easier for Oracle database administrators who may manage dozens of data-
bases and who need to maintain a satellite’s eye view of their operation and perfor-
mance. DBAs have long dreamed of being able to monitor their databases from the
beach via remote-control applications that require nothing more than browser con-
trol from a Palm pilot or some other type of PDA, a cellular phone, or a laptop. That
particular scenario is likely to remain a dream, but it’s certainly true that use of the
Web adds a convenient dimension to database administration.

Many web-based database applications are implemented as Perl CGI scripts. CGI
(Common Gateway Interface) programs are typically small programs (running on the
web server) that have historically been used to provide dynamic content to web
pages. The output of a CGI program is simply an HTML page that is read by a web
browser. How do CGIs work? On the client side, the browser calls a CGI in the same
way that it would call a static web page—by making a request for a file from the web
server. By calling a CGI, though, the client is actually telling the server to run a small
program. In the case of an Oracle CGI script, running that program pulls data from
the Oracle database and thus produces the dynamic content for the web page. We
won’t attempt to describe the details of CGI in this book. If you are interested in
learning more, we recommend the following classic text by Lincoln Stein, the creator
of the CGIL.pm module:’

* Lincoln is also the author of Network Programming with Perl (Addison-Wesley, 2000), and the coauthor,
with Doug MacEachern, of Writing Apache Modules with Perl and C (O’Reilly & Associates, 1999).

110

Official Guide to Programming With Cgi.Pm, by Lincoln Stein (Wiley & Sons,
1998)

In this chapter we’ll describe two excellent web-based applications for Oracle DBAs:

Oracletool
One of the best tools around for Oracle DBAs is Adam vonNieda’s Oracletool,
which provides a web-based interface for database performance monitoring and
a variety of other database administration tasks. Oracletool is implemented as a
Perl CGI script.

Karma
Another excellent web-based Perl application for Oracle database monitoring is
Sean Hull’s Karma. Karma is not strictly a Perl CGI script, but instead relies
upon daemons to collect statistics and warnings for Oracle DBAs.

Something else we like about Oracletool and Karma is that you can play around with
both of them on their home sites (listed later). If you’re just interested in checking
them out, and if the installation procedures described in the following sections seem
like a little too much work at this point, feel free to examine the demonstrations pro-
vided on their sites. We’re confident you won’t be disappointed.

Before we look at the details of these applications, we’ll take a step back and describe
how to install and configure Apache, the leading web server in use today.

Apache

Apache is an open source web server—and the most popular web server in use today
(including both open source and commercial web servers).” Apache is fast, efficient,
easy to configure, and very stable on the widest variety of platforms. Apachet runs on
virtually every operating system, including Win32, Linux, BSD, Solaris, and many
other varieties of Unix. The main web site for Apache is:

http://www.apache.org/

Apache and Perl are fast friends. This chapter focuses on Perl-based applications for
Oracle that are implemented as CGI scripts or daemons. In Chapter 5, Embedding
Perl into Apache with mod_perl, we’ll discuss Apache’s mod_perl module, which
makes the Apache/Perl connection a more efficient one.

* According to Netcraft (http://www.netcraft.com/survey/), Apache’s share of the web’s active sites market was
64% as of March 2002. Following behind was Internet Information Server (IIS), placing second at 27%, and
iPlanet, placing third at 2%.

T Apache 1.3.24 is the latest version as of this writing, with Apache 2.0 in alpha testing.

Apache | 1M

Download from Wow! eBook <www.wowebook.com>

To obtain the downloads and information concerning Apache for Unix, Win32, and
Oracle’s use of Apache, check out the following URLs:

http://'www.apache.org/
Main Apache umbrella web site for all the Apache Software Foundation (ASF)
related projects.

http://httpd.apache.org/
Central site for the actual Apache web server, the ASF’s core offering.

http://httpd.apache.org/dist/httpd/
Main download page for Apache on Unix.

http://httpd.apache.org/docs/windows. html
Page dedicated towards helping Win32 users of Apache.

http://httpd.apache.org/dist/httpd/binaries/win32/
Download page for Win32 Apache.

http://www.oracle.com/ip/deploy/ias/index.html?web.html
Oracle Corporation’s use of Apache as the Oracle9i Application HTTP Server
(1AS).

http://httpd.apache.org/docs/mod/directives.html
The Apache Run Time Configuration Directives page.

Because Apache is supplied these days as part of your Oracle installation, you may
simply choose to use that version because it’s highly compatible with the Oracle
development environment. The only problem is that it might be a fairly old version
of Apache, depending on the Oracle version you’re using, and it might therefore be
difficult to modify in order to meet your own production standards or to blend in
with non-Oracle toolsets. In case you need to customize Apache for your environ-
ment, we’ll describe in the following sections how to install an independent Apache
directly on both Unix and Win32. This way, you get the latest and greatest Apache,
with complete freedom to modify it to meet your personal requirements.

Installing Apache on Unix
Download the latest stable version of Apache from:
http://httpd.apache.org/dist/httpd/

Get the latest stable tarball (we used apache_1.3.24.tar.gz) and unpack it into a tem-
porary working directory:

$ gzip -d apache 1.3.24.tar.gz
$ tar xvf apache_1.3.24.tar

$ cd apache 1.3.24

$ vi README INSTALL

112 | Chapter4: Perl Web Extensions

The main installation instructions are within the INSTALL file where you’re offered
two options:

* The old-style compilation
* The out-of-the-box APACI (Apache AutoConf Interface) Install method

Unless you enjoy pain, we recommend that you go for APACI every time!

R
s

Although we’re installing Apache as root, it may not always be a good
idea to run the resultant httpd servers as root. Most Unix systems
immediately switch Apache to the nobody user in nogroup (a harmless
person) once they’ve attached to port 80. However some may not and
you may therefore risk superuser permissions being accessible over the
Web. Alternatively, you may simply wish to run a thoroughly secure
system. To achieve this goal, you may want to create a special user to
run Apache, typically webuser in webgroup. Check out the Group and
User directives on the Apache configuration directives page men-
tioned previously or via the two following references:

Tay

* http://httpd.apache.org/docs/mod/core.html#group
* hitp://httpd.apache.org/docs/mod/core. himl#user

Let’s run through the Unix installation instructions:

1. We're going to take the option to build Apache with Perl. To do this, find out
where your Perl executable is living, and then configure Apache under APACI
using this address, combined with the --with-perl directive. Also, let the
Jconfigure program know where you want to ultimately install Apache with
the -prefix=MyApacheDir switch.” We’ll assume for now that you’re happy to
install Apache in the usual place, /usr/local/apache, as the root user:

$ type perl

perl is hashed (/usr/bin/perl)
$./configure --prefix=/usr/local/apache --with-perl=/usr/bin/perl

2. We should now be ready to go straight into the installation:

$ make
$ make install

You’re looking for the following output:

| You now have successfully built and installed the |
| Apache 1.3 HTTP server. To verify that Apache actually |
| works correctly you now should first check the \
| (initially created or preserved) configuration files |

* In development mode, it’s often a good idea to install Apache to a nondefault area; this helps you avoid over-
writing a production version. It may also be necessary if you don’t have root permission.

Apache | 113

3. Finally, get the Apache httpd server itself up and running:

$ /usr/local/apache/bin/apachectl start
/usr/local/apache/bin/apachectl start: httpd started

You can test the successful installation by visiting localhost with your browser, as
shown in Figure 4-1.
4. Now visit the httpd.conf configuration file and find out where the /cgi-bin/ direc-
tive will look for CGI scripts:
$ vi /usr/local/apache/conf/httpd.conf
The default should look like this:
ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/"
All CGI scripts should go in the /usr/local/apache/cgi-bin directory.
5. Now search for the following line, dealing with .cgi scripts:
#AddHandler cgi-script .cgi
Uncomment this, and add a similar line to deal with .pl scripts:

AddHandler cgi-script .cgi
AddHandler cgi-script .pl

6. If you’re not root, or you’d like a separate development port, you might like to
change the Port value from 80, the default for the Internet, to some other value
higher than 1024. A typical development port is:

Port 8080

To restart Apache, with the new configuration, run the following command:
$ /usr/local/apache/bin/apachectl restart

(You will find that the Apache logs go into the /usr/local/apache/logs directory or in
<server_root>/logs, depending upon how you’ve configured httpd.conf.)

You’ll find a Perl CGI example script in Example 4-1.

Installing Apache on Win32

The process of installing Apache on Win32 platforms has improved by leaps and
bounds in the last few years, and it’s now a straightforward install. We downloaded
this self-extracting file:

apache_1.3.24-win32-x86-no_src.msi
which we obtained from:
http://httpd.apache.org/dist/httpd/binaries/win32/

If you have the MSI installer program on your Windows box (as discussed in Chap-
ter 2, Installing Perl on page 28), double-clicking on the Apache MSI file should
result in a typical pain-free Windows-style installation.The main question you’ll be
asked is whether you want to run Apache as a Windows service or as a console appli-

114 | Chapter4: Perl Web Extensions

'a. Melscape: Test Page for Apache Installation | [=] E3

File Edit VYiew Go Communicator Help
" wf ~ Bookmarks A Location: attp: //Localhost/ | /‘
..... —

If you can see this, it means that the installation of the Apache web server softsware on this system was successful. You may now add content to
this directory and replace this page.

Seeing this instead of the website you expected?

This page is here becanse the site administrator has changed the configuration of this web server. Flease contact the person responsible for
waintaining this server with questions. The Apache Software Foundation, which wrote the web server software this site administrator is nsing,
has nothing to do with maintsining thiz site and canot help resolve configuration issues.

The Apache documentation has been included with this distdbution.

You are free to nse the image below on an Apache-powered web server. Thanks for using Apache!

4 cH

=) |

Figure 4-1. Hello Apache, the first screen arriveth

cation. We opted for the second choice because the Win32 version of mod_perl
(which we’ll be installing in Chapter 5) expects Apache to be run in console mode.
Follow these steps:

1.

As with the earlier Unix installation, we made some tiny changes to the httpd.
conf file to enable the execution of our CGI Perl files before starting up Apache
to test them. To gain direct access to httpd.conf from the Windows Start menu,
click through the following:

Start->Programs->Apache HTTP Server->Configure Apache Server-»
Edit the Apache httpd.conf Configuration File

. Once inside httpd.conf, note the location of CGI’s script bin:

ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache/cgi-bin/"

. Now find the handler line dealing with .cgi scripts:

#AddHandler cgi-script .cgi

. Uncomment it to activate it and add a similar line to deal with .pl scripts:

AddHandler cgi-script .cgi

AddHandler cgi-script .pl
At this point, you might want to review the discussion of the Port value in the
Unix installation section, but on Win32 we’re generally happy with the default
HTTP value, unless we know something else is running on it:

Port 80

. Fire up Apache as a console application from the Start menu:

Start->Programs->Apache HTTP Server->
Start Apache in Console

Apache | 115

6. To shut down Apache via its console, simply close down the console window.
Any errors will have appeared in:

C:\Program Files\Apache Group\Apache\logs\error.log

The best web server in the world is now ready to do your bidding.

Using DBD::Chart with Apache

After dealing with all of these installation procedures, you’re probably itching to see
some action. In a bid to avoid disappointment, we’ll try out the DBD::Chart Perl
script shown in Example 4-1. (We introduced DBD::Chart in Chapter 3.) This exam-
ple graphically charts Oracle database objects. (Check out the DBI API details in
Appendix B, The Essential Guide to Perl DBI, if you need more detailed information.)
N

If you're using ActivePerl, all of the Perl CGI scripts you place into
Apache’s ../cgi-bin/ directory, under Win32 must have the following

W first line:

) #!/perl/bin/perl

aqs
N
N

This tells the Apache web server to execute them with ActivePerl,
which is generally available as:

C:\Perl\Bin\perl.exe

If the ActivePerl perl.exe executable is in a different or nondefault loca-
tion, alter the Apache directive appropriately.

Example 4-1. Oracle_objects.pl

#!/perl/bin/perl

use strict;

use DBI;

use Socket gw(:DEFAULT :crlf); # Built-in Perl module, provides $CRLF

Step 1: Tell the calling browser a mime.types PNG is on its way.

print "Content-type: image/png$CRLF$CRLF";
Step 2: Connect to Oracle and prepare the SQL.

my $dbh = DBI->connect('dbi:Oracle:orcl', 'system', 'manager’,
{ RaiseError => 1 });

my $sth = $dbh->prepare('SELECT object type, '

' COUNT(*)" .

' FROM dba_objects '

' GROUP BY object type');
$sth->execute;

116 | Chapter4: Perl Web Extensions

Example 4-1. Oracle_objects.pl (continued)
Step 3: Create the DBD::Chart graph, and prepare to insert bars.

my $chart dbh = DBI->connect('dbi:Chart:"');
$chart_dbh->do(
"CREATE TABLE bars (object_type CHAR(30), object_count FLOAT)');

my $chart sth = $chart dbh->prepare("INSERT INTO bars VALUES(?, ?)');
while (my @res = $sth->fetchrow) {
Step 4: Add an entry to chart.

$chart_sth->execute($res[0], $res[1]);

}

Step 5: Prepare the Chart for output without the need for any
temporary file storage of the default PNG output.

$chart_sth =

$chart_dbh->prepare("SELECT BARCHART " .
" FROM bars " .
" WHERE WIDTH=900 " .
" AND HEIGHT=300 " .
" AND 3-D=1 " .
" AND X-ORIENT= 'HORIZONTAL' " .
" AND TITLE = 'Object Types' ");

Step 6: Send the PNG on its way back to the browser, then clean up.

$chart_sth->execute;

my $row = $chart sth->fetchrow arrayref;
binmode STDOUT;

print $$row[0]; # PNG file sent here! :-)
$chart_dbh->do('DROP CHART bars');
$chart_dbh->disconnect;

$dbh->disconnect;

Here’s what’s going on in this script:

1. Before we pump out the PNG’s binary image, we need to tell the calling browser
to expect a mime.types PNG output.

Note the $CRLF newline pair included here; it is used to separate the content-
type declaration from the actual content. The $CRLF variable from Perl’s built-in
Socket.pm ensures that we get the right combination of \015\012 for Internet line
endings. The \n character normally represents \012, and \r normally represents \
015; however, this may vary from system to system. To be strict about what we
output, we use Socket’s $CRLF, which guarantees to be \015\012 (also known as

Apache | 117

CRLF, for carriage return/line feed). Many systems also recognize \n as a CRLF,
so web people often use the \n\n pair.”

. We create the SQL to extract the required information from Oracle.

. Next, we create the destination bar chart and get it ready for data entry.
Row by row, we fill up the bar chart with SELECT results.

. We prepare to output the final dynamic chart using the DBI API.

. We send the PNG directly to the browser. This is done entirely in memory, with-
out the need for a transitional operating system file. Once we’ve sent the PNG
on its way, we clean up and free our resources.

Store this Perl script in your CGI bin directory under either Unix or Win32:

/usr/local/apache/cgi-bin/

C:/Program Files/Apache Group/Apache/cgi-bin/
(Notice how Apache, even on Win32, still prefers the Unix-style forward slash,
which is used internally by Win32 systems anyway.)

If you’re using Unix, you will need to change the script’s first line to call your local
Perl version—for example:

#!/usr/bin/perl

Now call up the following address on your browser:
http:/flocalhost/cgi-bin/Oracle_objects.pl

You should see something like Figure 4-2.

As we discussed in Chapter 3, DBD::Chart is a fine piece of work, one whose limita-
tions are bounded only by feverish imagination. All we need now is a collection of
SQL scripts, a CGI program providing a pick-list of these scripts, a wing, a prayer
and a few parameter switches. If we had all of these, we could create a really lovely
Oracle DBA tool. Or maybe we should just download a single canned application
that does all of this for us? Read on....

Oracletool

Oracletool, developed by Adam vonNieda as a tuning, monitoring, and general data-
base administration tool, is one of the best Perl CGI applications you’ll find any-
where. Oracletool provides a simple web-based interface to many of the day-to-day
maintenance tasks an Oracle DBA needs to keep a typical database in good working
order. (It’s also a very useful development utility.)

* This may actually be incorrect, though most browsers will be able to cope with it, even on DOS systems,
because of the Internet rule of thumb: “Be strict about what you send out; be liberal about what you accept.”
See http://www.fags.org/rfcs/rfc2068.html for a strict interpretation of Internet line endings.

118 | Chapter4: Perl Web Extensions

37 PNG image 900x300 pixels - Netscape O[]
Fle Edit Wiew Go Communicator Help
7| i Bookmarks A Lacation [t /7localhost/egi bin/Oracle_obiects ol =] @07 whats Relsted E|
14000
L0000
D000
OO0
FO00
OO0
S000
Ll
F000
2000
1000
o o o = 3 " o w w > =) w > w w = w E w o w =
g £ 5 ¥ 8 £ 4 4 7 & o8 5 g W o oy B oW oz w3
@ g 5 ¥ 2 £ g £ & S g 5 2 g § 2 =z 4 @5 g B
E B £ £ 5§ & 2 2 g £ 2 g2 & 2 g 8 & g £ £
2 & 5§ £ d g 2 £ 5 g =2 g g £ £
E E £ 7 B & g2 , H w = = H
4 x = = £ g = g 4 £ 4 5 & &
g = i £ £ ¢ . z E E 4
5 z a z b ject Typed =
3 £ g 3 2
2 H £ o
Z S £
= =0 [Document: Done

Figure 4-2. DBD::Chart and Apache

Oracletool provides a reasonable degree of security as a default, and also gives you
the ability to configure more rigorous security. You can choose your level of security
based on your own site’s requirements. The faint of heart will be glad to hear that
Oracletool does not modify your database. You can create a user with the SELECT
ANY TABLE privilege, and rest assured that running Oracletool won’t break your
database. Not that you’ll need to worry in any case—Oracletool is well written, and
behaves consistently.

To learn more about Oracletool, visit the following page:
http://'www.oracletool.com/

In the following sections we’ll show how to install Oracletool and try out a few of its
options. There is much more to learn about Oracletool, however. You can find a
more detailed discussion in Oracle & Open Source, and you can browse freely
through the tool’s many helpful menus and screens to explore its capabilities.

Installing Oracletool

The instructions for installing Oracletool are virtually identical under Unix and
Win32. Get hold of the latest tarball, such as oracletool-2.0.tar.gz, and unpack it into
a local directory. Good instructions come with the download. We'll provide the
usual two summaries here.

Installing Oracletool on Unix

1. Copy the oracletool.sam file to your ../cgi-bin/ directory under Apache. Rename it
to oracletool.ini. For instance:

$ cp oracletool.sam /usr/local/apache/cgi-bin/oracletool.ini

Oracletool | 119

2. Now edit this file. Basically, ensure that ORACLE_HOME is set for the use of
Perl DBI and that TNS_ADMIN is set so Oracletool can get hold of your target
databases.” (The TNS_ADMIN value will default to SORACLE_HOME/network/
admin, but there’s no harm done making sure it’s clear to anyone later maintain-
ing the file.)

ORACLE_HOME = /opt/oracle/product/9.0.1
TNS_ADMIN = /opt/oracle/product/9.0.1/network/admin

3. Now copy oracletool.pl itself to your ../cgi-bin/ directory, without renaming it
this time (unless you’d prefer a .cgi suffix):
$ cp oracletool.pl /usr/local/apache/cgi-bin/oracletool.pl
4. Make sure that the first line of the oracletool.pl script points to the right Perl exe-
cutable:
#!/usr/bin/perl

5. We also had some problemettes connecting orcl.world and Oracletool to
Oracle9i, on SuSE 7.3 Linux, but there are a range of connection options you
can try near the top of oracletool.pl. For instance, we replaced the following line,
which was deliberately stripping out .world suffixes:

my %hash =
map { (split(/\.world/i,(split(':"'))[-1]))[0] , undef }
DBI->data_sources('Oracle')

We used one of the commented-out simpler alternatives. Problem solved:

my %hash =
map { (split(':'))[-1] , undef } DBI->data_sources('Oracle')

6. Once you’ve solved any rare teething problems like this, you should secure
oracletool.pl by changing its permissions, as with the Unix chmod command:

$ chmod 755 oracletool.pl

7. Now ensure that your Apache web server and target Oracle database are run-
ning. Type the following into your browser location field:

http://localhost/cgi-bin/oracletool.pl
8. You'll be greeted with the screen sequence displayed in Figure 4-3.

Installing Oracletool on Win32
For Win32, follow these steps:
1. Copy the oracletool.sam file to your ..\cgi-bin\ directory under Apache. Rename it

to oracletool.ini:

C:> copy oracletool.sam
C:\Program Files\Apache Group\Apache\cgi-bin\oracletool.ini

* Note that the parameters in oracletool.sam are not Perl variables; they are more in the style of Java .ini param-
eters. (See Table 4-1 for more initialization parameters.)

120 | Chapter4: Perl Web Extensions

2. Now edit this file, in the same way as on Unix. Make sure ORACLE_HOME is
set for the use of Perl DBI if your Win32 platform needs it, and that TNS_
ADMIN is set so Oracletool can get hold of your target databases:

ORACLE_HOME = C:\\ORANT # You may not need to set this on Win32
TNS_ADMIN = C:\\ORANT\\NET80\\ADMIN

3. Now copy oracletool.pl itself to your ..\cgi-bin\ directory:

C:> copy oracletool.pl
C:\Program Files\Apache Group\Apache\cgi-bin\oracletool.pl

4. Make sure that the first line of the oracletool.pl script points to the right Perl exe-

cutable. For Win32 using ActivePerl, that’s usually:
#!/perl/bin/perl

5. If you’re running on NTFS or a similarly secure NT-based filesystem, you should
secure oracletool.pl by changing its permissions via your security system to have
the equivalent of 755 status on Unix.

6. Now ensure that your Apache web server and target Oracle database are run-
ning. Then type the following into your browser location field to get to the
screens displayed in Figure 4-3:

http://localhost/cgi-bin/oracletool.pl

[= i TELT
Locaden (8 Yoew Go Goskmans Jooh Gengi fndow beip |
2 Lpeation [[F85 Mac ahoavs - BeviracHion B SIS a1 =0IL] worHALIC]_ie=F RAMEF AGE =] |
+4+RDH0 DG SRAL S B

Be b Yom s Covmricre tids =
T b Sochmabs A Lo [t =] (" e et | Sessenwi | [

Select an lurtance. Teg
Datadbes
Thede 1 Sedec & schesa ey clcking on 8.
rses Vil binchrinand anbcales user 5 Comer e,
A [ep e —y———— T —
Pord | ey
Licks |
ity
e Euter the usermamn T
FE= Tt 1| [5oL wrsahest :
Sacurty BT | : o | wm e
Enter the paswnsid p— [| |
E— st parametiors
[t vt
[0 sdawn —;‘
] e L S P - . S

Figure 4-3. Logging into Oracletool on Win32 and Linux

Table 4-1. Main Oracletool initialization parameters

Parameter Description

ORACLE_HOME Enables Perl DBI to connect to Oracle

TNS_ADMIN Tells Oracletool where to find your tnsnames.ora file
EXPIRATION Cookie expiration time (defaults to one year)
ORACLENAMES Uncomment if using Oracle*Names

DEBUG Sends debug information to a nominated log file

Oracletool | 121

Table 4-1. Main Oracletool initialization parameters (continued)

Parameter Description

LOGGING Similar to debug, but for standard logging information

L0G Full path of log file required by DEBUG and LOGGING
AUTO_REFRESH Determines screen refresh rate in seconds

LIMIT_SEARCH Limits various searches (to keep resource use down)
ENCRYPTION_STRING Used to encrypt passwords; should be made unguessable
ENCRYPTION_METHOD Determines whether IDEA or Blowfish is used in level 2 security

Preferences and privileges

Once you’ve connected to a database, you can change the Oracletool look and feel
by selecting one of the theme options from the Preferences menu. The following Ora-
cle user privileges are also required to run Oracletool’s selection reports:

Oracle7, Oracle8, OracleS8i
SELECT ANY TABLE

Oracle9i
SELECT ANY TABLE, SELECT ANY DICTIONARY

To obtain DBA reports, the user must also possess the DBA privilege. Once you're all
sorted out, welcome to Oracletool!

Enhanced security

You’ll notice that passwords are being stored inside cookies, which means you don’t
have to keep logging on. To protect these cookies, there are three levels of Oracletool
security, and the program figures out ahead of time which extra Perl security mod-
ules you have installed. It then chooses the security level accordingly:

Level 0
If you lack the security modules discussed as follows, you’ll be at this security
level. Passwords are stored in cookies, in plain text—for example:
mydb.sessionid system™~manager
Level 1
The username, password, and encryption string are MD5-encoded into a single
string. The default encryption string is stored within oracletool.ini:
ENCRYPTION_STRING = changeme
Obviously, you may wish to alter this string. We changed ours to drinkme, and
this turned our cookie password string into:

mydb.sessionid
c31zdGVt-bWFuYWd1lcg%3D%3D- FbMoQ1xyHjwXuKU3aTIL3g%3D%3D

The reason Oracletool did this was because two security modules, created by
Gisle Aas, come preinstalled automatically with ActivePerl:

122 | Chapter4: Perl Web Extensions

* Digest::MDS5
e MIME::Base64
You’ll have to install these manually with Unix. (See later for details.)

Level 2
This level uses the IDEA or Blowfish block ciphers (both use extremely secure
algorithms). Oracletool defaults to the IDEA algorithm within oracletool.ini:

ENCRYPTION_METHOD = idea

If you’d like to use Blowfish instead, change idea to blowfish in oracletool.ini.
You’ll need the following modules for level 2 security:

* Digest::MD5
* Crypt::IDEA or Crypt::Blowfish, both by Dave Paris
* Crypt::CBC, by Lincoln Stein

As of this writing, some of the Crypt-* modules mentioned previously, were not avail-
able under ActiveState; you should check out the current situation at:

http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/Packages
You can get the Unix packages via the three following addresses:

http://www.cpan.org/authors/id/ GAAS/
http://www.cpan.org/authors/id/D/DP/DPARIS/
http://www.cpan.org/authors/id/LDS/

You can also find out your current security level from the main Oracletool menu by
selecting the About option on the main menu

A w

iy Given a choice between Crypt::IDEA and Crypt::Blowfish, we recom-
.‘s‘ mend that you opt for the latter. Since around 1999, Version 1.01 of
T Qkbr Crypt:IDEA has had some build problems with Perl, particularly with

" Perl 5.6.1 on some flavors of Linux (though it’s possible that this been
resolved with later versions of either Perl or Crypt::IDEA). This prob-
lem occurred because Perl used to “pollute” the namespace of C-based
modules. The problem was fixed in Perl 5.6; however, some modules
had come to rely upon this “feature.”

Using Oracletool

We won’t provide a detailed description of Oracletool here because ample documen-
tation is available in your Oracletool download. Simply point your browser at the rel-
evant directory where you unpacked Oracletool, and view the following file:

file:///C|/MyOracletoolUnpackDirectoryloracletool-2.0/doc/index.htm

Oracletool | 123

We suggest that you wander through the different Oracletool DBA options and
check out the program’s many capabilities (one of them, the fragmentation monitor-
ing option, is shown in Figure 4-4).

Oracletool was designed to be as concise and straightforward as possible. (One way
it avoids “code bloat” is to limit itself to monitoring, rather than changing, its target
databases.) To this end, Oracletool requires Perl DBI and DBD::Oracle as the only
extra Perl modules beyond the standard module set for Perl 5.6.

The requirements code block for the 21,000+ line oracletool.pl file is simply:

3 mpdb: Dracletool v2.0 connected as SYSTEM - Netscape _[O]x]
Fle Edt View Go Communicator Help

B w7 Bookmarks i L [Utype=F RAMEPAGE | @7 what's Related n

SQL Worksheet|] Fragmentation map for datafile C:\ORAHOME\ORADATA\MYDB\RBS01.DBF B
Securiy File is 26,214,400 bytes (12800 blocks of 2048 bytes)

Controlfiles

Init parameters

Recent events

DB Admin

Monitoring
Change

& =0=| [Document: Dane

Figure 4-4. The Oracletool fragmentation feature
require 5.003;

use strict;

use CGI gqw(:standard); # CGI, File::Basename and FileHandle

use File::Basename; # all standard built-in Perl modules! :-)
use FileHandle;

if (! eval "require DBI") {
ErrorPage("It appears that the DBI module is not installed!");
}
Everything else is also contained within this single CGI script, except the initializa-
tion values held in oracletool.ini.

Not only does Oracletool currently offer a lot of features (for a summary of current
features, see Table 4-2), but its author is continually adding even more capabilities.
You can participate in its growth by emailing new ideas to Oracletool’s creator via
adam@oracletool.com.

Table 4-2. Major features of Oracletool 2.0

Feature Description

Schema list Drill-down screen used to examine each individual schema.

Session info Various session-based reports and the ability to view sessions.

Tablespaces Large tablespace report and access to tablespace allocations graph (see Figure 4-5).

124 | Chapter4: Perl Web Extensions

Download from Wow! eBook <www.wowebook.com>

Table 4-2. Major features of Oracletool 2.0 (continued)

Feature Description

Datafiles Datafiles report, plus access to a datafiles I/0 chart.

Redo / Archives Online redo log information, including archiving status.

Rollback segs Access to various reports on rollback segments and transactions.

Perf / memory Memory and SQL allocations, multithreaded server (MTS) use, and shared pool flushing.

Locks / contends Checks on object lock contention and session wait information.

Explain plan Online form to check SQL explain plans (Oracletool will install PLAN_TABLE for you automatically,
ifitis unavailable).

SQL Worksheet Ability to enter and execute multiple SQL statements, online. SELECT statements produce format-
ted reports, and DML is executed.

Security Reports on roles, profiles, auditing, and other security concerns.

Controlfiles Various control file reports, including a breakdown of record types.

Init parameters Report on all current INIT.ORA parameters, including descriptions.

Recent events Various instance reports including log switches, and startup times

Preferences Customization screens displayed for fonts and themes.

DB Admin Many different reports and options, including:

User administration

Session administration

Rollback segment administration
Generate table DDL

Invalid object administration
Parameter administration

Job Scheduler (DBMS_JOB)
Space report by user

Space report by tablespace / user
Datafile fragmentation report

Object extent report
Monitoring Oracletool database monitoring system.
Change connection Connection screen to other databases.
My Oracletool Ability to add your own scripts to the Oracletool SQL repository.

In the following sections, we’ll look at a few Oracletool features we especially like.

My Oracletool

The My Oracletool feature was recently added to Oracletool. Using this feature, you
can add your own SQL scripts, store them within a target repository, and execute
them later whenever you wish. One such script is shown in Figure 4-6.

Oracletool monitoring

Version 2.0 of Oracletool also added the ability to monitor databases by utilizing a
PL/SQL-based framework. Oracletool checks for common database problems, such

Oracletool | 125

3 mpdb: Oracletool v2.0 connected as SYSTEM - Netscape =
Fie Edit View Go Communicator Help
7w Bookmarks i Localion Ihtlp Alocalhost/egibinforacletool pldatabase=mydbiobject_type=FRAMEPAGE = @7 what's Related m
Schema list Refresh
Session info
Tablespace B; used |Byiesfiee |%Usedgraph |Pervent used|Pervent free
Tahlespaces
o o
R INDX 2,097,152 2 048] 2095104 | 0% 100%
Redo / Archives RBS 25214400 5p34048|20 550 352| 21% 75%
Rollback segs
SYSTEM 212,205 se8|211 p15744) szo z24| [EEGEGN 100% 0%
Perf/ memory
Tacks / contonds TEMP 10,485,760 2p48(10,483,712| | 0% 100%
Esplain plan TOOLS 4,194 3504] T3728 4,120,575' 2% IB%
SQL Worksheet
USERS 3145728 1128448 2017 z80|) &4%
Security = =
= == | |Documert: Done P

Figure 4-5. Oracletool’s tablespace allocation

#; (REL: Dacholool v2 () connected ss SYSTEM - Hetacaps

Add | Eait MyOracle tood SOL soripes

Sty wacne b

Descxption

e

Explain plan
[F0L Warkaseet]
Secwrity
[Comitis |

Bkt paramriers

Hrerat erenbs

Fawlerrsces

T wetbtel [Gt S Prcge 5 Yok Frges T Ouvelond | Charrels

Sebrema lind
Ty

Seript name: RollbackLocks

Ll

Figure 4-6. My Oracletool in action

as inadequate tablespace usage, resource contention, and so on. When these prob-
lems reach certain thresholds, a warning email is delivered to a configured pager’s
email address via a nominated email server. See Figure 4-7 for an example.

The way Oracletool is designed, the main server has certain PL/SQL procedures
installed on it, and the target clients have other procedures installed. This frame-
work is held together by database links. Because of this design, OS daemons are
unnecessary. You schedule the monitoring tasks either via Oracle’s built-in DBMS_
JOB package or via an OS cron script like this one:

#1/bin/sh

ORACLE_BASE=/u01/0racle
ORACLE_HOME=$ORACLE_BASE/8.1.7

TNS_ADMIN=$ORACLE HOME/network/admin

PATH=$PATH: $ORACLE_HOME/bin

126 | Chapter4: Perl Web Extensions

Figure 4-7. Setting up Oracletool monitoring

export ORACLE_BASE ORACLE_HOME TNS_ADMIN PATH

sqlplus -s ot_monitor/ot_monitor password@server <<EOF
exec ot monitor server.checkall;
EOF
The monitoring server must have a JServer release so that it is able to send emails via
the DBMS_SMTP package; the result is that you must be running at least Oracle8i;
note, however, that the clients need only be running Oracle8.

Karma

Sean Hull’s Karma program takes Oracle database monitoring a step further. Like
Oracletool, it is intended to help DBAs with their daily work. The program is espe-
cially helpful in automating the tracking of important, though tedious-to-collect
information—information that you may need to know, but be too busy to gather
personally. Karma’s comprehensive configuration capabilities let you select the par-
ticular features and database events to monitor, how often to monitor them, and
how strictly to monitor them. (See Figure 4-8 for a sample screen produced by
Karma.) You can also break up your many databases into groups, each with its own
monitoring criteria and thresholds. Karma’s goal is to help Oracle DBAs collect
numerous useful statistics automatically in the background. Karma offers the ability
to notify the DBA by email when database problems occur, and it provides a single
place to keep track of many different databases.

Because Karma collects a wider range of statistics than Oracletool’s monitoring fea-
tures do, and because it provides a full suite of online monitoring options, program
installation and configuration are slightly more involved. Unlike Oracletool, Karma
is not implemented as a CGI script. Instead, it runs a daemon, generating HTML
pages in a specified location.

Karma | 127

4 Metscape: Karma - Oracle Database Monitor
ile Edit Wiew Go Window

arks A/ Location: [attp: //localhostkarma-1. 0. 0/doc_root/

Oracle Monitor

Figure 4-8. The main Karma page indicating alarms

For complete information about Karma, go to:
http://hypno.iheavy.com/karma/

The following sections describe the installation on both Unix and Win32. In both
environments, note that you may also need several other modules, depending on
your requirements:

http://www.cpan.orglauthors/id/M/MA/MARKOV/
Graham Barr’s and Mark Overmeer’s MailTools.pm Perl module. This is needed
by Karma if you’ll be using the email notification facility.

http://www.cpan.org/authors/id/KJALB/
The CPAN home of Kenneth Albanowski’s TermReadKey.pm package; it’s nec-
essary for collecting operating system statistics under Unix.

http://www.cpan.org/authors/id/GBARR/
Graham Barr’s home CPAN directory containing some of Perl’s most influential
modules, including the libnet library required by MailTools.pm.

Installing Karma on Unix
We downloaded the following file from the Karma site provided earlier:
karma-1.0.0.tar.gz

For Unix, follow these instructions:

128 | Chapter4: Perl Web Extensions

. Unpack your Karma tarball under a suitable Apache ../htdocs directory:

$ cd /usr/local/apache/htdocs
$ gzip -d karma-1.0.0.tar.gz
$ tar xvf karma-1.0.0.tar

$ cd karma-1.0.0

. There are a variety of installation document files; the QUICKSTART document
is especially designed for those who want to just get on with it:

$ vi README INSTALL QUICKSTART
. When it’s ready, Karma uses the Makefile.PL configuration method:

$ perl Makefile.PL
$ make

. Check that the make test step produces output such as the following, before
installing:
$ make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/1ib -I/usr/local/lib/perl5/s.
6.1/1686-1inux -I/usr/local/lib/perl5/5.6.1 test.pl

ok 1
Now install:

$ make install
. Before you run Karma, you may want to set the KARMA_HOME environment
variable to ensure that the correct files are accessed by the daemon agents. You’ll
also need to set the Oracle environment:

$ export KARMA_HOME=/usr/local/apache/htdocs/karma-1.0.0
$ export ORACLE_HOME=/u01/app/oracle/product/8.1.5
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/1ib

Installing TermReadKey.pm

If you will later want to check the alert log file for each database via Karma, you need
to install the TermReadKey.pm module to keep passwords secret. It provides Perl
with various input controls for reading console input and allowing specialized input,
such as reading in passwords without echoing them back. Follow these steps:

1. Unpack the tarball from the CPAN web site provided earlier:

$ gzip -d TermReadKey-2.14.tar.gz$ tar xvf TermReadKey-2.14.tar
$ cd TermReadKey-2.14

2. The command-line input effects are demonstrated by the make test step:

$ perl Makefile.PL
$ make
$ make test

This is ReadMode 2. It's just like #1, but echo is turned off. Creat
for passwords.

You may enter some invisible text here:

You entered 'The Invisible Man'.

Karma | 129

3. If the tests work OK, go for the install:
$ make install

Installing MailTools.pm

If you’re thinking of using Karma’s automatic email options, you’ll need to install
MailTools.pm. To do this, you also need Graham Barr’s libnet library. We're after
two Perl modules contained within this bundle, Net::SMTP and Net::Domain. The
full libnet module collection is summarized in Table 4-3.

Table 4-3. Modules available within Perl’s libnet library

Perl libnet module Description

Net::FTP File Transfer Protocol

Net::SMTP Simple Mail Transfer Protocol
Net::Time Daytime Protocol

Net::NNTP Network News Transfer Protocol
Net::POP3 Post Office Protocol 3

Net::SNPP Simple Network Pager Protocol

You can get hold of the latest bundle, such as libnet-1.0704.tar.gz, from:
http://www.cpan.org/authors/id/ GBARR/

Once you’ve unpacked the tarball, the perl Makefile.PL step does more configura-
tion than most Perl module construction kits, and the test step also requires access to
a list of Internet hosts. Be prepared to answer plenty of questions, especially during
the installation stage. You can, however, skip these tests if you wish:

$ perl Makefile.PL

$ make

$ make test
$ make install

We’re now ready for MailTools.pm proper:

$ gzip -d MailTools-1.40.tar.gz
$ tar xvf MailTools-1.40.tar

$ cd MailTools-1.40

$ perl Makefile.PL

$ make

$ make test

$ make install

Configuring Karma

To test Karma and create errors (which we’re hoping the program will email us
about), we created a ridiculously small TEMP temporary tablespace:

130 | Chapter4: Perl Web Extensions

CREATE TABLESPACE TEMP DATAFILE
'/u04/templorcl.ora’ SIZE 10240 REUSE AUTOEXTEND OFF
DEFAULT STORAGE

(
INITIAL 4096
NEXT 2048
PCTINCREASE 0

)

TEMPORARY LOGGING ;

Because we’re intending to use OS monitoring, we now need our own special user
located directly within the target database, with a SELECT ANY TABLE privilege.
We also need a small set of statistical collection tables. We can accomplish this by
running two scripts provided by Karma, in the ../sql directory:

karma_user.sql
karma_objs.sql

Running these two SQL scripts produces the following output, including the
expected truncation error:

SOL> @karma_user
Enter value for karma_password: seadevil
User created.
Grant succeeded.
Grant succeeded.
SQL> connect karma/seadevil
Connected.
SOL> @karma_objs
Creating karma_os_stats table...
Table created.
Creating karma_alertlog_errors table...
Table created.
TRUNCATE TABLE karma_agent
%

ERROR at line 1:

ORA-00942: table or view does not exist
Creating karma_agent table...

Table created.

1 row created.

SQL>

Follow these steps:

1. As the nominated Oracle user, we can now get the Karma OS monitor agent
going. The following script prompted us for the karma user password, seadevil,
which then kicked off a daemonized karmagentd. This woke up every 300 con-
figured seconds to check the alert log file specified:

$ karmagentd -u karma -t ORCL -a $ORACLE_HOME/rdbms/log/alert_orcl.log

2. The statistics collected by karmagentd are then made accessible to the Web by
the karmad program itself. We’ll be kicking this off shortly as the root user. But
first, we need to make sure that our configuration is right. We do this by altering

Karma | 131

the karma.conf file. The following example shows our karma.conf settings. These
will check various database states and report back to us if warning or alert
thresholds are crossed. Notice the notify_email tag, which tells Karma to whom
to send emails. Additional help is available in the installation files.

karma:Marlow:ORCL:karma:seadevil
Tepqueue

Teperror
Marlow:notify_email:full:oracle
notify_alert:10:fragmentation,a,b,c
notify_warning:15:hitratios,a,b,c
Marlow:refresh:5:75
Marlow:redolog:1:30:15
Marlow:rollback:1:0:0
Marlow:tablespace:1:85:95
Marlow:slowsql:1:100:200
Marlow:alertlog:1:60:86400
Marlow:hitratios:1:95:70
Marlow:fragmentation:1:0:0
Marlow:extents:1:2:1
Marlow:latch:1:0:0
Marlow:mts:1:50:75
Marlow:0s:1:5:10

warn_blink:true

alert blink:true

pref group_sections:true
doc_root:/usr/local/apache/htdocs/karma-1.0.0/doc_root

3. We can then start up the main karmad program:

$ karmad -c $KARMA_HOME/karma.conf

4. Two mail messages are now generated automatically by the Karma system and
sent to the oracle OS user. These allow us to focus on the requisite errors via the
web pages that show these warnings:

Message 1:

From root Sun Sep 2 21:00:16 2001

Return-Path: <root>

Received: (from root@localhost)
by localhost.localdomain (8.8.7/8.8.7) id VAA01389;
Sun, 2 Sep 2001 21:00:15 +0100

Date: Sun, 2 Sep 2001 21:00:15 +0100

From: root <root@localhost.localdomain>

Message-Id: <200109022000.VAA01389@localhost.localdomain>

Subject: ORCL:ALRT:fragmentation,hitratios,

To: oracle@localhost.localdomain

Status: RO

ORCL database **ALERT** - The following services have problems:
fragmentation
hitratios

&

Message 2:

From root Sun Sep 2 21:00:16 2001

Return-Path: <root>

132

Chapter 4: Perl Web Extensions

Received: (from root@localhost)
by localhost.localdomain (8.8.7/8.8.7) id VAA01389;
Sun, 2 Sep 2001 21:00:15 +0100

Date: Sun, 2 Sep 2001 21:00:15 +0100

From: root <root@localhost.localdomain>

Message-Id: <200109022000.VAA01389@localhost.localdomain>

Subject: ORCL:WARNING:alertlog, redolog

To: oracle@localhost.localdomain

Status: RO

ORCL database WARNING - The following services have problems:
alertlog
redolog

&

Checking on this later via the web browser, we’ll also be able to find out something
about our TEMP tablespace, with the information generated from our alert log file
(see Figure 4-9).

— — —

|4 MNetscape: Kamma - Oracle Database Monitor
File Edit Wiew Go Window

7 Bookmarks & Location: fattp: //localhost/karma-1. 0. 0/doc_root/

Alertlog Errors Info

Figure 4-9. Karma reporting on alert log errors

Installing Karma on Win32

At the time this book went to press, the full daemon karmagentd functionality of
Karma had yet to be ported to a Win32 service. Even now, though, you can still do a
lot with karmad:

1. Unzip the karma-1.0.0.tar.gz file into an unpack directory under Apache’s
.\htdocs directory, such as:

C:\Program Files\Apache Group\Apache\htdocs\karma-1.0.0

Karma | 133

2. You then need to check out the following set of files:

README
README.WIN32
INSTALL
QUICKSTART

3. We'll assume here that you don’t have the compilation facilities on your Win32
box that are required for an automatic installation of Karma. We’ll therefore
explain how to perform a manual installation.

4. We unpack the karmad program from its wrapper:

$ cd bin
$ perl karmad.PL

This should leave us with the Perl program, karmad.

As with Unix, you may wish to create a Karma user within the target database.
The ../sql/karma.sql script has been provided for this purpose. We’re now ready
to configure Karma for database action.

Configuring Karma on Win32

The karma.conf file itself contains plenty of help on how to configure Karma, though
fortunately most of the configuration is fairly intuitive. The main configuration
parameters we chose were:

karma:Henley-On-Thames:ORCL : karma:dalek
Tepqueue

reperror

Henley-On-Thames:refresh:5:75
Henley-On-Thames:redolog:1:30:15
Henley-On-Thames:rollback:1:0:0
Henley-On-Thames:tablespace:1:85:95
Henley-On-Thames:slowsql:1:100:200
Henley-On-Thames:alertlog:1:60:86400
Henley-On-Thames:hitratios:1:95:70
Henley-On-Thames:fragmentation:1:0:0
Henley-On-Thames:extents:1:2:1
Henley-On-Thames:latch:1:0:0
Henley-On-Thames:mts:1:50:75
Henley-On-Thames:0s:1:5:10
warn_blink:false

alert_blink:false
pref_group_sections:true

#doc_root: Commented out to use default Present Working Directory

The database connection line at the top of the list is perhaps the most important
thing to get right. We also decided to default the ..\doc_root to the present working
directory.

134 | Chapter4: Perl Web Extensions

Running Karma on Win32

To get the basic karmad program running, change to the main Karma home direc-
tory, make sure your target Oracle database is accessible via its listener, and then run
the main Karma monitor program:

C:\> cd C:\Program Files\Apache Group\Apache\htdocs\karma-1.0.0

C:\> perl bin\karmad -c karma.conf
The daemonic karmad monitor periodically produces a series of HTML pages, which
you can access via a web server (you can also access them directly with a local
browser if you’d prefer). We liked the idea of the first option, so we started up
Apache and then visited the following page:

http://localhost/karma-1.0.0/doc_root/index.html

You can see the first result in Figure 4-10.

3¢ Kamma - Oracle Database Monitor - Netscape

Fle Edit View Go Communisator Help

7§ Bookmarks) Location [hitp:/7iocalhost/kaman1 0. 0/doc_oot/indes himl =] @ Whats Felaled |

arma Oracle Monitor

Henley-On-Thi

FER=T ~ |Document Dans

Figure 4-10. The main Karma screen on Win32

Extra Perl modules for Win32

If you do want to push Karma to get mail notification and OS monitoring, you’ll
need to get hold of two more ActivePerl packages. Connect to the Internet and run
ActivePerl’s PPM program to install the MailTools package. You may also want to
install TermReadKey in anticipation of the time that the daemon-based karmagentd
will be ported to a service under Win32:

C:\> ppm

PPM> install MailTools

PPM> install TermReadKey
PPM> exit

Karma | 135

CHAPTER 5

Embedding Perl into Apache
with mod_perl

Although the Perl CGI methodology we discussed in Chapter 4, , is an easy and pop-
ular approach to building web-based applications, there have historically been some
performance problems with this approach. Whenever a Perl CGI script is run, the
rather sizeable Perl interpreter must first be brought into memory before it can inter-
pret and execute your program. Unfortunately, that can be a very slow process. Fans
of Java servlets have pointed to this performance issue in advocating that their tech-
nology be used instead of Perl. But Perl has not taken this challenge from Java evan-
gelists lying down! Apache’s mod_perl module provides an interface between Apache
and Perl that allows Perl code to be cached in the web server’s memory space. The
effect is a substantial improvement in performance over standard Perl CGI applica-
tions.

How much is substantial? As with so many things, the only real benchmarks are
either for highly oversimplified cases (with no real application) or for highly special-
ized cases (with little extensibility). For most real-world programs, however, we can
tell you that mod_perl provides a raw speed increase of approximately 40 to 60%.
But this is only part of the story. The really significant gain is the vastly increased
scalability provided through mod_perl because the interpreter is in memory and can
be shared between processes.

The mod_perl module binds the Perl interpreter directly into the heart of the Apache
server, thus avoiding the overhead of loading the interpreter into memory for each
script executed on the server. As well as doing memory caching, this module also
allows you to extend the Apache server in the Perl language itself. With mod_perl in
place, the entire server-side Apache API becomes available to Perl programs. In this
chapter, we’ll describe mod_perl, as well as several related Apache modules:

mod_perl
The module that provides the interface between Apache and Perl.
Apache::Registry
An Apache module that is provided as a standard part of the mod_perl down-
load. It greatly improves the performance of your CGI Perl scripts by evaluating

136

your scripts into server subroutines that remain resident in the Apache server’s
memory.

Apache::DBI
This Apache module pools all of your database connections into memory. By
providing persistent connections in this way, Apache::DBI greatly improves the
performance of your Perl CGI scripts. This is a supplementary Apache module
that you must obtain from CPAN.

Apache::OWA
To illustrate the effectiveness of mod_perl, we’ll also show how it’s used with the
Apache::OWA Perl Apache module, which connects mod_perl to the PL/SQL
Web Toolkit.

mod_perl

First created by Doug MacEachern in 1996, mod_perl is the main flower of the
Apache Perl integration project. It brings the full power of the Perl language into the
heart of the Apache HTTP server by linking the Perl runtime library into Apache’s
modular C language API. This is like being able to turn your Jeep into a jet-powered
helicopter for the weekend, and then back again on Monday, at the flick of a switch.”

Once Apache is up and running with mod_perl, the Perl interpreter engine is up and
running too, conveniently preloaded into constant memory. This means there’s no
restart overhead each time you run a Perl CGI script. The speed improvement
brought to any Perl-based web site by the addition of mod_perl, and the scalability
implications, are enormous. Important Apache mod_perl links include:

http://perl.apache.org:
Apache Perl integration project home page.

http://www.modperl.com:
Home page of Lincoln Stein and Doug MacEachern’s helpful book, Writing
Apache Modules with Perl and C (O’Reilly & Associates, 1999).1

http://www.refcards.com/about/mod_perl.html:
Andrew Ford’s online reference cards for mod_perl, also supported by his book,
the mod_perl Pocket Reference (O’Reilly & Associates, 2000).*

* The same trick is repeated, later in this book, in Chapter 8, Embedding Perl into PL/SQL, when we embed
Perl into a PL/SQL C library.

T The official O’Reilly page is http://www.oreilly.com/catalog/wrapmod.
T http://'www.oreilly.com/catalog/modperlpr

mod_perl | 137

http://theoryx5.uwinnipeg.ca/guide
A good entry point to the University of Winnipeg’s excellent pages on mod_perl
and CGI scripting. This guide is particularly helpful in explaining the complex
issue of porting CGI scripts to Apache::Registry and mod_perl.

http://mathforum.org/epigone/modperl
Ken William’s superb mod_perl topics archive.

Installing mod__perl on Unix

Before you can test your mod_perl installation, you must make sure that the Perl
LWP.pm module is available. Developed by Gisle Aas, this module provides a
“Library for WWW access in Perl”; it consists of a wide range of related Perl mod-
ules designed to help simplify Perl Internet client connections. Not only is this mod-
ule useful for our later mod_perl test, it’s invaluable for many Perl Internet
requirements. We’ll come back to LWP.pm again and again as we discuss Perl and
the Web in the next few chapters.

LWP-Library for WWW access in Perl

The main focus of LWP is to provide classes and functions allowing the creation of
Internet Perl clients. The library also contains modules for more general use, even
making it possible to create simple HTTP servers.

Fortunately for us, Gisle Aas has collated all of the related LWP modules into a sin-
gle download, libwww-perl-5.64.tar.gz (or its latest derivative). However, LWP itself
relies upon several other related modules, as detailed in the appropriate installation
order, in Table 5-1. If you want to install these by hand, download the latest tarballs
and process them in the usual perl Makefile.PL manner. Alternatively, we’ll accept a
little sneaky automation here. There is a very handy command you can run, which
should load everything required for LWP, directly over the Internet, in just one line:

$ perl -MCPAN -e 'install Bundle::LWP'

An even sneakier routine loads the whole of mod_perl and many of its related
modules:

$ perl -MCPAN -e 'install Bundle::Apache'

This will load every module you require, including LWP. However, we’ll still go
through the manual route; this way, we can describe all the bumps in the road and
configure everything properly. The CPAN module is a great tool, but it can some-
times be unreliable, as we discussed in Chapter 2, Installing Perl, particularly when
CPAN modules are not preconfigured by their authors in exactly the way that CPAN
is expecting (many Internet modules fall into this category).

138 | Chapter5: Embedding Perl into Apache with mod_perl

Table 5-1. Modules required to install LWP

Perl module Description/download page

Digest:MD5 Perl interface to the MD5 message digest algorithma
http://www.cpan.org/authors/id/GAAS

HTML::Parser HTML parser class module for Perl

http://www.cpan.org/authors/id/GAAS
Libnet (e.g., libnet-1.0704.tar.gz) Many related Perl modules
http://www.cpan.org/authors/id/GBARR
MIME::Base64 Module for encoding and decoding of Base64 strings
http://www.cpan.org/authors/id/GAAS

URI Uniform Resource Identifiers module
http://www.cpan.org/authors/id/GAAS

HTML::Tagset Data tables handler useful for parsing HTML
http://www.cpan.org/authors/id/S/SB/SBURKE

Lwp The complete library for WWW access in Perl

(e.g., libwww-perl-5.64.tar.gz) http://www.cpan.org/authors/id/GAAS

aTo learn more about Ronald L. Rivest's MD5 message digest algorithm, check out: http://theory.lcs.mit.edu/~rivest/homepage.html

Two other CPAN packages that people often use alongside LWP include:

Storable
Persistent data storage used to make HTTP less stateless.

http://www.cpan.org/authors/id/A/AM/AMS

HTML-SimpleParse
A bare bones HTML parser.

http://www.cpan.org/authors/id/KWILLIAMS

SSL—Secure Sockets Layer

If you need enhanced security at your site, you may also want to use the popular
Secure Sockets Layer (SSL) program. Before you install LWP (or re-install it), be sure
to check out the programs and Perl extensions listed in Table 5-2.

Table 5-2. Optional SSL modules for use with LWP

Perl module or C program Description/download page

OpenSSL Open Secure Sockets Layer program
http://www.openssl.org

(rypt::SSLeaye OpenSSL Perl glue providing https support to LWP
http://www.cpan.org/authors/id/C/CH/CHAMAS

Net::SSLeay Perl extension for using OpenSSL and https sockets

http://www.cpan.org/authors/id/SAMPO

Download from Wow! eBook <www.wowebook.com>

Table 5-2. Optional SSL modules for use with LWP (continued)

Perl module or C program Description/download page
10::Socket::SSL SSL socket interface class

http://www.cpan.org/authors/id/A/AS/ASPA

asSLeay is named after the original “Secure Sockets Layer work by Eric A. Young.”

Installing mod_perl

Before we begin our installation of mod_perl, we recommend that for security rea-
sons you shut down all your Apache processes, and then save the entire Apache root
structure, perhaps in a tarball, before continuing. We can always revert back to this
saved structure later on, should mod_perl prove problematic.

To do the actual mod_perl installation on Unix, first download the latest and great-
est goods by visiting Doug MacEachern’s CPAN page:

http://www.cpan.org/authors/id/DOUGM

Then follow these steps:

1. Begin with the time-honored routine:

$ gzip -d mod_perl-1.26.tar.gz
$ tar xvf mod perl-1.26.tar

$ cd mod_perl-1.26

$ vi README INSTALL

2. There exists a bewildering array of options you can use to build mod_perl. You’ll

find all of them detailed in the INSTALL file. We’re just going to go for the sim-
ple install of compiling every option available, with the clever EVERYTHING=1
switch:

$ perl Makefile.PL EVERYTHING=1 APACHE_PREFIX=/usr/local/apache

. The first thing Makefile.PL will try to do is find a source directory for Apache

within the local vicinity. This should be available from the installation we per-
formed in the previous chapter:

Configure mod perl with ../apache 1.3.24/src ? [y]y
If a local Apache directory is unavailable, you’ll be asked to supply one. Answer
accordingly:

Please tell me where I can find your apache src [] <your apache source>
You’ll then be asked if you want to build the httpd executable in the Apache
source directory you nominated. We said yes:

Shall I build httpd in ../apache_1.3.24/src for you? [y] y
(On some Unix systems, including some Solaris flavors, it may be best to always
use fully qualified path names, because of some problems with include paths. If
mod_perl fails to build as expected, thoroughly check all the documentation that

140

| Chapter5: Embedding Perl into Apache with mod_perl

comes with mod_perl as well as the online resources mentioned at the start of
this chapter, particularly the topics archive.)
. Lots of information will then appear, but assuming no problems, we can go
ahead with the compilation:

$ make
. The make test step is highly recommended if you've loaded LWP. In the fol-
lowing example, we include only a few lines of typical output, but much more
than this should appear. Expect some tests to be skipped depending on your
platform:

$ make test
internal/table...... ok
internal/taint...... ok

All tests successful, 6 tests skipped.
Files=34, Tests=390, 23 wallclock secs
(18.68 cusr + 1.75 csys = 20.43 CPU)
If any tests should fail, re-run make test, but this time in verbose mode:
$ make test TEST_VERBOSE=1

. Before installing, go to /usr/local/apache/bin directory and save the old httpd file
(just in case):
$ cd /usr/local/apache/bin
$ mv httpd httpd.old
. We can now do the install:
$ make install

. If you specified it earlier, you should also find a new httpd living under the
Apache source directory, which you may have supplied on the Makefile.PL step.
This will be approximately four times the size of your old httpd. Copy it to the
main Apache executables’ bin:

$ cd ../apache_1.3.24/src

$ cp httpd /usr/local/apache/bin

$ cd /usr/local/apache/bin

$ 1s -la httpd*

-IWXT-XT-X 1 root Toot 1497133 Apr 1 15:47 httpd

-TWXT-XI-X 1 root root 410220 Apr 1 15:45 httpd.old
. As a sanity check, to ensure that we've successfully loaded mod_perl into the
httpd binary, try the following command:

$./httpd -1

Compiled-in modules:

mod_auth.c
mod_setenvif.c
mod_perl.c # Bingo!!! :-)

mod_perl | 141

(If you didn’t build Apache and mod_perl yourself, there is a chance that mod_
perl will be dynamically loaded (following the DSO build pattern). In this case, it
won’t show up on httpd -1, which shows only statically compiled-in modules.)

Specifying the mod_perl Apache library

After a refreshing rest, we can begin again by writing our first mod_perl server script
module, HelloApache.pm. (We’ll deal with the conversion of ordinary CGI scripts
later.) First of all, we need to establish where our main mod_perl Apache library will
be. We suggest that you create a ../lib/perl/Apache directory:

$ cd /usr/local/apache

$ mkdir -p lib/perl/Apache
We now have two options for telling mod_perl where this library will be when
Apache starts running. The first is to add the following line somewhere near the top
of our httpd.conf configuration file:

PerlSetEnv PERL5LIB /usr/local/apache/lib/perl

However, because this approach adds a little overhead to each HTTP request, we
recommend the second option instead. Go to your conf directory and edit a new Perl

file:

$ cd /usr/local/apache/conf
$ vi startup.pl
$ chmod 755 startup.pl

Create the Perl script shown in Example 5-1 as your superuser (to ensure later secu-
rity). Change directives, where appropriate, such as the location of the perl program
in the shebang line (notice that we’ve commented out Apache::DBI, which we’ll be
covering later):

Example 5-1. startup.pl—Apache mod_perl initialization script

#!/usr/bin/perl
Set up the include path to get our new lib/perl directory
BEGIN {

use Apache();

use lib Apache->server root relative('lib/perl’);

}
Insert the most required modules

use Apache::Registry();
use Apache::Constants();
#use Apache::DBI(); # We'll get to this later! :-)
use LWP();

use CGI qw(-compile :all);

use CGI::Carp();

1; # Must finish with a true value

142 | Chapter5: Embedding Perl into Apache with mod_per

On httpd startup, the preceding Perl script will be run and will therefore load every-
thing important directly into memory (use startup.pl to add other modules later on).
It is run by adding the following lines to httpd.conf:

PerlRequire conf/startup.pl
PerlFreshRestart On
N
PerlFreshRestart On means that on every hit to Apache, its entire col-
:‘,“ lection of compiled modules is dumped and reloaded. PerlFreshRestart
* 9ké* Off means that modules are only loaded once, when the Apache child
" process fires up, for added performance. Having PerlFreshRestart On
is a major performance cost but is pretty much essential while we’re in
development. Developing with PerlFreshRestart Off is a headache,
because if you change a module and reload the page, you can’t be sure
whether you have the new modified version of your module, or some
older cached copy that an Apache child still has hanging about.

Here’s the bottom line: use PerlFreshRestart On for development, Off
for production.

Now we can restart Apache, this time with the added zest of mod_perl:

$ /usr/local/apache/bin/apachectl restart
/usr/local/apache/bin/apachectl start: httpd started

This means we can also write our first new Apache module, to directly access the
internal workings of the httpd server.

$ cd /usr/local/apache/1ib/perl/Apache
$ vi HelloApache.pm

Now create the test package, as in Example 5-2:

Example 5-2. The HelloApache.pm module
package Apache: :HelloApache;

use strict;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;
$r->content_type('text/html");
$r->send_http_header;
my $host = $r->get remote host;
$r->print(<<END);
<HTML><HEAD><TITLE>HelloApache</TITLE></HEAD>
<BODY><CENTER>
<H1>Hello $host</H1>
<H2>Okay, perhaps we should have said "Hello World!" but nobody
expects Perl Sith Lords to do the expected! :-)
<H2>
</CENTER></BODY></HTML>
END

mod_perl | 143

Example 5-2. The HelloApache.pm module (continued)

return OK;

}

1; # Must finish with a true value
Because this is a real live server upgrade, we need to tell httpd when to access this
handler process. Again, edit httpd.conf:

<Location /hello/apache>
SetHandler perl-script
PerlHandler Apache::HelloApache
</Location>

Now restart Apache and point your browser to http://localhost/hello/apache:

$ /usr/local/apache/bin/apachectl restart
/usr/local/apache/bin/apachectl restart: httpd restarted

Ladies and Gentlemen, check out Figure 5-1. The mod_perl has landed.

SR T ERCRE |
Location Edit View Go Bookmarks Tools Seffings Window Help ”
£ Sy Ehe E i 5

e M HEO NBHG AR &

E¥ Location | £ hip:#localhosthellofapache ~|

ﬂsus&v
Hello 127.0.0.1
Okay, perhaps we should have said "Hello World!” but nobody expects Perl Sith Lords to do the expected! :-)

Figure 5-1. Our first Apache Perl module in sparkling form

Now, you may acknowledge that this is all very nice and agree that mod_perl works
much more efficiently than the plain Perl CGI alternative. But you may also have 200
debugged Perl CGI scripts, all of which work brilliantly from a functional point of
view, and you may have very little free time available to spend converting these
scripts to Apache server modules. So even though your scripts are eating up too
much CPU (and management is thinking of Java servlets), you probably have little
inclination to plunge into a major conversion effort. What can you do? Read on.

Apache Perl Modules

Because you’ve embedded the Perl interpreter into the heart of the Apache server, the
entire Apache server-side API is available to Perl programmers. The two modules
listed here will provide you with the most bang for the buck in terms of managing
your current collections of DBA CGI scripts:

Apache::Registry
Fortunately, we can avoid rewriting all of our CGI scripts into Apache server
functions like HelloApache. Like King Arthur’s cavalry, Apache::Registry comes
riding through the mist to our rescue. With Apache::Registry, we get most of the

144 | Chapter5: Embedding Perl into Apache with mod_per

benefits of mod_perl without having to change a single line of our current CGI
scripts. We can then eventually choose to port these over to the new modular
style in our own good time.
Apache::DBI

Using traditional Perl CGI scripts eats up memory, but there is another major
cost as well, especially in conjunction with Perl DBI. That is the continuous cre-
ation stream of expensive database connections. The solution can be found in
the mysterious connection pool of Apache::DBI.

We'll look at these two key modules in the following sections. All of the popular
Apache mod_perl packages are summarized in Table 5-3.

Table 5-3. Main Apache mod_perl modules

mod_per/ module
Apache::Registry
Apache::Status
Apache::Embper
Apache::SS|
Apache::DBI
Apache::Gateway
Apache::GzipChain
Apache::Filter
Apache::Sandwich
Apache::TransLDAP
Apache::ASP
Apache::AuthenDBI
Apache::PHLogin
Apache::DBILogger
Apache::Session
Apache::Throttle

Description

Enhances the running of unaltered CGI scripts
Embedded interpreter providing runtime status
Embeds Perl within HTML

Server-side includes, implemented in Perl
Transparently maintains persistent DBI connections
Implements an HTTP/1.1 gateway

Compresses web output on the fly

Filters document and script outputs

Automatically generates page headers and footers
Translates URIs via LDAP lookups?

Implements a port of Active Server Pages to Perlb
Authenticates against a database via DBI
Authenticates against a PH database with the Net::PH modulec
Logs requests to a database via Perl DBI

Provides persistent session management facilities

Content negotiation based on connection speed

aURI stands for Uniform Resource |dentifiers (see http://www.ics.uci.edu/pub/ietf/uri/ for more on related Internet definitions).
LDAP stands for Lightweight Directory Access Protocol (see http://www.openldap.org/ for the OpenLDAP project).

bCheck out http://www.nodeworks.com/asp/ for more details.

The Ph (Phonebook) Nameserver is a database widely used as an online phonebook server for public organizations. See http://
www-dev.cso.uiuc.edu/ph/ for more details.

Apache::Registry

To take advantage of the performance advantages of mod_perl, you normally must
rewrite your Perl CGI scripts in the form of server subroutines. Apache::Registry,
which comes automatically with mod_perl, helps avoid this overhead.

mod_perl | 145

As we mentioned, you may already have a large number of working scripts that you
use in performing Oracle database administration. There is nothing really wrong
with them; the only problem is the overhead of their full execution cycle every time
they’re requested. This makes them processor-intensive (i.e., slow). You’d rather
avoid rewriting them all as mod_perl scripts, but you would like to make them run
faster—this is where Apache::Registry comes in. It takes CGI script calls, in the form
of http://lwww.myhost.com/cgi-bin/cgi-script.pl, and evaluates them into server sub-
routines, thereby turning plain old scripts into much quicker mod_perl objects. These
server subroutines remain resident in the Apache server’s memory. You will gener-
ally find that using Apache::Registry gives you a massive power enhancement.

A w
y

You will need to check the mod_perl and Apache::Registry documenta-
tion, as this shortcut makes certain assumptions about your CGI cod-
4+ ing standards. Scripts that you have coded in a quick-and-dirty way
may end up failing the evaluation performed by Apache::Registry."

By far the most common problem is using uninitialized “my” vari-
ables. What Apache::Registry really does is to grab the meat of a script
and put it into a handler subroutine, which may fail to recognize
uninitialized lexical variables. (See Appendix A, The Essential Guide to
Perl, for a discussion of “my” variables.) Therefore, we need to hard-
initialize all of our variables (e.g., specify my $foo = 0; instead of just
my $fo0;), to avoid the most common trap. Check out the following
for much more detail:http://theoryx5.uwinnipeg.ca/guide/.

Note that each child process must compile at least once, so early requests may seem
slow, but each subsequent request will be dealt with in Apache server memory and
will seem very fast indeed. You will particularly notice this effect with large scripts or
those with lots of module calls.

Follow these steps to use Apache::Registry:

1. We need to add a few more lines to our httpd.conf file:

Alias /perl /usr/local/apache/perl
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
PerlSendHeader On
Options +ExecCGI
</Location>

2. Now create a corresponding ../perl directory on the web server, into which we
move our chosen CGI scripts (obviously, you may simply wish to point the /perl
alias, as above, directly towards your current CGI directory):

$ cd /usr/local/apache
$ mkdir perl

* Check out these pages for more information: http://perl.apache.org/ and http://perl.apache.org/dist/cgi_to_
mod_perl.html.

146 | Chapter5: Embedding Perlinto Apache with mod_perl

We'll use the code in Example 5-3 to demonstrate how Apache::Registry works.

Notice that we can use all of the typical CGI environmental variables, such as
REMOTE_ADDR.

Example 5-3. The HelloInquisition.pl program
#!/usr/bin/perl

use strict;
print "Content-Type: text/html\n\n";

print <<END;
<HTML><HEAD><TITLE>HelloInquistion</TITLE></HEAD>
<BODY><CENTER>

<H1>Hello $ENV{REMOTE_ADDR}, are you comfortable? 8-)</H1>
<H2>Nobody ever expects the HelloInquisition.pl Script!</H2>
</CENTER></BODY></HTML>

END

Make the script executable and restart Apache to pick up the httpd.conf change:

$ cd /usr/local/apache/perl

$ chmod 755 *.pl

$ /usr/local/apache/bin/apachectl restart
/usr/local/apache/bin/apachectl restart: httpd restarted

You can see the Perl script output in Figure 5-2.

=T e TR
Location Edit View Go Bookmarks Tools Settings Window Help ”
2 e BO HBEG «HAR &
> Location [& hitp-#localhost/perHellolnguisition.pl -|
@ms&v

Hello 127.0.0.1, are you comfortable? 8-)

Nobody ever expects the Hellolnquisition.pl Script!

Figure 5-2. Apache::Registry linking CGI to mod_perl

Use of the Apache::Registry module helps overcome the performance problem that
occurs when the Perl interpreter has to be re-executed every time a Perl script is
called. But there is also another source of performance problems with CGI scripts
more closely linked to database usage. We’ll discuss that in the next section.

Apache::DBI

Each time you run a Perl CGI script that accesses a database, that script opens a new
connection to the Oracle database at the beginning of the script, and then has to
close it again at the end. This happens every single time you run the script, no mat-
ter how many thousands of people an hour are browsing the target page. This login

mod_perl | 147

process has a substantial overhead associated with it. It creates another performance
issue for CGI scripts, one that even Apache::Registry can’t overcome: even if the
script is always in memory, it still has to open and close database connections.

Edmund Mergl has provided an excellent solution. His Apache::DBI module is an
extension to Apache that’s written in Perl (and thus requires the presence of mod_
perl). Once you load Apache::DBI, it pools, or caches, all of the required database
connections into memory, lending them out the same way that ConnectionPool
classes do for Java. Whenever this module detects that a CGI script is opening or
closing a database connection, it simply steps in and takes over from DBI, handing
out and collecting its pooled Oracle connections as necessary, closing and opening
them independently of the CGI scripts in current operation. These cached connec-
tions are known as persistent connections because the connection to the database is
kept persistent between sessions. Apache::DBI does its work entirely in the back-
ground, so you’ll be aware only that your web site has become much faster and far
more scalable—even more important, your database is doing less work!

Unlike Apache::Registry, which comes preloaded with mod_perl, Apache::DBI is a
supplementary module available from CPAN." You can obtain it from:

http://'www.cpan.org/authors/id/MERGL
Follow these steps:

1. Simply install Apache::DBI the same way you’d install any other regular Perl
module (notice that there is no make test step):

$ gzip -d ApacheDBI-0.88.tar.gz
$ tar xvf ApacheDBI-0.88.tar

$ cd ApacheDBI-0.88

$ vi README

$ perl Makefile.PL

$ make

$ make install

2. Revisit startup.pl script and uncomment the earlier call to Apache::DBI:
$ cd /usr/local/apache/conf
$ vi startup.pl
#!/usr/bin/perl
use Apache::DBI(); # Uncomment this non-standard Perl Apache module! 8)
1;

Alternatively, add the following line to httpd.conf:

PerlModule Apache::DBI

* The Apache module Apache::AuthDBI also comes with Apache::DBI, giving you two excellent modules for
the price of downloading just one.

148 | Chapter5: Embedding Perlinto Apache with mod_perl

3. Apache::DBI transparently takes over the following DBI calls within scripts:
DBI->connect
DBI->disconnect
4. By taking over DBI->connect statements, to prevent them from connecting
directly to a database each time, Apache::DBI lends scripts a preprepared data-
base connection. It creates and deletes these connections, as necessary, in the
background to maintain a pool of replacements. It also replaces the DBI->
disconnect statement with a do-nothing statement, as follows:

sub disconnect {
my $prefix = "$$ Apache::DBI
print STDERR "$prefix disconnect (overloaded) \n'
if $Apache::DBI::DEBUG > 1;

1;
|5

Simply move your DBI web scripts to the target ../perl area to gain its benefit.

Apache and ORACLE_HOME

Apache generally needs to know where your ORACLE_HOME is in order to get
DBD::Oracle to work correctly. The easiest way of specifying any environment vari-
able is to have a line such as the following in httpd.conf:

PerlSetEnv ORACLE HOME /opt/oracle/product/9.0.1

(We use PerlSetEnv, rather than Apache’s usual SetEnv, because it is guaranteed to
take effect before all of the mod_perl and Apache handlers run; their Perl additions
may later require values such as ORACLE_HOME.)

With persistent database connections now on board, let’s give it a whirl. Try out the
CGI script in Example 5-4. Notice that there’s no explicit use of Apache::DBI within
the script. It has been called off the bench in startup.pl, and mod_perl is holding it in
memory for us under the floodlights, keeping it there until we send out the blade
runners later on to shut down the Apache server daemons.

Example 5-4. WaitsMonitor.pl
#!/usr/bin/perl

use strict;

use DBI;

use CGI gw(:standard :netscape);
use CGI::Pretty qgw(:html3);

Link to Oracle, this time via Apache::DBI in the background,
and set up our SQL to get our results.

my $url = 'dbi:Oracle:orcl.world';
my $user = system H
my $passwd = 'manager’;

mod_perl | 149

Example 5-4. WaitsMonitor.pl (continued)

my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1, AutoCommit=>0});
my $sth = $dbh->prepare('select event Wait Event, '
"total waits Tot Waits, ' .
"time waited Times Waited ' .
"from v$system event '

'where event like \'%file%\' ' .
'order by total waits desc ') ;

$sth->execute or die "Cannot execute";

Get the fieldnames, and make them into table headers.
my $rs = $sth->{NAME};
my @col head;
for (@$rs)
{
push(@col head, $);
}

Now get the data dough, and roll out the pastry
my @row;
my @rows;
while (@row = $sth->fetchrow array)
{
push(@rows, td(\@row));
}

$dbh->disconnect;
Finished with DBI. Now we sort out the CGI side of life.
my $title = "Welcome back to WaitsMonitor!";

Create the HTML page.
my $current time = localtime();
print header,
start_html(-title=>$title, -bgcolor=>'white', -text=>'black'),
center(h1($title),
hr(),
table({border=>'2"'},
caption($current time),
TR([th(\@col head), @rows])
))s
end_html;

Make the script executable:

$ cd /usr/local/apache/perl
$ chmod 755 WaitsMonitor.pl

You can see the results of this script’s being called in Figure 5-3.

150 | Chapter5: Embedding Perlinto Apache with mod_perl

Lovation Edil ¥ew Go Bookmaks Tools Seftings ¥insow Hedp

B> Lacasan | & hapiAncaihasyperiw atssanitor bl v] I

Welcome back to WaitsMonitor!

Mon Apr 1 17.28:33 2002
WALT_EVENT TOT_WAITS [TIMES_WAITED

an fle sequantisl resd [1a4a
[comtrol T pasaliei wre (538 ~[7es
|control file sequertial read (247 3

b e scalered read fiss N

cantralfili command
| fie paralisl read

-
- 1
=
1

e heartesl n

Loy comglite

Figure 5-3. Apache::DBI saving us connection time

Installing mod_ perl on Win32

Fortunately for those of us who have just waded through the Unix installation of
mod_perl, there is a binary version of mod_perl that was built for Win32 and Perl 5.6
by the heroic Randy Kobes. Installing it is very straightforward:

1. Now is as good a time as any to load up your favorite optional Apache-related
module from ActiveState.com (though it’s also possible to do this later on):
C:\Program Files\Apache Group\Apache\modules>ppm
PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install ApacheDBI
Install package 'ApacheDBI?' (y/N):y

2. We can also use PPM to install a more independent distribution of mod_perl
(available from Canada’s University of Winnipeg Department of Theoretical
Physics). You will get all of the default Perl modules required by mod_perl with
this download, and much more besides. (Notice the use of an HTTP address to
pick up the PPD file, which itself points us towards the gzipped file on the web
server that contains the necessary files):"

PPM> set repository theoryxs
http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer

PPM > install mod perl
PPM > set save

The set save step ensures that theoryx5 is available later for PPM downloads.

* The installation tarball can be downloaded directly from the University of Winnipeg site; if you’d like to view
its constituents, check out http://theoryx5.uwinnipeg.ca/ppmpackages.

mod_perl | 151

3. During the PPM process, a second console screen should pop up, asking you
where you’d like to install the necessary mod_perl.so file. We used the directory
for modules installed with Apache in Chapter 4:

Which directory should mod perl.so be placed in?
(enter q to quit) [C:/Apache/modules]
C:/progra~1/apache~1/apache/modules
4. The mod_perl.so file is now safely shipped in:

C:\Program Files\Apache Group\Apache\modules>dir mod_perl*
MOD_PERL SO 208,896 14/03/02 1:39 mod perl.so

Configuring Apache on Win32

We're nearly there. Before starting Apache on Win32, however, we need to add the
following line to the httpd.conf file after all the other LoadModule statements:

LoadModule perl module modules/mod_perl.so
Do this from the Win32 Start menu as follows:

Start — Programs — Apache HTTP Server — Configure Apache Server —
Edit the Apache httpd.conf Configuration File

Also make sure you add the following line after the AddModule section:
AddModule mod perl.c

Keep httpd.conf open at this point, and move onto the next stage.

Testing on Win32

As with Unix, we need to load up the Count of Monte Cristo’s chest of Apache jew-
els every time we fire up the server.

1. Modify the original startup.pl file from Unix and insert it into the C:\Program
Files\Apache Group\Apache\conf directory. Note especially the first line, which
directs Apache to use ActivePerl’s Perl executable:

#!/perl/bin/perl
Set up the include path to get our new lib/perl directory
BEGIN {

use Apache();

use lib Apache->server root_relative('lib/perl');

}

Insert our A-Team modules

use Apache::Registry();

use Apache::Constants();

use Apache::DBI();

use LWP(); Uncomment if LWP loaded! :-)
use CGI gw(-compile :all);

use CGI::Carp();

1;

152 | Chapter5: Embedding Perl into Apache with mod_perl

On server startup, this will locate our nominated Apache/Perl library and load all
of our Apache::* modules into the requisite memory areas.

2. Now create the actual directories necessary to store the Apache modules;
startup.pl will point at these when it’s fired up:
C:\Program Files\Apache Group\Apache\lib>mkdir perl

C:\Program Files\Apache Group\Apache\lib>cd perl
C:\Program Files\Apache Group\Apache\lib\perl>mkdir Apache

3. Now add the following to httpd.conf to ignite this process later on:

PerlRequire conf/startup.pl
PerlFreshRestart On

We can now write our first Win32 Perl Apache module.

HelloWin32.pm
Move to our new perl\Apache directory:
C:\ cd C:\Program Files\Apache Group\Apache\lib\perl\Apache

We can create our new module, shown in Example 5-5, which does some checking
on tablespace fragmentation via a subroutine called from the Apache handler pro-
cess. (It’s easy to forget, but what we’re doing here really is quite amazing. We're
right in the heart of the Apache server, changing it directly to make it do exactly what
we want it to do. Could any other web server give you this kind of flexibility with
something as relatively easy to use as Perl?)

Example 5-5. HelloWin32.pm
package Apache::HelloWin32;

use strict;

use DBI;

use Apache::Constants qw(:common);
use CGI qw(-compile :all);

sub handler {

my $r = shift;
$r->content_type('text/html');
$r->send_http_header;
my $host = $r->get remote_host;
my $table = tabspace_frag();
$r->print(<<END);
<HTML><HEAD><TITLE>Hello Win32</TITLE></HEAD><BODY>
<H1>Hello $host - Let's do something half useful</H1><HR>
$table
</BODY></HTML>
END

return OK;

}

mod_perl | 153

Download from Wow! eBook <www.wowebook.com>

Example 5-5. HelloWin32.pm (continued)

sub tabspace_frag {

1;

Before we complete our test run, we need to make one final addition to the httpd.conf

my $url = 'dbi:Oracle:orcl’;
my $user = 'system';
my $passwd = 'manager’;

my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=»>1});
my $sth = $dbh->prepare('SELECT ts.name tspace, '
"tf.blocks blocks, ' .
"sum(f.length) free, '
"count(*) pieces, '
‘max(f.length) biggest, '
‘min(f.length) smallest, ' .
'round(avg(f.length)) average, '
"sum(decode(sign(f.length-5), ' .
'-1,f.length,0)) dead ' .
"FROM sys.fet$ f, sys.file$ tf, ' .
'sys.ts$ ts !
"WHERE ts.ts# = f.ts#t ' .
'AND ts.ts# = tf.ts# ' .
"GROUP BY ts.name,tf.blocks');
$sth->execute;

Get the fieldnames, and make them into table headers.
my $rs = $sth->{NAME};

my @col head;

for (@$rs)

{

push(@col head, $);

¥
Now get the data, to fill the table with shortly.

my @row;
my @rows;
while (@row = $sth->fetchrow array)

{
push(@rows, td(\@row));
$dbh->disconnect;
Now we sort out CGI and return to handler.
Create the HTML page.
return center(table({border=>'2"},
caption("Tablespace Fragmentation"),

TR([th(\@col head), @rows])));

This is a package, therefore truth required

configuration file before running the server:

<Location /hello/win32>
SetHandler perl-script

154

| Chapter5: Embedding Perl into Apache with mod_perl

PerlHandler Apache::HelloWin32
</Location>

We can now set Apache running;:
Start-> Programs-> Apache HTTP Server-> Start Apache in Console

You can see the spectacular results in Figure 5-4.

'S APACHE M=
[5 i@ B S5 Al
in32> nod_perLl/1.26_Bl-dev running...
File Edit Yiew Go Communicator Help
2 ¥ A 4 . @ S &£ A @
Back Fuivad Feload Home Seach Netscape Pinl Secuily Shop Sioy
| Bockmarks & Location:fhite:/lacahosthelo/ningz =] @7 what's Related

Hello 127.0.0.1 - Let's do something half useful

Tablespace Fragmentation

TSPACE BLOCKS FREE PIECES BIGGEST SMALLEST AVERAGE DEAD
DX |1024 1023 |1 1023 1023 1023 0
EBS 12800 10048 8 3500 250 1256 0
SYSTEM 103616 224 |1 224 224 224 0
1 0
1 0
1 0

TEMP |5120 5119 5119 5119 5119
TOOLS |2048 1977 1977 1977 1977
USERS |1536 280 80 80 9830

s Ll

= == [Document: Done

Figure 5-4. HelloWin32.pm attempting to be half useful

Apache::OWA

Apache::OWA was written by Svante Sormark and was named originally after the
Oracle Web Application server, which has since morphed into Oracle iAS. Apache::
OWA’s mission is to give Apache direct access to Oracle Corporation’s PL/SQL Web
Toolkit. These packages ship automatically with later Oracle servers, from Oracle
Version 8.1.7 onward, and they allow PL/SQL programs to create web content.

Although this module is not obviously aimed squarely at Oracle DBAs, we've
included it for several reasons:

* Many DBAs have database administration tools that are driven by the PL/SQL
Web Toolkit or have tools that they would like to access over the Web. If that is
true at your site and you either don’t have access to a web application server or
you want to bypass the complexities of working within your particular server
setup, Apache::OWA may be a good option. Essentially, this module will pro-
vide you with the necessary access to the PL/SQL Web Toolkit and save you
from having to do all of the necessary configuration on your own. You’ll end up
being able to combine Oracletool, Karma, your own Perl and PL/SQL Web
Toolkit DBA scripts, and perhaps some Perl-based system administration web
pages too—all within one personalized centrally controlled environment.

Apache::OWA | 155

* Many Oracle DBAs are also Web Application Server administrators, and for
those folks Apache::OWA may be a critically important tool.

* This module is a great piece of work. In just a few hundred lines of Perl code,
Apache::OWA is one of the greatest examples of Oracle-accessing code we’ve
seen. If you’re thinking of writing your own Apache Perl modules at any point—
for example, to drive your own web and data needs, we highly recommend that
you use the OWA.pm file work as a code skeleton.”

You can find out more about Apache:: OWA from the following web sites:

http://sourceforge.net/projects/owa
http://owa.sourceforge.net

The main packages in the PL/SQL Web Toolkit are described in the following list.

HTP
HyperText procedures that generate HTML and send it to the browser. Most
HTP procedures bear the name of the HTML construct they’re responsible for.
For example, HTP.ANCHOR creates HTML anchor statements such as:
Input text...
HTF
HyperText functions that help corresponding HTP procedures by wrapping
input with various HTML constructs.
OWA_UTIL
A collection of utility procedures and functions divided into three groups:
HTML utilities
A typical procedure here would retrieve the values of CGI environment vari-
ables or perform a URL redirection operation.
Dynamic SQL utilities
These produce web pages with dynamically generated SQL.
Date utilities
These simplify date handling.
OWA_OPT_LOCK
This package imposes optimistic locking strategies in order to prevent lost
updates.
OWA
Holds internal procedures called by the Oracle PL/SQL Agent itself.

* Richard Sutherland’s DDL::Oracle tool (described in Chapter 3, Perl GUI Extensions) is also an excellent
code template.

156 | Chapter5: Embedding Perlinto Apache with mod_perl

OWA_PATTERN
These pattern-matching utilities perform string matching and substitution with
regular expression functionality. Many of the regex definitions used here are the
same as those defined in Appendix C, The Essential Guide to Regular Expres-
sions.

OWA_TEXT
This set of utilities is used by OWA_PATTERN to manipulate large data strings.
They have also been externalized for direct implementation.

OWA_IMAGE
A set of utilities for manipulating HTML image maps.

OWA_COOKIE
Datatypes, procedures, and functions for manipulating HTML cookies.

For more information about these packages, check out http://technet.oracle.com—in
particular, pages like the following:

http://technet.oracle.com/doc/windows/was.21/psqlwtlk.htm

Installing Apache::0WA on Unix

Before installing Apache::OWA, you should be aware that this module relies upon
the presence of another module called Apache::Request, which lives on CPAN under
the name libapreq. You can get this module from:

http://www.cpan.org/authors/id/]/JI/JIMW

Apache::Request was developed by Jim Winstead and mimics the abilities of CGLpm
to deal with GET and POST program parameters. However, it does this in a quicker
way for Apache/Perl modules, giving Apache:OWA more execution speed. To
improve performance even more, we recommend that you install Apache::DBI for use
with Apache::OWA.

The Perl modules contained within the generic Apache::Request library make use of
the underlying libapreq C library. They’re installed as follows:

$ gzip -d libapreq-1.0.tar.gz
$ tar xvf libapreg-1.0.tar

$ cd libapreq-1.0

$ vi README INSTALL

$ perl Makefile.PL

$ make

$ make test

$ make install

(Make sure to check out the README and INSTALL files with libapreq, particularly
on Solaris 8 and Red Hat Linux. There were some issues noted with Version 0.31,
although Version 1.0 should have resolved them.)

Apache::OWA | 157

We can now download and install Apache::OWA proper. We got hold of the
Apache-OWA-0.7 .tar.gz tarball from the following site:

http://www.cpan.org/authors/id/S/ISVISVINTO

Apache::OWA bends the old conventions a little by naming its unpack directory dif-
ferently from the download tarball, but hey, we like a little individuality to break up
these installation runs. Also note that the make test step was a little skimpy with our
tarball, though this may have changed by the time you come to download your own
latest version. Let’s work through the steps:

$ gzip -d Apache-OWA-0.7.tar.gz

$ tar xvf Apache-OWA-0.7.tar

$ cd OWA

$ vi README

$ perl Makefile.PL

$ make

$ make test # May be a little skimpy, just yet! :-)
$ make install

That should be it. Now let’s try the same under Win32.

Installing Apache::0WA on Win32

Once again, those great folks at ActiveState have done us proud. Just start up a com-
mand console while connected to the Internet, and then click in about 50 letters.
We'll highlight the places you actually have to type:

C:\Perl\site\lib\Apache> ppm

PPM interactive shell (2.1.5) - type 'help' for available commands.

PPM> install libapreq
Install package 'libapreg?' (y/N): 'y

Writing C:\Perl\site\lib\auto\libapreq\.packlist
PPM> install Apache-OWA
Install package 'Apache-OWA?' (y/N): y

Writing C:\Perl\site\lib\auto\Apache\OWA\.packlist
PPM> quit

Configuring Apache::0WA

Those who have wrestled in the past with the various Oracle Webserver products
and their sometimes cumbersome administration suites will appreciate how minutely
scaled the same process is for Apache::OWA in comparison. It’s the size of The
Incredible Shrinking Man at the end of the film, when he escapes from the spider (i.e.,
very small indeed). We simply edit httpd.conf, to create a DAD (Database Access
Descriptor). Follow these steps:

1. For applications with little need for authentication, all you’ll require is the fol-
lowing. This calls procedures in the orcl database, living under scott’s schema:

158 | Chapter5: Embedding Perl into Apache with mod_perl

<Location /scott/ >
SetHandler perl-script
PerlHandler Apache::0WA
PerlSendHeader ON
PerlSetVar DAD orcl:scott:tiger
</Location>

2. When we create the scott.HelloApacheOWA procedure, in Example 5-6, we’ll
call it from a browser as follows:

http://localhost/scott/HelloApache OWA

If by using the same URL we decide instead to call a similarly named procedure
under another schema (e.g., webaccess, we’d do it like this):

<Location /scott/ >
SetHandler perl-script
PerlHandler Apache::0WA
PerlSendHeader ON
PerlSetVar DAD orcl:scott:tiger
PerlSetVar SCHEMA webaccess
</Location>

3. Alternatively, if we set the correct public synonyms and execute permissions,
and we want all of our users to log in to the web pages with their individual
Oracle username and passwords, we’d do it like this:

<Location /owa db _auth/ >
AuthName owa_db_auth
AuthType Basic
PerlAuthenHandler Apache::0WA
PerlSendHeader ON
Require valid-user
PerlSetVar DB orcl
PerlSetVar SCHEMA webaccess
PerlSetVar DB_AUTH true
</Location>

(Other more complex security possibilities are documented within the Apache::
OWA download.)

As an example of how Apache::OWA works, let’s take the first simple configuration
we worked through preceding, and insert it into our httpd.conf file. We created the
HelloApacheOWA procedure in Example 5-6, under scott:

Example 5-6. HelloApacheOWA.sql

create or replace procedure HelloApacheOWA as
cursor curs_dept is
select deptno, dname, loc
from dept
order by deptno;
begin
htp.htmlOpen;
htp.headOpen;
htp.title('Apache::0WA, Perl Apache Module for Oracle PL/SQL');

Apache:OWA | 159

Example 5-6. HelloApacheOWA.sql (continued)

htp.headClose;

htp.bodyOpen(cattributes => ' bgcolor="WHITE" ');
htp.centerOpen;

htp.header(1, 'Hello Apache::OWA! :-)');

htp.hr;

htp.tableOpen(cattributes => ' border="2" width="80%" ");
htp.tableRowOpen;

htp.tableHeader('Department Number');

htp.tableHeader('Department Name');

htp.tableHeader('City Location');

htp.tableRowClose;

for rec_dept in curs dept loop
htp.tableRowOpen;
htp.tableData(rec_dept.deptno);
htp.tableData(rec_dept.dname);
htp.tableData(rec_dept.loc);
htp.tableRowClose;

end loop;

htp.tableClose;

htp.hr;

htp.centerClose;

htp.bodyClose;

htp.htmlClose;
end;

When we call this procedure via the browser, it generates the output in Figure 5-5.
At this point, you may already be thinking of a hundred ways you could expand your
own usage of mod_perl and Apache::OWA to create the mother of all remote DBA
web toolkits, driven by Perl and PL/SQL. Go for it!

IR Apache::0WA, Perl Apache Module for Oracle PLISGL - Kongueror T ——

Location Edit Wiew Go Bookmarks Tools Seftings Window Help |

—
EP Location | {y htip:#/localhost/scotiHelloApacheOwa - |

2 ¢ NGO B8 4XAR S %]

Hello Apache::OWA! :-)

Department Number Department Name City Location
10 ACCOUNTING MNEW Y ORK
20 RESEARCH DALLAS
30 SALES CHICAGD
40 OPERATIONS BOSTON

Figure 5-5. Apache::OWA calls PL/SQL

160 | Chapter5: Embedding Perlinto Apache with mod_perl

CHAPTER 6
Embedded Perl Web Scripting

In the last two chapters, we’ve looked at several categories of Perl web-based Oracle
applications: those that use standard Perl CGI scripts and those that use the Apache
mod_perl module to make those scripts run more efficiently. With both approaches,
though, the developer needs to worry about the design of the web pages displayed by
the application. Interesting as web page design can be, you may feel that as an Ora-
cle DBA you have enough responsibilities on your plate. You may need to fill web
pages with data—product lists, employee data, and all kinds of other information—
but you may not have a keen interest in how to lay out that data on the pages them-
selves. In this chapter, we’ll look at another approach to dynamic web program-
ming, one that completely separates database issues and web page design issues. This
approach is to use embedded scripting, and it can be an elegant solution, as long as
the embedded language is a simple and straightforward one.

This embedded approach is also known as templating, because the presentation
layer—or site design—is the template to which is added the application or code
development layer (that layer contains the business-specific detail).

There are various web programming solutions loosely based on the idea of embed-
ding code into HTML pages, and then preprocessing it. With Java, for example, you
use Java Server Pages (JSPs). Microsoft’s version of this technology is known as
Active Server Pages (ASPs). There are also several excellent Perl embedded scripting
solutions that we’ll describe in this chapter:

Embperl
An embedded scripting language that’s useful for building up mod_perl web sites
from collections of small reusable components. It uses a C-library back end to
assist with its processing.

Mason
Another embedded scripting language. Similar to Embperl in its functionality
and use of mod_perl, but built purely in Perl. It uses an object-oriented style of
component programming.

161

Embperl

Gerald Richter’s Embperl program is a popular solution for those who want to sepa-
rate web page design from data coding issues while taking advantage of Perl’s ability
to generate dynamic content without having to worry about web page design issues.
As its name suggests, Embperl provides the ability to embed Perl within your HTML
presentation layer templates.”

The Embperl 2.0 release promises extensive new capabilities, offering such features
as XML and XSLT integration. Although Embperl is implemented primarily in Perl,
it also has a C back end for speedier processing. For detailed information, go to:*

http://perl.apache.orglembperl
http://www.cpan.org/authors/id/GRICHTER

In the following sections we’ll describe how to install Embperl on Unix and Win32
systems. The Apache configuration and execution of Embperl is virtually identical on
the two systems, so once we’re installed on both systems we’ll run through a single
configuration sequence.

Installing Embperl on Unix

This section describes how to install Embperl and its associated modules on Unix
platforms.

v
NN

Although you can use Embper] under vanilla CGI Apache, we strongly

recommend that you use mod_perl. Not only is the performance differ-

* ke ence astonishing, but mod_perl also allows you to use a wide range of

* Apache modules, including the highly useful Apache::Session and
Apache::DBI. And without Apache::Session (as we describe below), you
will get no session persistence between HTTP requests.

1. If you’re installing Embperl on Unix, you need to obtain a few additional mod-
ules to get its full application benefit. (Embperl is also expecting you to have pre-
loaded mod_perl, which provides it with many of its extended options. We’ll
also assume this, for the rest of this installation.)

Storable.pm
Raphael Manfredi’s popular advanced module for storing various persistent
data structures in Perl (and required by Apache::Session). In the later sec-
tion, “Empberl Forms Handling and Apache::Session,” we’ll explain the

* This approach is similar to what is done with PHP (http://www.php.net) and PL/SQL Server Pages (PSPs).

1 As a rule of thumb, only the latest stable releases make it to CPAN, whereas beta versions are generally avail-
able on the other site.

162 | Chapter6: Embedded Perl Web Scripting

advantages of storing persistent web data. Download and install the tarball
from the following Perl 5 Porters site:

http://www.cpan.org/authors/id/A/IAM/AMS

Apache::Session
Jeffrey Baker’s Apache Perl module. This interface between Apache and the
Storable.pm module is used to store persistent web data. Download and
install it from:

http://www.cpan.org/authors/id/[BAKER

Apache::SessionX
This is a subsidiary module developed by Gerald Richter to complement
Embperl by creating an extended persistence framework for Embperl’s ses-
sion data between HTTP requests (thus extending Apache::Session). Down-
load and install the latest version from the CPAN site at:

http://www.cpan.org/authors/id/GRICHTER

2. For testing purposes, Embperl also requires that LWP and all of its precursor
modules be installed; Chapter 5, Embedding Perl into Apache with mod_perl,
contains the full details about LWP installation.

3. Once you’ve installed these required modules, you can install Embperl itself.
During the installation you need to supply the location of your Apache source
directory. Embperl can then get hold of the relevant Apache code headers, and
configure itself against mod_perl. For example:

$ perl Makefile.PL

Build with support for Apache mod perl?(y/n) [yly
Use ../apache_1.3.24/src as Apache source(y/n) [yly

4. Once Embperl has been configured, complete the installation as follows:

$ make
$ make test
$ make install

We can now head on down to Embper!’s configuration.

Installing Embperl on Win32

Installing Embperl on Win32 is remarkably easy because of the good work of those
physics philosopher-kings at the University of Winnipeg. The gig’s all been tied up
with super-strings and made as simple as falling off a p-brane bubble quark. When
it’s installing, take a look at all of those modules you get. It’s just like Christmas:

PPM> set repository theoryxs
http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer

PPM> set save

PPM> install Storable

Install package 'Storable?' (y/N): y

Installing package 'Storable'...

Embperl | 163

PPM> install Apache-Session
Install package 'Apache-Session?' (y/N): y
Installing package 'Apache-Session'...

PPM> install Apache-SessionX
Install package 'Apache-SessionX?' (y/N): vy
Installing package 'Apache-SessionX'...

PPM> install Embperl
Install package 'Embperl?' (y/N): vy
Installing package 'Embperl’...

PPM> quit
And that’s it. We’re now ready to configure and deploy Embperl, a process that is
virtually identical on both Win32 and Unix.

Deploying HTML::Embperl

There are many different ways to deploy Embperl, and all of them are discussed in
depth within the documentation. For starters, take a look at the information
obtained from the following command:

$ perldoc Embperl

Our favorite way of deploying Embperl is to ask the Apache web server to call it.
Apache can be called with any files bearing a particular suffix (such as .epl) in the
same way that you can configure Apache to call Perl if it finds scripts ending with
.cgi. You do this in httpd.conf by adding a handler (in our case a PerlHandler) and
associating a file type with a nominated suffix in the following way. Here we have
chosen the typically generic Embperl .epl suffix:
PerIModule Embperl
EMBPERL_DEBUG 2285
<Files *.epl>
SetHandler perl-script
PerlHandler Embperl

Options ExecCGI
</files>

AddType text/html .epl

1. Once we restart Apache, every time anybody calls up a web page from this
server, suffixed with .epl, Embperl will be called to deal with it.

2. There are many different EMBPERL_DEBUG levels, and we’ve chosen an out-
put level initially recommended by the Embperl download installation files.
While you're getting used to Embperl, you may want to try these settings as a
starting point, and then alter them to create varying output within Apache’s gen-
erated logs as you progress.

164 | Chapter6: Embedded Perl Web Scripting

We started, as illustrated in Example 6-1, with our first Embperl .epl file, which
checks up on who is accessing which object within the Oracle database. A bit later
we’ll run through how Embperl interprets this information.

Example 6-1. ObjectAccess.epl—Embperl and Oracle

<html><head>
<title>Embperl Object Access Checker</title>
</head><body><center>

<h1>Hello Embperl, Let's Check Object Access! 8-)</hi><hr>
[-

$url = 'dbi:Oracle:orcl';
$user = 'system';
$passwd = "manager’;

use DBI ;

Connect to the database
$dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

Prepare the SQL to check up on object access

$sth = $dbh->prepare ('select s.osuser "0S User", '
's.username "Username", '
's.serial#t "Serial#", '
's.sid "Sid", ' .
"a.owner||\".\"||a.object "Object Name", '
"\'=> \"||a.type "Lock Mode" ' .
'from v$session s, v$access a '
'where a.sid = s.sid ' .
'order by 6,1,2,3,4,5");

Execute the Query

$sth->execute;

Get the Column Headers

$head = $sth->{NAME} ;

Fetch the data into the drillable data ref array reference
$data_ref = $sth->fetchall_arrayref ;

-]

<table border="2">

<trs<th>[+ $head->[$col] +]</th></tr>
<tro<tds[+ $data_ref->[$row][$col] +]</td></tr>
</table>

<hr></center></body></html>

Store ObjectAccess.epl within the ../htdocs directory alongside ordinary flat HTML
files, and then fire up Apache. Our new Embperl file produced the subsequent
browser output in Figure 6-1. So that’s the culprit!

Embperl | 165

3 Embperl Object Access Checker - Netscape H[=1

Fle Edi View Go Communicaior Help

= & A 4 a 4 & B8 &
Back Fouad Rebad Home Seach MNetscape Pint Secrly Shep Giop
: wu§ " Bookmarks £ Loostion [z //iocahost Obiecticssss spl =] &7 What's Related
Hello Embperl, Let's Check Object Access! §-)
0OS User |Username [Seriali# ‘Sirl Object Name Lock Mode
Andy?Duncan |SYSTEM |4 ‘7 SYSTEM.VEACCESS |=> CURSOR
0OS User |Username |Serial# ‘Sid Ohject Name Lock Mode
‘Andy?Duncan |SYSTEM |4 ‘7 SYSTEM. VESESSICN |=> CURSOR
OS User |Username |Serialit |Sid Ohbject Name Lock Mode
‘Andy?Duncan |SYSTEM |4 7 [PUBLIC.VEACCESS |=> SYNONYM
0OS User |Username [Serial# |Sid Ohbject Name Lock Mode
AndyTDuncan |STSTEM |4 7 [PUBLIC.VESESSION |=» STNONTM
0OS User |Username [Serial# Sid Ohbject Name Lock Mode =
= == [Document; Done EET SR B2

Figure 6-1. Our first Embperl execution

Looking at Embperl Syntax

Now let’s look at what is going on in Example 6-1. There are three main ways to
actually embed Perl within Embperl templates; these different approaches are sum-
marized in Table 6-1. In the following sections we’ll focus on how Embperl syntax
differs from standard Perl syntax.

Table 6-1. Embedding Perl within the Embperl template

Format Description Example

[-..-] Code execution: The code between the [- and the -] is executed, [-
without any HTML being generated. This approach is mainly for $dbh = DBI->connect(
assignments, function calls, creating database connections, and so on, / J
asin Example 6-1. Surl, Suser, Spasswd)

I

[+..+] Code output: The code is executed as with the previous example, <tr><th>
except this time the last thing evaluated is streamed back to the HTML [+ Shead->[Scol] +]
output. </th></tr>

[One-time execution: The code is executed as with /- ... -], but only [!
for the first request, which is useful for variable or subroutine initial- Sub session_start {

ization and other one-off executions] .
Sstart_time = localtime; }

)

Controlling template-driven program flow

To exercise structured program flow within Embperl, you can employ another
square-bracketed syntactical element:

[$ <conditional element> <optional conditional construct> $|

166 | Chapter6: Embedded Perl Web Scripting

This is perhaps best explained by working through the examples in the following
numbered list:

1. Suppose you want to set up a conditional if chain to do different things with
HTML. Depending upon how you’re being sent data, you do it like this:
[$ if $ENV{REQUEST METHOD} eq 'GET' §]
<h2> I see you've called me with a GET request! :-) </h2>
[$ elsif $ENV{REQUEST METHOD} eq 'POST' $]
<h2> Thanks for calling me with a POST request! 8-) </h2>
[$ else $]
<h1> You've created a new Request Method, Congratulations! $-) </h1>
[$ endif $]
Notice that although this code looks similar to ordinary Perl, brackets such as
(...), are missing from the main if condition, and no curly brackets like {...} are
used to wrap statements. Also notice that whereas in ordinary Perl you would
use a left-facing bracket, J, to end the complete if statement, in Embperl you use
endif instead. This is a keyword that traditional Perl would fail to recognize.
N
We have been told that Embperl 2.0 will be more closely aligned with
. standard Perl.

2. You can also use while loops, for example, to display the Apache server’s cur-
rent environment:

[$ while ($env_variable name, $env_value) = each (%ENV) $]
[+ $env_variable name +] = [+ $env_value +]

[$ endwhile $]

Again notice the use of endwhile rather than a left-facing curly bracket, J.
3. Similarly, you can also employ do...until loops:

[-

@crew = ('Kirk', 'McCoy', 'Spock', 'Beam Me Up');

$tribble = 0;

-1

[$ do $]
[+ $crew[$tribble++] +]

[$ until $tribble > $#crew $]

Notice how the tribbles keep growing in number.

4. You can also use foreach loops:
[-
$warp_factor = 1;
@federation planet = ('Earth', 'vulcan',
'Solaria', 'Aurora', 'Terminus', 'Trantor');

-]
[$ foreach $thataway (@federation planet) $]
Head for Federation Planet [+ $thataway +],

Mr Sulu, Warp Factor [+ $warp factor++ +]
[$ endforeach $]

Embperl | 167

Strict variable naming

As with standard Perl, variables pop into existence as soon as you mention them, but
if you’d rather enforce stricter discipline and pre-declare global variable names, you
can use var:

[$ var $klingon @vulcan %romulan $]
This is equivalent to the Perl strict pragma shown here:

use strict;
use vars qw ($klingon @vulcan %romulan) ;

Useful table tricks

The eagle-eyed among you may have spotted something strange about the following
lines in Example 6-1:

<tr><th>[+ $head->[$col] +]</th></tr>

<tr><td>[+ $data_ref->[$row][$col] +]</td></tr>
There is only one table header element, and one detail element, yet the screen in
Figure 6-1 is filled to overflowing with the milk and honey of multiline and multi-
column results. What'’s going on? A little bit of magic.

First, the special $col variable works out just how many element are within the array
referenced by $head, which was created by the $head = $sth->{NAME} code line. The
special $row variable does exactly the same for the $data_ref reference value.

Next, Embperl iterates through the whole of the arrays accessed by these variables,
until $col and $row return undef values (i.e., they run out of milk and honey). You
may want to avoid questioning too much how Embperl does this; otherwise the fairy
dust may lose its sparkle. The Pandora’s box of source code is available though, if
you’re prepared to open it.

Embperl Forms Handling and Apache::Session

One of the major benefits of the Web is its stateless protocol, HTTP, which makes
your processing extremely lightweight at both the server and browser ends. Unfortu-
nately, the stateless protocol can also be a great disadvantage when compared with a
stateful client-server model, for example. The problem is that you keep losing all of
your user information every time users change pages. This can be financially chal-
lenging if your site runs shopping-cart applications!

Embperl can perform many of the regular <hidden> type shenanigans to overcome
this limitation, but it can also make use of Apache::Session to draw an Excalibur
sword of stateful data from a dry stone of statelessness. It stores this rich vein of
information between page requests via the following special Perl hash variables:

168 | Chapter6: Embedded Perl Web Scripting

%udat
Stores individual user data. Every time an individual comes back to your server,
via his browser, to hit different pages, you can access all of his previously input
data (if your Embperl script stored it neatly away when you last had access to it).
%mdat
Stores data for a nominated module or page.
%fdat
Stores all of the data associated with a form.
%idat
Stores all of the data input so far on a particular form, which is very useful for
those of us who relish sticky widgets.

Mason

Jonathan Swartz, aided and abetted by Dave Rolsky, has created another fine Perl
templating package in HTML::Mason. Unlike Embperl, which has a C-based back
end, Mason is built purely with Perl, and this implementation tends to reduce poten-
tial complexities during installation.

You can download the latest package from CPAN and learn much more about
Mason at the following sites:

http://www.masonhq.com
http://www.cpan.org/authors/id/]/J]S/[ISWARTZ

The following sections describe how to install Mason on Unix and Win32 and then
work through an example.

Installing Mason on Unix
We need to pre-install the following Perl modules for Mason on Unix platforms:
Time::HiRes
Douglas E. Wegscheid’s module helps Mason deal with POSIX commands such
as usleep() and ualarm() at subsecond levels.
http://www.cpan.org/authors/id/DEWEG
MLDBM
Gurusamy Sarathy’s Multi-Level DBM module serializes multilevel hashes, and
all the data their references point to, into single BLOBs of data; these can then be
stored by any one of the different Perl modules listed here. You can learn more
at:
http://www.cpan.org/authors/id/GSAR

Mason | 169

Download from Wow! eBook <www.wowebook.com>

Data::Dumper
This comes automatically with Perl now, and saves Perl hash structures in neatly
formatted platform-independent files, useful for printing or evaluating.
FreezeThaw
Converts Perl data structures to and from strings suitable for storage.
http://www.cpan.org/authors/id/ILYAZ/modules
Storable
As discussed earlier with Embperl, this module uses a C back end to greatly
speed information storage and retrieval and thus make your Perl data structures
persistent. We recommend that you load Storable, because it is significantly
faster than either Data::Dumper or FreezeThaw.

http://www.cpan.orglauthors/id/ATAM/AMS

Params::Validate
This validates method or function call parameters, and can also determine their
type and class hierarchy relationships.

http://www.cpan.org/authors/id/D/DR/DROLSKY
Now follow these steps:

1. Once the main modules above are installed, we can get to the main event:

$ gzip -d HTML-Mason-1.04.tar.gz
$ tar xvf HTML-Mason-1.04.tar
$ cd HTML-Mason-1.04

2. You may wish to set an environmental variable, APACHE, to direct the Mason
configuration to pick up an Apache server with mod_perl attached—for exam-

ple:
$ export APACHE=/usr/local/apache/bin/httpd

3. Alternatively, just insert the full httpd file path when Makefile. PL asks for it:
$ perl Makefile.PL

4. For testing purposes, specify the full path to an httpd with mod_perl enabled.
The path defaults to SENV{APACHE}, if present.

[/usr/local/apache/bin/httpd] ('!" to skip):
$
5. Mason’s make test step will also keep stopping and restarting httpd—for exam-
ple:

$ make
$ make test

* As with Embperl, Mason can be operated without mod_perl, but you will achieve much better performance
if you do use it.

170 | Chapter6: Embedded Perl Web Scripting

Testing whether Apache can be started
Waiting for httpd to start.

Killing httpd process (746)

Waiting for previous httpd to shut down

$ make install

Installing Mason on Win32

To install Mason on Win32 platforms, simply connect to the Internet, call up PPM,
and install HTML::Mason direct from the University of Winnipeg. (You’ll notice on
the actual install that you’ll get a lot of other modules delivered.)
PPM> set repository theoryxs
http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver.pl?urn:/PPMServer
PPM> install HTML-Mason

Install package 'HTML-Mason?' (y/N): y
Installing package 'HTML-Mason'...

You then can install the following additional modules from the ActiveState site:

PPM> install Time-HiRes
Install package 'Time-HiRes?' (y/N): y
Installing package 'Time-HiRes'...

PPM> install MLDBM
Install package 'MLDBM?' (y/N): vy
Installing package "MLDBM'...

EEM> quit
Installing Params::Validate
There is a slight complication with Mason on Win32: it requires the Params::
Validate module. This module may not be available from either the University of
Winnipeg, which specializes in difficult-to-install XS modules, or ActiveState itself.
Fear not, for HTML::Mason is a pure Perl module, so in the worst case we can create
our own PPM installation with it very easily. Here’s how:
1. First, get the latest tarball from Dave Rolsky’s site:
http://www.cpan.org/authors/id/D/DR/DROLSKY
2. Unpack it to its own directory, using gzip or WinZip. Go to this directory and
run the following command:
C: \Params-Validate-0.14>perl Makefile.PL

3. Now, while steadying your hand with a single malt whisky, download the latest
NMAKE self-inflating program from Microsoft into the C: \Params-Validate-0.14

Mason | 171

directory. The latest incarnation of NMAKE should always be pointed to by the
current ActiveState PPM FAQ. The one we used was:

http://aspn.activestate.com/ASPN/PPM/FAQ
This pointed us towards the NMAKE download at the following address:

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/
Nmakel5.exe

. Once you’ve got this, inflate it:

C: \Params-Validate-0.14>Nmake15.exe

..inflating: NMAKE . ERR

Inflating: NMAKE.EXE
Inflating: README.TXT

. Now run the NMAKE.EXE program, which will read the Makefile created ear-
lier by the perl Makefile.PL step:

C: \Params-Validate-0.14>nmake
cp lib/Attribute/Params/Validate.pm blib\lib\Attribute\

Params\Validate.pm
cp lib/Params/Validate.pm blib\lib\Params\Validate.pm

. You can even run tests if you want to:

C: \Params-Validate-0.14>nmake test

noop.t t\o3-attribute.t t\04-defaults.t t\05-noop_default.t
Using C:/Params-Validate-0.14/blib

t\o1-validate....... ok
t\02-noop........... ok

. We’re now ready to install Params::Validate via the PPM program:
C: \Params-Validate-0.14>ppm install

Installing C:\Perl\site\lib\Attribute\Params\Validate.pm
Installing C:\Perl\site\lib\Params\Validate.pm

Writing C:\Perl\site\lib\auto\Params\Validate\.packlist
C: \Params-Validate-0.14>

Mason is now ready for launch on Win32.

Configuring Mason for Apache

There is plenty of excellent documentation on configuring Mason for use with
Apache. Simply point your browser at the HTML documents that come with the
Mason download:

../htdocs/index.html

| Chapteré: Embedded Perl Web Scripting

To configure Mason, visit the following page:
../htdocs/Mason. html#configuring_mason

In this section, we’ll illustrate a fairly simple setup—we’ll treat all the files found
with the .mcomp suffix as special Mason templates files. We added the following to
our httpd.conf file, including two alternative commented-out lines for Win32:
PerlSetVar MasonCompRoot /usr/local/apache/htdocs
PerlSetVar MasonDataDir /usr/local/apache/mason
#PerlSetVar MasonCompRoot "C:/Program Files/Apache Group/Apache/htdocs”
#PerlSetVar MasonDataDir "C:/Program Files/Apache Group/Apache/mason”
PerIModule HTML::Mason: :ApacheHandler
<FilesMatch "*.mcomp">
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler
</FilesMatch>
AddType text/html .mcomp

Let’s see what’s going on here:

1. The MasonCompRoot directive tells Apache where our Mason component root
will be (in this case, it’s the same as our default document root).

2. The MasonDataDir directive tells Apache where Mason will be storing transi-
tory and permanent data information. Although this directory and its subdirec-
tories will be created automatically on server startup, we’ll take the trouble to
create the Mason directory manually here just to show how it’s done:

$ cd /usr/local/apache
$ mkdir mason

3. The PerlModule directive assigns Mason the requisite Apache handler.
4. The FilesMatch block next tells Apache to look out for .mcomp files and to direct
them toward Mason’s Apache handler, if it should find them.

5. We also need to let Apache know that .mcomp files are to be ultimately treated
as .html files, with the AddType line.

Now that we’ve loaded Mason, let’s take a look at using it. Like Embperl, Mason is
component-based, a mixture of Perl and HTML that gives you powerful direct access
into the heart of the Apache server. We’ve briefly summarized its major features in
Table 6-2.

Table 6-2. Mason’s main object features

Mason API Description

Request Provides a gateway to all of Mason’s extra features beyond syntactic tags
Component Allows you to examine components currently loaded into memory
Parser Translates components into Perl subroutines

Interpreter Defines how Mason components are loaded and then executed
ApacheHandler Connects Mason to mod_perl, in response to HTTP requests

Mason | 173

Next, we’ll work through Mason’s inline use of Perl (here’s where it comes closest in
functionality to Embperl). The three inline methods are all used in Example 6-2,
which is executed and displayed in Figure 6-2.

Example 6-2. hello.mcomp

<html><head><title>Hello HTML::Mason</title></head><body>
<center>

<p><h1>HTML: :Mason :-)</h1><hr>

<hperl>

my $noun = 'World';

my @time = split /[\s:]/, localtime;
</%perl>

<h2>Hello <% $noun %>,

% if ($time[4] < 12) {
Good morning.

% } elsif ($time[4] < 18) {
Good afternoon.

% } else {
Good evening.

%}

</h2>

<h3><% scalar(localtime) %></h3>

<hr></center></body></html>

#2 Hufla H1 ML Matun - Nulecape

e [41 View Go Communicator Heb
4 ¥ A B a @ & [

1| Deek Foived Feked Home Seach Meticaps Pt culty | Shop il]

7] s "Bockmarks b Location [/ ookttt meang: =] T Wil Relaied

HTML::Mason :-)

Hello World, Good evening.
Wed Apr 3 23:00:02 2002

== [5how secuity iniomnatn = B s e

Figure 6-2. Hello Mason!
Table 6-3 provides examples of the three types of inline Perl available with Mason.

Table 6-3. Embedding Perl within the Mason template

Format Description Example

<%... %> The single piece of Perl within the bracesiseval- Hello, <% Suser_login %>!
uated and returned to the browser.

%... Any line beginning with % is treated asa Perlline % if (/Hello/) {
to be executed.

174 | Chapter6: Embedded Perl Web Scripting

Table 6-3. Embedding Perl within the Mason template (continued)

Format Description Example
<%perl> ... For code blocks, use this syntax, and everything <%perl>
</Y%perl> between the tags is executed as Perl code. The my $dbh = DBI->connect($url, Suser, Spasswd);

tag is case-insensitive so <%PERL> ... </

96PERL> is equally valid. </dtper>

For a database-related example, we’ve provided MasonBlock.mcomp in Example 6-3.
Once again, set mod_perl running, along with the target database, and call up the
page as in Figure 6-3.

Incidentally, one of the things we especially like about Mason is the comprehensive
error browser reporting it provides. This feature greatly aids the development of

code, especially when it’s all spaghettified across the httpd server, mod_perl, Perl
itself, and the Oracle database!

Example 6-3. MasonBlock.mcomp—Combining Mason with DBI

<html><head><title>Hello HTML::Mason and DBI</title></head><body>
<center>
<p><h1>Chiseling into DBI with HTML::Mason 8)</hi><hr>

<%perl>
use DBI;
my $url = 'dbi:Oracle:orcl’;

my $user = 'system';
my $passwd = 'manager’;

my $dbh = DBI->connect($url, $user, $passwd, {RaiseError=>1});

my $sth = $dbh->prepare(

'select tablespace name tabSpace, '
'segment_type segType, '
‘owner, '

'segment_name segName, '
'blocks,
'bytes, '
'extents,
"next_extent nextExt
'from dba_segments '
'where owner != \'SYS\
‘order by 1, 2, 3, 4');

[

$sth->execute;
my $rs = $sth->{NAME};

</%perl>

Mason | 175

Example 6-3. MasonBlock.mcomp—Combining Mason with DBI (continued)

<table border="2">
<tr>
% for my $heading (@$rs)
% {
<th><% $heading %></th>
%}
</tr>

% while (my @row = $sth->fetchrow_array)
% {
<tr>
% for my $data (@row)
£ A
<td><% $data %></td>
)
</tr>
%}
<caption>DBA Segments</caption></table>

% $dbh->disconnect;

<hr></center></body></html>

%}'v Hello HTML::Mason and DBI - Netscape
File Edit Yiew Go Communicator Help
- = A 4 2 @ oS & @ # !HI
Back Fowzd Reload Homs Geach Netscape Print Seouity Shop Sizp
I i Bookmatks) Losstion: rrp://losshost Masonglock meomp | @ What's Fielated
Chiseling into DBI with HTML::Mason 8)
DBA Segments
TABSPACE| SEGTYPE OWNER SEGNAME BLOCKS [BYTES [EXTENTS [NEXTEXT
STSTEM [INDEX [AURORASTISSUTILITYS [HTTP_GROUP_CON 32 55536 |1 65536
SYSTEM [INDEX [AURORASTIS§UTILITYS [HTTP_ID_CON 32 65536 1 65536
SYSTEM [INDEX [AURORASTISSUTILITYS [HTTP_POLICY_CON 32 65536 1 65536
SYSTEM [NDEX [AURORASTISSUTILITYS [HTTP_PRINCIPAL CON 32 65536 [1 65536
SYSTEM [NDEX [AURORASTISSUTILITYS [KEY_C 32 65536 1 65536 =
& (== [Dacument: Done: 4

Figure 6-3. Mason, Oracle, and DBI

If you still hunger for more Perl HTML templating, you may to try out Sam Tregar’s
HTML::Template module. This module is based on the use of extended HTML tags.
HTML::Template aims for a more lightweight, streamlined interface than those
offered by Embperl and Mason, while also stressing the separation of design and
content production. You may also be tempted by the larger solutions of Andy Ward-
ley’s Template Toolkit or Matt Sergeant’s XML-based AxKit (you’ll find more on
XML in Appendix D, The Essential Guide to Perl Data Munging). Check out the fol-

lowing:

http://www.cpan.org/authors/id/S/ISAISAMTREGAR
http://www.cpan.org/authors/id/ABW

176 | Chapteré: Embedded Perl Web Scripting

http://'www.openinteract.org
http://openinteract.sourceforge.net
http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://perl.apache.org/features/tmpl-cmp.html

Mason | 177

CHAPTER 7

Invoking the Oracle Call Interface
with Oracle::0Cl

Back in Chapter 1, Perl Meets Oracle, we introduced the Oracle Call Interface (OCI),
the low-level application programming interface (API) provided by Oracle Corpora-
tion that allows the outside world access to the Oracle database engine. The 3GL
language most often used to interact with OClI is C, although it is also possible to use
higher-level languages like Perl to communicate with the database via OCIL.

Although it is possible to access OCI directly, doing so is quite complicated, and
most DBAs and developers (who fear being lost in a swirling river of pointers, linked
lists, and casts) prefer a simpler and more convenient interface such as Perl DBI,
which we introduced in Chapter 2, Installing Perl. Perl DBI is actually not database-
specific. It can be used to communicate with Oracle, SQL Server, MySQL, and a vari-
ety of other databases. When communicating with Oracle, Perl DBI requires the Ora-
cle-specific driver, DBD::Oracle, also described in Chapter 2.

The Perl DBI connection to OCI via DBD::Oracle is a useful one, and for many years
it has represented the only convenient way that Perl programs could communicate
with Oracle. The main design goal of Perl DBI is to provide a consistent, easy-to-use
interface to a variety of databases. It isn’t especially optimized for any specific data-
base. As a result, the Perl DBI interface to OCI is rather limited; it allows access to
only a subset of the extensive functionality of OCI. Back in Chapter 2 we described
how Perl DBI allows Perl programs to include appropriate API calls to OCI for cer-
tain common database operations. But what if the calls available through Perl DBI
are insufficient? Developers and DBAs wanting more sophisticated access to data-
base operations—for example, specialized data loading, use of multiple database
connections, and so on—have been faced with a choice between sticking with Perl
(and limiting what they could do) and being forced to use C (in order to have full
access to everything OCI has to offer). But now there’s a new game in town—the
Perl module Oracle::OCI.

178

What is Oracle::0CI?

Oracle::OCI takes Perl/Oracle connectivity to a new level. It combines the power of a
typical C programming environment with a much friendlier Perl interface. Oracle::
OCI gives you access to every bit of functionality available in OCI, and it operates
seamlessly with any version of the Oracle database. It lets you do the more complex
direct data loading, threading, and large object (LOB) handling that until now has
required C programming. Oracle::OCI communicates with Oracle at a very low level,
which also gives it excellent performance. If you’ve ever wanted to get that 15-hour
batch extract program down to 5 hours, Oracle::OCI may be just the thing you've
been looking for. There is a price for this power, however. When you use Oracle::
OCI, you must code in such a way that there is close to a line-by-line correspon-
dence between your Perl script and OCI, with Oracle::OCI acting as the router in
between.

In this chapter we’ll first look at the Oracle Call Interface itself and what it provides.
Then we’ll explain how to install Oracle::OCI and use it to get the most effective and
efficient connectivity between your Perl programs and the Oracle database. Next
we’ll look at several examples of the code you might write to issue OCI calls from
Perl to Oracle. We'll compare the line-by-line Oracle::OCI approach to the Perl DBI
approach and, finally, we’ll suggest a way you can mix and match the two
approaches.

Let’s start by looking at Figure 7-1, which illustrates the various modules now pro-
viding connections to the Oracle database. This figure shows the full set of modules
and how they relate, assuming that you have all of them. Most people don’t yet have
the Oracle::OCI module, and they rely entirely on the Perl DBI and DBD::Oracle
link. This situation may change in the future, however, and Oracle::OCI may become
integral for everyone. Figure 7-2 compares the two architectures (Oracle::OCI vs.
Perl DBI/DBD::Oracle).

Oracle::0Cl Plug and Play s Perl | Oracle-------------r-oooooooeeee >

o

Oracle::0Cl

Perl odl Oracle
application Oracle Call database
Interface server

Perl DBI DBD::Oracle

| e

Figure 7-1. The Perl triumvirate: Perl DBI, DBD::Oracle, and Oracle::OCI

Whatis Oradle::0C1? | 179

(1) 3
Perl
strei:)lt DB:I od Oracle
an database
DBD::Oracle é
(2]
Perl .
screi:)t Oracle::0Cl > od Oracle
: database

Figure 7-2. Comparing the Oracle::OCI and the Perl DBI/DBD::Oracle architectures

What Is 0CI?

As we’ve discussed, Oracle’s Oracle Call Interface is the comprehensive API that is
used to connect internally to the Oracle database server. Here is a sampling of what
OCI has to offer. Oracle::OCI allows Perl programs to access all of these capabilities;
in a few cases, we’ll note what Oracle::OCI’s interface offers us over that provided
historically by Perl DBI:

OCI provides tight low-level control over all aspects of program flow, from
server connections to the management of networked transactions, all accom-
plished in a highly efficient and scalable way.

OCTI’s dynamic structures can define virtually any arbitrary data structure.

OCI provides a complete metadata feature set, enabling drill-down discoveries
on the database’s entire structural architecture.

OCI offers asynchronous event notification. This feature allows program clients
to register an interest in such notifications and the ability to propagate mes-
sages, enabling domino effects to ripple through a system.

OCI gives us enhanced DML (Data Manipulation Language) capabilities, includ-
ing the ability to do direct data loading (this is similar to what can be done with
SQL*Loader). This feature is particularly useful for applications that need to fill
data warehouses under tight time constraints.

Using OCI directly, Perl-based applications can service an increased number of
users and requests without requiring an additional hardware investment. OCI

180

| Chapter7: Invoking the Oracle Call Interface with Oradle::0CI

does this by reducing SQL round-trips, using piggy-backing processes, and shar-
ing logins and transactions. User handling can be considerably simplified.

* OCI can manipulate large objects in chunks and streams. Although binary large
object (BLOB) features are available within standard Perl DBI, if you need fine-
grained LOB access via Perl, Oracle::OCI is the way to go. For instance, if a
BLOB contains XML data (as many applications now do), Oracle::OCI provides
the perfect way to parse this data. (For more information, see the discussion of
data munging with XML in Appendix D, The Essential Guide to Perl Data
Munging.)

* OCI offers us a back-stage pass into Oracle’s tactical core. For instance, it can
perform such complex underlying activities as cache pinning, advanced queu-
ing, and parallel server management.

* OCI provides access to the latest Oracle object development techniques and
many of its data transformations—for example, string substitution, decoding,
and so on. These aren’t available using a more generic API, such as basic Perl
DBI or ODBC.

* OCI provides all of the capabilities summarized here with high performance and
thread safety as a consequence of its fine-tuned low-level optimization.

The interleaved relationship between Oracle::OCI and Perl DBI/DBD::Oracle (illus-
trated earlier in Figure 7-1) also allows us to mix the calls to either API and to reuse
handles and object instances. This is impossible in languages other than Perl. You’d
either have to use reams of pure OCI or choose an alternative interface at a much
higher level (for example, ODBC). There is no way to work on the middle ground in
between the two. In Perl, however, you can get the best of both worlds.

Most DBAs will never need the low-level capabilities offered by OCI and available via
the Oracle::OCI interface. If you are in this category, you can safely ignore this chap-
ter. However, if you do need to include any of the functionality listed previously in
your own applications, and Perl DBI falls just short of your personal summit (or if
you are just curious about what all the excitement is about), then please read on.

Why Oracle::0Cl Instead of ?

Let’s assume that you’re convinced now that OCI is a great thing. But why choose
Oracle::OCI to build your applications? Why not just use C, the traditional choice of
the professional? To convince the jury, let’s take a brief look at what we needed to be
able to do in order to write effective OCI programs before Oracle::OCI arrived on the
scene:

1. We had to be fully competent in our chosen 3GL. For example, in C, you had to
be comfortable with pointers, voids, casts, and the asterisk-laden shooting
match, which is what drove many wizened C programmers over to Perl in the

Whatls0Cl? | 181

first place.” (Witnessing a thousand lines of difficult C code being shrunk to ten
of Perl for the first time, without spotting the dreaded malloc anywhere, was
divine revelation for many.)

2. You probably had to write huge source code files for even trivial jobs. (Even log-
ging on, within OCI, can take pages of code, as we’ll witness shortly.) The point
of Perl DBI was to be the tip of an iceberg, to hide the gory details of OCI behind
a simple APIL. It was also able to provide easy Perl-based access to all of the other
hundreds of Perl modules available out there (e.g., Apache::DBI, DBD::Chart,
Perl/Tk, etc.). When encountering a situation that really did require that low-
level OCI functionality, many people who had become downright comfortable
with Perl had to throw all of that advantage away, and begin again with their
dusted-down Kernighan and Ritchie.t

3. You needed to compile the source files down to object code with a native com-
piler, and link it to the OCI libraries, thereby making the final application
machine-dependent. This seemed a shame, because OCI is the most widely
available interface for connecting Oracle to the outside world. And porting 3GL
code to other systems, even if you're a believer in strict ANSI C, is more than a
trivial afterthought (especially if like Gulliver on his travels, you get your Big-
Endians mixed up with your Lilliputians).

The 3GL compilation process is illustrated in Figure 7-3. It works, but it’s certainly
not ideal. It would be nice to overcome this one-way track to binary-only solutions.
It would be great if we could write shorter, machine-independent OCI programs, in
clear understandable Perl code.

That’s what this chapter is all about.

For More Information on OCI

We’ve introduced OCI, but there is much more to learn. At last count (in OCI 8.1),
there were 530 distinct functions! We have found the following resources to be the
most useful; note that most of these references are to the very helpful Oracle Tech-
nology Network (OTN).

v
NN

The guiding aim of the Oracle::OCI project is to keep synchronized
with OCI itself and thus to ensure that the official Oracle Corporation
1+ OCI documentation always remains simultaneously the documenta-
" tion for Oracle::OCI.

* At least one of your authors still has nightmares about linked lists.

T The classic text for C is The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie (Pren-
tice Hall); it is surely one of the finest technical books of all time.

182 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

DR 36L : Oracle---------- >
3GL 0Cl Application H
11101010 : Oradle
10100100 '
11100011 L di:?";:r’e
Application 8%33(1)(1)(1) '
3GL source 0
file Final 0CI '
application | |
11101010 .
%l 10100100 : od
séigggﬁ v |Oracle Call
01000100 C:| I';itfr’:?;e
Application '
object file
Lots of code

Figure 7-3. Constructing 3GL OCI applications

http://technet.oracle.com:
Main technical reference for all Oracle products. Once you’ve set up a free login
user, search with the string “OCI” and you should get access to a great many
useful references.

http://technet.oracle.com/tech/oci:
Good general reference kick-off point for drilling down into OCIL.

http://otn.oracle.com/tech/oci/htdocs/faq. html:
Comprehensive FAQ.

http://'www.orafaq.org/faqoci.htm:
Another more independent, FAQ.

0Cl Functions

Basically, if there is an OCI function supplied by Oracle Corporation within your
local version of OCI (the one that comes with your database), then you can assume
that once we build Oracle::OCI, there will be a corresponding function available for
use within Perl. See Figure 7-2 for a diagrammatic representation of this one-to-one
mapping.

OCI functions can be broken down into four main categories as follows. Because
there are so many OCI functions, we haven’t attempted to list them all. For all but
the second category (where there are only four functions in all), we’ve simply pro-
vided examples of the most common functions. Check out the documentation listed
in the previous section for much more.

Whatls0Cl? | 183

Download from Wow! eBook <www.wowebook.com>

OCI relational functions
These OCI functions are the common functions used to deal with the normal
operations of a relational database, such as logging on, executing statements,
managing database access, processing SQL statements, and so on. We provide
some examples of these in Table 7-1.

OCI external procedure functions
These OCI functions are used to connect with extproc_plsql, a module we
describe in Chapter 8, Embedding Perl into PL/SQL, and with other external C
libraries. These functions are listed in Table 7-2.

OCI navigational and type functions
These OCI functions are used to navigate between objects supplied by the Ora-
cle Enterprise database server. Table 7-3 provides examples.

OCI datatype mapping and manipulation functions
These OCI functions supply data attribute manipulation functions for the Enter-
prise Server—for example, string handling. Examples are provided in Table 7-4.

Table 7-1. OCI relational functions

Functional area Example function

Advanced Queuing OCIAQListen listens on queues for agents

Handles and descriptors 0ClDescriptorAlloc allocates and initializes a LOB locator
Bind and define 0CIStmtGetBindlnfo gets the bind and indicator variables
Direct path loading OCIDirPathFinish finishes and commits loaded data
Connect and authorize OClEnvCreate creates and initializes an OCl environment
Large objects OClLobFileOpen opens LOB files

Statement handling 0CIStmtFetch fetches rows from queries

Thread management OCIThread(Create creates new threads

Transactions OCITransRollback rolls back transactions

Miscellaneous OCIBreak carries out an immediate asynchronous break

Table 7-2. OCI external procedure functions

0Cl function Description

OClExtProcAllocCallMemory Allocates memory for external procedures
OClExtProcRaiseExcp Raises PL/SQL exceptions
OClExtProcRaiseExcpWithMsg Raises exceptions along with a message
OClExtProcGetEnv Gets the handles detailing the OCl environment

Table 7-3. OCI navigational and type functions

Functional area Example function
Flush and refresh OClCacheRefresh refreshes pinned persistent objects
Mark cache objects 0Cl0bjectMarkDelete marks an object as deleted

184 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

Table 7-3. OCI navigational and type functions (continued)

Functional area Example function

Get object status 0ClObjectExists checks if an instance of an object exists
General navigation 0Cl0bjectGetObjectRef returns a reference to a given object
Pin, unpin, and free 0ClObjectPin pins objects in the cache

Type information 0CTypeByName gets Type Descriptor Objects (TDOs) by name

Table 7-4. OCI datatype mapping functions

Functional Area Example function

Collectors and iterators OCliterDelete deletes an iterator

Date functions 0CIDateAddDays adds or subtracts days
Number functions OCINumberAbs works out an absolute value
Raw functions OCIRawAllocSize allocates raw memory

REF functions OCIReflsEqual compares two REFs for equality
String functions OClStringAssignText assigns text to a string
Table functions OClTablefirst returns the first index of a table

Installing Oracle::0Cl

In order to install Oracle::OCI itself, you will need to obtain some additional precur-
sor modules from CPAN. We’ll describe those and then explain how to install and
run Oracle::OCI.

Installing Oracle::0Cl on Win32

There is quite a bit of compilation needed for Oracle::OCI, and at the time of writ-
ing there are no PPM files available to help us (basically because of a necessary boot-
strapping process we’ll describe later). However, we’re confident that the Win32 Perl
DBI community will oblige, sooner rather than later. If you’re prepared to get your
compilers dirty on Win32, the steps will be logically the same as for Unix, so simply
follow the Unix installation steps we’ve provided, and adapt the instructions for your
particular compiler type.

At the present time, Oracle::OCI is still something of an experimental Perl develop-
ment. For now, if you’re running Win32, your options are to try installing Oracle::
OCI with Cygwin, as we discussed in Chapter 2, or to create your own versions with
commercial Win32 compilers.

The best place to keep track of new developments is the main DBI page at http://dbi.
perl.org, where you should look for the FAQ work of Ilya Sterin. Ilya regularly creates
both XML and Oracle PPD files independently of ActiveState.com; he’s often on the

Installing Oracle::0C1 | 185

leading edge of the technical frontier. You can also look for Ilya’s DBI FAQ at http://
xmlproj.com/dbi/fag.html or his Perl Oracle PPM packages for Win32 at http://
xmlproj.com/PPM.

Precursor Modules

You will need to install these modules in the following order:

Data::Flow
Following original inspirational work by Ilya Zakharevich, Terrence Brannon
took over the Data::Flow module, which is a Perl extension for simple recipe-
controlled builds of data. You can obtain it from:

http://'www.cpan.org/authors/id/T/TB/TBONE

C::Scan
C::Scan also follows in the footsteps of original work by Ilya Zakharevich.
C::Scan is designed to scan C language files for easily recognized constructs.
You’ll require its latest incarnation, especially modified for use with Perl 5.6, at
Hugo van der Sanden’s CPAN site. (Note that future versions may once again be
taken over by their original creator, whose CPAN site listing follows). For Ora-
cle::OCI 0.06, we required at least C::Scan Version 0.74:

http://www.cpan.org/authors/id/HVDS
http://www.cpan.org/authors/id/ILYAZ

Setting the Oracle::0Cl Environment

To make sure that the latest downloaded version of Oracle::OCI works, you’ll proba-
bly also need the latest Perl DBI and DBD::Oracle modules installed. All three mod-
ules are tightly interwoven, as we saw earlier in Figure 7-1. We’ll explain how to do
those installations shortly.

Oracle::OCI is unlike any other typical Perl module installation we’ve seen in this
book. The main difference is the tarball, which is actually a toolkit for building Ora-
cle::OCI, rather than being Oracle::OCI itself. Why is the software built in this way?
The project’s aim is to match your own database’s OCI setup as closely as possible.
The toolkit therefore examines your own exact OCI situation and configures accord-
ingly. Doing so ensures that every single OCI function that’s available on your own
system will be available later within a brand-new Oracle::OCI module tailored
exactly for your system. Let’s go to work.

Installing Oracle::0Cl on Unix

The first step in understanding how to install Oracle::OCI is to get our heads around
its central concept. It’s not a Perl module in its own right—one you can simply
unpack and install, as if you’re taking a nice shiny laptop out of a box and plugging

186 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

in the wires. Instead, Oracle::OCI is a toolkit for building a nice shiny Perl module.
What this toolkit does is examine your local version of OCI and then do a one-to-
one mapping of all of its functions in order to build a blueprint of the Oracle::OCI
system you will eventually require. This blueprint is then used to pull all the bits and
pieces together, constructing the module that will be installed. The world’s most
highly personalized Perl module is essentially built before your very eyes, and you
then simply install this module. It’s magic!

R
s

The following installation notes were prepared using the latest version
of Oracle::OCI available to us. However, this project is an extremely
fast-moving one. Always check out the latest README file coming
" with your own latest Oracle::OCI download. This file will contain the
most up-to-date installation instructions, and these are expected to get
much easier over time. Tim Bunce is likely to be developing this Perl
module rapidly over the next few years.

Follow these steps to install Oracle::OCI on Unix systems:

1. First of all, you might want to alter the boot and h2xs scripts so they have the
correct version of Perl on their first shebang line. For instance, Oracle::OCI-0.06
had the following Perl command at the top of the boot file:*

#!/opt/perls/bin/perl -w
We changed ours to:
#!/usr/bin/perl -w
The following form may be more of a universal solution:
#lperl -w
(However, make sure to first check step 3, which follows, before doing these
hacks.)

2. If you experience connection errors on the build, you might want to update the
first few lines of the 01base.t and 05dbi.t test programs. You’'ll find that these are
dynamically linked to the main unpack directory, and you’ll need to get the right
ORACLE_SID and ORACLE_USERID variables set for your environment before
installing Oracle::OCI:

$ export ORACLE SID=orcl.world
$ export ORACLE_USERID=scott/tiger

3. Once everything’s looking good, just run the boot program:

$./boot

* For more on h2xs, which is beyond the scope of this book, we highly reccommend Chapter 18, Extending Perl:
A First Course, in Sriram Srinivasan’s finely honed masterpiece, Advanced Perl Programming (O’Reilly &
Associates, 1997), http://lwww.oreilly.com/catalog/advperl/.

Installing Oracle::0C1 | 187

5.

Alternatively, if you don’t want to hack the #! lines as in step 1, simply run this
program as follows:

$ perl boot
This will build and test everything, and will prepare your proper OCI configura-
tion system (to be installed later).

. You may experience some difficulties during the build. We can’t predict every-

thing that might go wrong. Because the errors can be varied, we think the best
way of tackling any problems is to use the resources detailed in the next section.
We also think that getting your hands dirty in the OCI code mines, while clutch-
ing an elven ring, should steer you clear of the really ugly cave trolls. Here are
some of those we encountered:

* On SuSE Linux 7.3, we got some ORACLE not available errors, with
Oracle9i. Setting TWO_TASK to orcl.world cleared these.

* We kept getting ./boot test compilation errors, related to various OCI
pointer types, possibly errors only introduced since the introduction of
Oracle9i. We added the following lines to getptrdef.h, and this cured the
problem:

#define ora_getptr OCIAnyDataSetPtr ora getptr generic

#define ora_getptr OCIAnyDataPtr ora_getptr generic

#define ora_getptr OCICPoolPtr ora getptr generic

#define ora getptr OCIXADTablePtr ora getptr generic

#define ora_getptr OCIXADFieldPtr ora_getptr generic

Once the boot command does fire correctly, you’re looking for output like
this:

chmod 755 blib/arch/auto/Oracle/0CI/0CI.so

t/01base............ ok

t/05dbi. ... ok

All tests successful.

Files=2, Tests=119, 11 wallclock secs (0.81 cusr+0.07 csys = 0.88 CPU)

Now we get to the fun part. After the first compilation stage, we should now
possess a pre-installation Oracle::OCI module, ready to load up and install as
in the usual Perl manner. It should be quietly awaiting instruction within the
../Oracle/OCI directory. Go here, and inscribe the following spells onto the
command line to repeat the wizardry:

$ cd Oracle/0CI

$ perl Makefile.PL

$ make
$ make test

All tests successful.

188

| Chapter7: Invoking the Oracle Call Interface with Oradle::0CI

6. The final step should produce plenty of output:
$ make install

For Further Help with Oracle::0CI

Here are some suggestions for things to check and do if you have trouble with Ora-
cle::OCI:

1. There’s some great help on the Oracle::OCI mailing lists. To join the mighty
throng, send an email to:
oracle-oci-help@perl.org

2. There is also a mail archive, which is especially useful for dealing with installa-
tion problems when slight tweaks are required for different flavors of Unix.
Check out:

http://archive.develooper.com/oracle-oci@perl.org
3. Oracle Corporation occasionally moves their installation directories around just

to keep us on our toes. For example:

* You might want to look out for situations where Oracle::OCI is expecting to
see SORACLE_HOME/network/public, but the files it’s looking for are actu-
ally in SORACLE_HOME/rdbms/public

* C header files expected in SORACLE_HOME/rdbms/demo may also be hid-
ing in SORACLE_HOME/plsql/public
4. You may get lines such as the following:

Error: invalid argument declaration
'void * argv[]' in OCI.xs, line 666

Find the offending line in the OCILxs file, and then add the relevant function to
the following piece of code in the boot file, which deliberately excludes such
problematic items:

oci skip => [sort keys %{ { ... } }]
5. For errors such as:

Error: 'OCIFooBar *' not in typemap in
0CI.xs, line 777

You might want to add an extra line to the extra.typemap file:
0CIFooBar * T_PTROBJ
You might also want to check the README.build file, which may hold the exact

answer to your problem. However, as Oracle::OCI matures, expect it to become as
pain-free as DBD::Oracle and Perl DBI are now.

Installing Oracle::0C1 | 189

Coding with Oracle::0Cl

In the following sections, we’re going to present essentially the same example coded
three different ways; each creates a simple table description:

1. Example 7-1 shows how the example looks using pure Oracle::OCI code. You’ll

notice that this is a lot more code than a typical Perl DBI script. Essentially, we
use OCI functions on a one-to-one basis, so even just logging in to a database
can take a whole page of code, whereas DBI does it in one line.

. Example 7-2 shows how much shorter the example can be if you use pure Perl

DBI, where a single DBI function takes the place of as many as ten Oracle::OCI
functions.”

. Example 7-3 shows a blended approach. We combine, in a single Perl script,

both Perl DBI and Oracle::OCI. Where we can use DBI commands within Ora-
cle::OCI, we do so to save typing pages of code. The only places where we actu-
ally need to use one-to-one OCI mappings are the cases where we journey
beyond Perl DBL.T (The earlier Figure 7-1 shows the relationship between Perl
DBI and Oracle::OCI.)

Pure Oracle::0Cl Code

This first example (Example 7-1) shows pure unadulterated Oracle::OCI code.
Notice how just logging on takes over a page of code. (We’ll work through the steps
after the example.)

Example 7-1. rawOCLpl—Oracle::OClI in action

#!/usr/bin/perl -w

Pure-ish Oracle::0CI

use strict;

use DBI gw(neat);
use Oracle::0CI gqw(:all);

Step 1: Get the environment right, and set up your target
database and user, before we initialize.

$ENV{ORACLE_SID} ||= 'ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger';

* Basically, this is what DBI has been doing for us all along. It’s just that we’ve had no need to worry about it
before; it’s all been kept under the covers.

t We’re only doing this because we’re hunting for that last iota of extra functionality or performance. In gen-
eral, we let the standard Army infantry of Perl DBI make up the bulk of the Normandy invasion forces. We
bring in the Airborne troops of Oracle::OCI just do that little bit extra at the end.

190

| Chapter7: Invoking the Oracle Call Interface with Oradle::0CI

Example 7-1. rawOCLpl—Oracle::OCI in action (continued)

The following call to new_ptr() and bless are 'scaffolding'

which this version of Oracle::0CI requires, but these will not be
needed in future versions. This will reduce the clutter

and bring the code much closer to the equivalent OCI C code! :-)

sub new_ptr {
my $class = shift;
my $modifiable = do { my $foo = shift || 0 };
return bless \$modifiable => $class;

}

Initialize the environment via OCI.
my $envhp = new ptr('OCIEnvPtr');

0CIInitialize (OCI_OBJECT, 0, 0, 0, 0);
OCIEnvInit($envhp, OCI DEFAULT, 0, 0);

Step 2: Allocate the various handles.
Get the Error Handle

OCIHandleAlloc ($$envhp, my $errhp=0, OCI _HTYPE ERROR, 0, 0);
bless $errhp => 'OCIErrorPtr';

Get the Server Contexts etc.

0CIHandleAlloc ($$envhp, my $svrhp=0, OCI_HTYPE_ SERVER, 0, 0);
bless $svrhp => 'OCIServerPtr';
OCIHandleAlloc ($$envhp, my $svchp=0, OCI_HTYPE SVCCTX, 0, 0);
bless $svchp => 'OCISvcCtxPtr';

Step 3: Now Attach and set the attribute server context
within the Service context, before logging on.
0CIServerAttach ($svrhp, $errhp, 0, 0, OCI_DEFAULT);
OCIAttrSet
($$svchp, OCI_HTYPE_SVCCTX, $$svrhp, 0, OCI_ATTR_SERVER, $errhp);

0CIHandleAlloc($$envhp, my $authp=0, OCI_HTYPE SESSION, 0, 0);
bless $authp => 'OCISessionPtr';

my ($user, $pass) = split /\//, $dbuser;
my @user buf len = oci buf len($user);

my @pass_buf len = oci buf len($pass);

OCTAttrSet ($$authp, OCI_HTYPE SESSION, @user buf len,
OCI_ATTR_USERNAME, $errhp);

OCIAttrSet ($$authp, OCI_HTYPE SESSION, @pass_buf len,
OCI_ATTR_PASSWORD, $errhp);

Finally, meine kleine Freunden, we begin a session...

Coding with Oracle::0Cl

191

Example 7-1. rawOCLpl—Oracle::OCI in action (continued)

my $status = OCISessionBegin ($svchp, $errhp, $authp,
OCI_CRED RDBMS, OCI DEFAULT);
warn get_oci_error($errhp, $status) unless $status == OCI_SUCCESS;

OCIAttrSet ($$svchp, OCI_HTYPE SVCCTX, $$authp, 0,
OCI_ATTR_SESSION, $errhp);

Step 4: Now prepare the description of the target table,

and start some data processing.

0CIHandleAlloc($$envhp, my $dschp, OCI_HTYPE DESCRIBE, 0, 0);
bless $dschp => 'OCIDescribePtr’;

my $tablename = $ARGV[O];
0CIDescribeAny ($svchp, $errhp, oci buf len($tablename),
OCI_OTYPE_NAME, 1, OCI_PTYPE TABLE, $dschp);

Get the parameter descriptor.

OCIAttrGet ($dschp, OCI_HTYPE DESCRIBE, my $parmp, 0, OCI ATTR_ PARAM,
$errhp, 'OCIDescribePtr');

Get the table list, number of columns and description.

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $collst, o,
OCI_ATTR_LIST COLUMNS, $errhp, 'OCIParamPtr');

OCIAttrGet ($parmp, OCI_DTYPE_PARAM, my $numcols, 0, OCI_ATTR_NUM_COLS,
$errhp, 'OCIParamPtr');

my $errstr;

Describe the target table.

printf ("\n--------o-ooooooo- \n");
printf ("TABLE : %s \n", $tablename);
printf ("----------mmmmeoo- \n");

my %col attr = (
OCI_ATTR_NAME => "ColName",
OCI_ATTR IS NULL => "NULL?",
)s

foreach my $colnum (1..$$numcols) {

my $col parmdp int = 0;
my $col parmdp = bless \$col parmdp int => 'OCIParamPtr';
0CIParamGet($collst, OCI _DTYPE PARAM, $errhp, $col parmdp, $colnum);

my $describe attr = {
OCI_ATTR_NAME = 0,
OCI_ATTR IS NULL => 1,

1

printf "\n";

192 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

Example 7-1. rawOCLpl—Oracle::OCI in action (continued)

foreach my $attr (sort keys %$describe attr) {
my $type = $describe attr->{$attr};
no strict 'refs';
$status = OCIAttrGet($col parmdp, OCI DTYPE PARAM,
oci buf len(my $tmp, 90),
8$attr, $errhp, $type);
warn "$attr: ".get oci_error($errhp, $status, 'OCIAttrGet')
if $status;

warn get_oci error($errhp, $status)
if $status;

printf "%-20s: %s\n", $col attr{$attr}, neat($tmp);
}
}

Step 5: Logout and detach from the server.
OCIHandleFree($$dschp, OCI_HTYPE_DESCRIBE);
0CISessionEnd($svchp, $errhp, $authp, 0);
0CIServerDetach($svrhp, $errhp, OCI DEFAULT);

Step 6: Clean up memory and deallocate handles.
OCIHandleFree($$svrhp, OCI_HTYPE SERVER);
OCIHandleFree($$svchp, OCI_HTYPE_SVCCTX);
OCIHandleFree($$errhp, OCI_HTYPE ERROR);
OCIHandleFree($$authp, OCI_HTYPE SESSION); # Bye, Bye !l :-)

You can see that this is quite a bit of work. Let’s go through the code and examine
what it is we’re doing:
1. We first ensure that our passwords and all the other usual suspects are sorted
out before initializing the OCI environment.
2. Having initialized, we can now allocate all of our various memory handles.
3. We attach to the server, log in, and establish various attributes.

4. Now we can do some processing. In this case, we describe the various columns
of a target table. We format and print the results as we go.

5. In the final stages, we end the session and then detach from the server.
6. We can now deallocate all of the memory handles.
Once completed, we can run the script with the target table supplied:
$ perl rawOCI.pl DEPT

We received the following output:

TABLE : DEPT

Coding with Oracle::0C1 | 193

ColName : "DEPTNO'

NULL? 1
ColName : "DNAME'
NULL? 1
ColName . 'Loc’

Pure Perl DBl and DBD::Oracle

We did an awtful lot of work in Example 7-1—two pages of code just to get a few
simple column descriptions! What if we’d done something similar in Perl DBI
instead? We’ll do just that in Example 7-2.

Example 7-2. rawDBI.pl
#!/usr/bin/perl -w

use strict;
Pure-ish DBI
use DBI gw(neat);

Step 1: Get the environment right, and set up your target
database and user.

$ENV{ORACLE_SID} ||= "ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger’;

Steps 2 & 3: We initialize and log onto the database.

my ($user, $pass) = split /\//, $dbuser;

my $dbh = DBI->connect("dbi:Oracle:", $user, $pass,
{RaiseError => 1});

Step 4: Now prepare the description of the target table.
my $sth = $dbh->prepare(“select * from $ARGV[0]");

$sth->execute;

Describe the target table.

printf ("\n----------ooooooo- \n");
printf ("TABLE : %s \n", $ARGV[0]);
printf ("----------mmmo- \n");

my %col attr = (
NAME => "ColName",
NULLABLE => "NULL?",
)s

foreach my $colnum (0..($sth->{NUM OF FIELDS} - 1)) {

printf "\n";
foreach my $attr (sort keys %col attr) {

194 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

Example 7-2. rawDBLpl (continued)

my $tmp = $sth->{ $attr }->[$colnum];
printf "%-20s: %s\n", $col attr{$attr}, neat($tmp);

}
}
$sth->finish;

Steps 5 & 6: Logout, clean-up and check out.
$dbh->disconnect; # Bye, Bye !l! 8)

There’s much less work involved using just Perl DBI and DBD::Oracle, especially
with logging on and logging off. Just for the record, we obtained the following
results:

$ perl rawDBI.pl DEPT

TABLE : DEPT

ColName : 'DEPTNO'
NULL? A

ColName : 'DNAME’
NULL? 1

ColName : 'Loc

NULL? 1
So what’s the point of Oracle::OCI—the same result for four times the effort? Has
the stardust of Perl lost its magic? No, it has become more powerful than you can
imagine. What we’re trying to do is get the finely-grained OCI stuff we mentioned
earlier without having to do it all in hundreds of lines of C. We’ll see how shortly.

Mixing and Matching Oracle::0Cl, Perl DBI, and DBD::Oracle

When you need certain OCI functionality that isn’t available in Perl DBI, the most
effective thing to do is to mix and match. Where we can save code using Per] DBI,
we can do that, and where we really need OCI functionality, we can do that too—all
within the same script. As the earlier Figure 7-1 showed, the various interface mod-
ules—Oracle::OCI, Perl DBI, and DBD::Oracle—are all tightly integrated. When
you set up a $dbh database handle with Perl DBI, for example, you get access to all
of the memory handles Oracle::OCI also requires. Take a look at Example 7-3 to see
how we use the best of both the DBI and OCI worlds. In fact, this is why we think
Oracle::OCI may potentially become the very best way of accessing the entire OCI
APl in any language. (See the section called “The Future of Oracle::OCI” at the end
of this chapter.)

Coding with Oracle::0C1 | 195

Example 7-3. blendOciDbi.pl—Combining DBI and Oracle::OCI
#!/usr/bin/perl -w

use strict;
Blended DBI and OCI

use DBI gw(neat);

use Oracle::0CI gqw(:all);

Step 1: Get the environment right, and set up your target
database and user.

$ENV{ORACLE_SID} ||= "ORCL';

my $dbuser = $ENV{ORACLE_USERID} || 'scott/tiger’;

Steps 2 & 3: We initialize and log onto the database.
my ($user, $pass) = split /\//, $dbuser;
my $dbh = DBI->connect("dbi:Oracle:$ENV{ORACLE SID}", $user, $pass);

Step 4: Now prepare the description of the target table, this time
using OCI, after we've established our connection with DBI.

Notice the frequent use of the Perl DBI $dbh variable.

my $tablename = $ARGV[O];

bless $dbh => 'OCIEnvPtr';

0CIHandleAlloc($dbh, my $dschp, OCI_HTYPE DESCRIBE, 0, 0);

bless $dschp => 'OCIDescribePtr';

0CIDescribeAny ($dbh, $dbh, oci buf len($tablename), OCI_OTYPE_NAME,
1, OCI_PTYPE TABLE, $dschp);

Get the parameter descriptor.

OCIAttrGet ($dschp, OCI_HTYPE DESCRIBE, my $parmp, 0, OCI_ATTR_PARAM,
$dbh, 'OCIDescribePtr');

Get the table list, number of columns and description.

OCIAttrCet ($parmp, OCI _DTYPE PARAM, my $collst, o,
OCI_ATTR_LIST COLUMNS, $dbh, 'OCIParamPtr');

OCIAttrCet ($parmp, OCI _DTYPE PARAM, my $numcols, O,
OCI_ATTR_NUM COLS, $dbh, 'OCIParamPtr');

my $errstr;

Describe the target table.

printf ("\n-------o-oooooo- \n");
printf ("TABLE : %s \n", $tablename);
printf ("---------coooeeoo- \n");

my %col attr = (
OCI_ATTR_NAME => "ColName",
OCI_ATTR IS NULL => "NULL?",
)s

196 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

Example 7-3. blendOciDbi.pl—Combining DBI and Oracle::OCI (continued)

my $status;
foreach my $colnum (1..$$numcols) {

my $col parmdp int = 0;
my $col parmdp = bless \$col parmdp int => 'OCIParamPtr';
0CIParamGet($collst, OCI DTYPE PARAM, $dbh, $col parmdp, $colnum);

my $describe attr = {
OCI_ATTR_NAME = 0,
OCI_ATTR IS NULL => 1,
1

printf "\n";
foreach my $attr (sort keys %$describe attr) {
my $type = $describe_attr->{$attr};
no strict 'refs';
$status = OCIAttrGet($col parmdp, OCI_DTYPE_PARAM,
oci buf len(my $tmp, 90),
&$attr, $dbh, $type);
warn "$attr: ".get oci error($dbh, $status, 'OCIAttrGet')
if $status;
warn get oci error($dbh, $status) if $status;
printf "%-20s: %s\n", $col attr{$attr}, neat($tmp);
}
}

Steps 5 & 6: Logout, clean-up and check out.

$dbh->disconnect; # Bye, Bye !l >=8+)

When we ran the code in Figure 7-3 in blendOciDDbi.pl, we received this output:
$ perl blendOciDbi.pl DEPT

TABLE : DEPT

NULL? : 0
ColName : "DEPTNO'

NULL? T 1
ColName : "DNAME'

NULL? T 1
ColName . 'Loc'

With more than 530 OCI functions to choose from, we’re confident you’ll find
exactly what you’re looking for when you combine Perl DBI and Oracle::OCI. For
instance, the following bioinformatics code snippet takes LOB processing a helpful

Coding with Oracle::0Cl

197

bit further than DBI can go. We fetch a LOB locator with DBI, and then process its
genetic information with Oracle::OCI:

my $lob locator = $dbh->selectrow array("select my lob " .
"from human_genome
"where id = 'insulin’
"for update",
{ ora_auto lob => 0 });

Start Oracle::0CI

0CILobGetLength($dbh, $dbh, $lob_locator, my $lob_len = 0);

0CILobTrim($dbh, $dbh, $lob_locator, $lob_len - 2);

Update the Bioinformatics genetic code inside the LOB

my ($offset, $amount, $buffer) = ($lob_len/2, 44, '');

OCILobRead($dbh, $dbh, $lob_locator, $amount, $offset,
oci_buf_len($buffer, 200, \$amount), 0, 0, 0, 0);

$buffer =~ s/ATGC/ACTG/g;

OCILobWrite($dbh, $dbh, $lob_locator, $amount, $offset,
oci_buf_len($buffer), OCI_ONE_PIECE, 0, 0, 0, 1);

Back to DBI

The Future of Oracle::0Cl

We’re sure that within a few years Oracle::OCI will be an advanced, mature set of
packages used by every Perl Oracle user around. Author Tim Bunce actually predicts
that Oracle::OCI will eventually hold the complex code, but that simpler modules
will be layered on top to provide specific functionality. For example, future modules
may include the following:

Oracle::LOB
For dealing with large binary objects

Oracle::DirectPath
For speeding data loads

Oracle::Collection
For collections, index-by tables (associative arrays), and nested tables

Oracle::Transaction
For finely grained remote transactions

Oracle::PLSQL

Another extremely interesting development in the world of OCI will be Oracle::
PLSQL. At the time we were writing this book, this module was planned but did not
yet exist. We expect this module to provide fantastic connectivity between PL/SQL
and Perl. In this way, it will tie in neatly with the extproc_plsql module we describe in
Chapter 8. Using the upcoming Oracle::PLSQL, PL/SQL functions could be mapped
directly to Perl functions, and vice versa, in a way similar to what’s happened with

198 | Chapter7: Invoking the Oracle Call Interface with Oracle::0CI

SQLJ and Java. We expect that eventually there could be room enough for this sym-
biosis of Perl and PL/SQL to manage all of the following Oracle features:

Transparent use of the UTL_FILE built-in package between PL/SQL and Perl
Advanced Queuing

Replication

Standby databases

Parallel servers

Gathering and processing of performance statistics

Building of custom tools with the DBMS_DEBUG built-in package

For instance, Tim Bunce predicts snippets of code, such as the following example,
which works with binary files to load their information into the $buffer variable:

use DBI;
$dbh = DBI->connect('dbi:Oracle:', $user, $pass, { ora_autolob => 0 });
$bfile =
$dbh->selectcol array(
"select bfile from mylobs where id=? for update", undef, 1);

use Oracle::PLSQL;

$dbms_lob = new Oracle::PLSQL DBMS LOB => \$dbh;
$dbms_lob->fileexists($bfile) or die "File missing";

$length = $dbms_lob->filelength($bfile);
$dbms_lob->filegetname($bfile, $diename, $filename);
$dbms_lob->fileopen($bfile, $dbms lob->{file readonly});
$dbms_lob->read($bfile, 40, 1, $buffer);
$dbms_lob->fileclose($bfile);

Stay tuned to the Oracle::OCI dial for further information.

Contributing to the Oracle::0Cl Project

Most Oracle DBAs probably already have their hands full and won’t be interested in
adding to their workload. But if you do want to help with the Oracle::OCI project,
we recommend that you get hold of the latest download and start trying to make it
work for your own needs. It can take a while to get the hang of it, but for practice
you might want to try to replicate the OCI demonstration programs provided by
Oracle Corporation, listed in the next section. For further information on the
project, visit Tim Bunce’s CPAN site where you’ll find numerous presentation down-
loads on DBI, DBD::Oracle, and Oracle::OCI:

http://www.perl.com/CPAN/authors/id/TIMB

The Future of Oracle::0C1 | 199

Demo Programs

If you want to cut your teeth on some hard-core OCI programming, check out the
code examples provided by Oracle Corporation detailing in-depth usage of OCI
calls, available automatically within your current Oracle installation.” These C files,
and supporting SQL files, generally appear in the../rdbms/demo or ../oci/samples
directories. A variety of helpful information is included within the header parts of
these files; for example, you’ll find out what accompanying SQL files need to be pre-
installed, and so on. We’ve listed the OCI 8.1 demonstration programs in Table 7-5.

Table 7-5. OCI demonstrations from Oracle Corporation

C programs
cdemo.c..cdemo5.c
cdemo81.c, cdemo82.c
cdemobj.c
cdemocor.c..cdemocor1.c
cdemodp.c..cdemodp_lip.c
cdemodr1.c..cdemodr3
cdemodsa.c, cdemodsc.c
cdemoext.c

cdemofil.c

cdemofo.c

cdemofor.c

cdemolb2.c, cdemolb2.c, cdemolbs.c, cdemoplb.c
cdemorid.c

cdemort.c

cdemoses.c

cdemosyev.c

cdemothr.c

cdemoucb.c, cdemoucbl.c

Description

Basic SQL processing

Basic Oracle8 SQL session and object processing
REF selection and navigational interface
Demonstrate a prefetching user interface
Loading data through direct path API
Returning values and LOBs, etc.

Used for describing tables

0Cl extraction

0Clfile handling

0Cl callbacks for application failover

0Cl formatting

Working with LOBs

DML prefetches

Type information

Session management

System event registration

0Cl threading

User callbacks

* These are not guaranteed to appear, nor guaranteed to work, by Oracle Corporation, but you’ll generally
find them and they do generally work. They provide excellent templates on which to build your own code,
especially if you wish to help develop Oracle::OCIL.

200 | Chapter7: Invoking the Oracle Call Interface with Oracle::0Cl

Download from Wow! eBook <www.wowebook.com>

CHAPTER 8
Embedding Perl into PL/SQL

PL/SQL is Oracle’s own programming language. 1t©’s a powerful procedural lan-
guage that is tightly integrated with SQL (“PL/SQL” stands for “Procedure Language
extension to Structured Query Language”). It offers a full range of datatypes, condi-
tional and sequential control, looping, exception handling, modular code con-
structs, user-defined datatypes (such as objects), and a lot more. It’s likely that you
have a whole raft of PL/SQL programs that you use daily to perform Oracle database
administration.

With all of its advantages, PL/SQL has a few limitations as well. There are things PL/
SQL programmers want to do that turn out to be impossible, or at least inefficient, to
do with PL/SQL alone. As you might suspect, we think Perl is the ideal supplement
to PL/SQL. By calling Per] modules from your PL.SQL programs (more accurately,
by embedding Perl within PL/SQL), your PL/SQL programs acquire many additional
capabilities:

Mailing and the Internet
It is sometimes difficult to email or connect to the Internet from within PL/SQL,
but there are hundreds of helpful connectivity options available through Perl.

Encryption
PL/SQL offers very little built-in security, but Perl provides access to many differ-
ent types of encrypted security systems. (Later in this chapter we’ll show how we
use the MDS5 message digest algorithm from within PL/SQL via Digest::MD5.)

Operating system commands
Every now and again—perhaps while running complex backup maneuvers—we
run into situations where we’d like to be able to run system commands directly
via the operating system. Perl provides this ability (though, as we’ll see, we will
have to be careful how we use it).

201

Access to C libraries
Perl has literally hundreds of modules providing APT access to the world’s most
popular C libraries. Allowing PL/SQL to access these via Perl extends PL/SQL’s
functional horizons.

Regular expressions
Although Oracle is catching up with regular expressions, particularly with some
of the PL/SQL Web Toolkit packages, such as OWA_PATTERN and OWA_
TEXT, Perl’s regular expression engine is generally held to be the world’s most
powerful. It would be nice to get access to it via PL/SQL.

Overall performance
Before external procedures arrived on the scene, it was a laborious process (usu-
ally necessitating wrestling with the DBMS_PIPE built-in package), to get PL/
SQL to talk to the outside world. It involved complex listener setups, excellent
3GL language skills, plus a good sense of humor and a large Simpsons video col-
lection for post-installation de-stress relaxation.”

With external procedures now capable of linking to Perl, we save a lot of effort, and
our programs run much faster.

Communication Between Perl and PL/SQL

The way you combine Perl and PL/SQL, and get the most out of these two excellent
languages, is with Perl’s extproc_perl module, created by Jeff Horwitz. PL/SQL is
able to communicate with this library via its external procedure C-library system,
which is known as EXTPROC.

What are External Procedures?

External procedure is a generic term for a server-side program that you can compile
into the native “shared library” format of the operating system. Under Unix, a shared
library is a shared object or .so file. Under Win32, it’s a DLL (dynamically linked
library). You can write an external procedure in any language you wish, as long as
your compiler, interpreter, and/or linker will generate the appropriate shared library
format that is callable from the language you have used. Historically, most external
procedures called from PL/SQL have been C programs, but Perl is now becoming a
popular option. This is because it is now possible to embed Perl directly within a C
library via Doug MacEachern’s ExtUtils::Embed module, as shown in Figure 8-1.

* It actually was possible to involve Perl in these older solutions, as we did at the following web page, but we
believe that extproc_perl is a much better solution: hitp://www.cybcon.com/~jkstill/util/debug_pipe/debug
pipe.html.

202 | Chapter8: Embedding Perlinto PL/SQL

MyExecutable.c
_— MyExecutable C program
|
‘ Perl
<EXTERN.h>
= ey T
———— Mp;
‘ (g((’ ((?elte(r) ‘
<perlh> N 1001010100101
—_— 0100101111010
0101010111010
0010110001010
1010101011110

libperl.a

Figure 8-1. Embedding Perl directly within a C library

Embedding Perlin C

The ExtUtils::Embed module was actually developed as a way of embedding the Perl
interpreter within C, via Apache, specifically for mod_perl. Our ability to use it with
PL/SQL is really a byproduct of that development. To find out more about its use,
run the following command:

$ perldoc perlembed

Instead of having to work out all the information necessary to embed Perl into C, all
we have to run now is a command such as the following;:
$ cc - o myCexecutable myCexecutable.c \
“perl -MExtUtils::Embed -e ccopts -e ldopts®

This determines everything your C program will need in order to embed Perl, includ-
ing the three main C-related files held under the Perl library tree: EXTERN.h, perl.h,
and libperla. 1t’s a particularly good technique, because the embedded Perl inter-
preter is still able to read and interpret independent Perl scripts, a fact we rely on
with our embedded Perl system, as we’ll explain later in this chapter. Although the
two header include files are important, it’s the libperl.a archive which is the really
crucial file to include; this archive contains the core of Perl’s interpreter C code.

Calling the Embedded Perl C Library from PL/SQL

Once we’ve compiled our new library with its embedded Perl system (we’ll show
how to do that shortly), we can start using it like any other efficient C-based

Communication Between Perland PL/SQL | 203

EXTPROC library. (We create our new one with a special ExtProc.pm Perl module;
this sits on top of the standard Perl interpreter, plus any other modules, such as Perl
DBI, that we require.)

Let’s look at what happens when you call this embedded Perl C library from PL/SQL
in order to call a particular Perl function; numbers are keyed to the step numbers
shown in Figure 8-2.

1. The process starts with a PL/SQL client application calling a special PL/SQL
“module body.”

2. PL/SQL looks for a special Net8 listener process’ that should already be running
in the background.

3. At this point, the listener spawns an Oracle executable program called EXT-
PROC (note the uppercase name on this program).

4. EXTPROC loads the dynamic library (extproc_perl.so), and then invokes this
library with the specified Perl function call.

5. The library then interrogates a Perl boot script (in this case, ora_perl_boot.pl)
and looks for the requested function.

6. On finding it, it executes the Perl function code, deals with any parameters, and
then returns the results all the way back to the calling PL/SQL client.

7. The extproc_perl.so C library returns these results via the EXTPROC process.
8. The EXTPROC process channels these results into the PL/SQL Runtime Engine.

9. And finally, the PL/SQL Runtime Engine returns these results to the calling PL/
SQL application code.

Embedding Perl Within Oracle

Running extproc_perl is mainly about getting the Oracle external procedures system
working correctly. One of the best general guides we’ve found for these installation
procedures is Chapter 23 of Oracle PL/SQL Programming, 3rd ed. (now covering
Oracle9i) by Steven Feuerstein with Bill Pribyl (O’Reilly & Associates, 2002). For fur-
ther information on Oracle’s external procedures, the best online information source
is perhaps http://technet.oracle.com. Although the pages are very fluid (you may need
to browse around a bit), we found the following pages useful when we were investi-
gating the subject:

http://download.oracle.com/otndoc/oracle9i/901_doc/appdev.901/a88876/adg1 1rtn.htm
Oracle9i Application Developer’s Guide—Fundamentals for Release 1,
Chapter 10, Performing Routine DBA Tasks with the PDBA Toolkit.

* Net8 is known as Oracle Net in Oracle8i and later releases and SQL*Net in Oracle7 and earlier releases.

204 | Chapter8: Embedding Perlinto PL/SQL

Application Oracle Server Oracle Net External Shared Library
(Net8, SQL*Net) (extproc_perl.so)
PL/SQLruntime | Mokes
Q engine ‘IH‘“" External
Makes call pro(edure
Client- or HH') listener
server-side PL/SQL —_—
application ““ml“‘ body SP!IWnsO 11 Ufses code
~ rom...
— [mm'”m DLLor sofile
Returns “m“ EXTPROC with embedded
results @ ‘“‘m‘m Perl
Returns o

results
Returns

results

Perl interpreter

originally embedded

within extproc_perl.so
Clibrary file, by
ExtUtils::Embed

6]

Code returned
and executed

6

ExtProc
.7 gets code

ora_perl_boot.pl

Figure 8-2. extproc_perl in action

http://download.oracle.com/otndoc/oracle9i/901_doc/server.901/a90117/manproc.htm
Oracle9i Database Administrator’s Guide for Release 1, Chapter 5, Embedding
Perl into Apache with mod_perl.

EXTPROC security

Before you get too deeply into the details of extproc_perl, we recommend that you
check out the following page for possible security alerts about EXTPROC, the actual
program spawned by the Oracle external procedure listener processes:

http://otn.oracle.com/deploy/security/alerts.htm

Because of the nature of what EXTPROC does—using external libraries to access the
inside of the Oracle database—we have to be vigilant in our use of the EXTPROC
system provided by Oracle. We recommend that you carefully follow the guidelines
provided in any relevant security advisories you find on the web page we’ve refer-
enced previously.

Embedding Perl Within Oracle | 205

extproc_perl and Win32

Like Oracle::OCI, which we described in the previous chapter, extproc_perl” is still in
something of an experimental stage. At the time this book went to press, there still
wasn’t a PPM available for installation on Win32 systems. Once the module is fully
mature, we’re sure it will become available on a PPM repository. Keep checking at
the following page for more details or at the download sites mentioned in subse-
quent sections:

http://dbi.perl.org

(Compilation on Win32, with commercial compilers, should follow the same logical
steps as the Unix installation process described shortly—your mileage may vary.)

A Detailed Look at extproc_perl

Figures 8-3 and 8-4, in combination, show how we can track the dynamic calling of
an external Perl procedure from within a PL/SQL code block. (We’ve also included
some Oracle library configuration information in Figure 8-3 that is presented in
greater detail later in this chapter.)

)

Listener receives signal

Oracle database

EXTPROC

PL/SQL
code

o Message transmitted by PL/SQL:
FUNCTION called is“perl”
Function arguments are (arg1..argN)
Function lives in LIBRARY “PERL_LIB"
PERL_LIB located at SORACLE_HOME/lib/extproc_perl.so

Launch EXTPROC
process

Figure 8-3. PL/SQL’s active linkage to extproc_perl #1

Let’s see what’s going on here:

1. From deep within the database, the PL/SQL program broadcasts to the EXT-
PROC listener. It sends out targeting information, stored within library and
function declarations, so the listener can locate the correct code within the exter-
nal procedure. It also sends any required parameters.

2. The listener picks up the signal from the PL/SQL engine.

* Also known as the “Oracle Perl Procedure Library.”

206 | Chapter8: Embedding Perlinto PL/SQL

Q@L Q PL/SQL and the outside
,\;\Q world are connected by
EXTPROC until client

‘ - session ends
1

extproc_perl.so

Perl
Oracle database m
PL/SQL ExtProc
code (DB, etc.)

‘ ora_perl_boot.pl |

Figure 8-4. PL/SQL’s active linkage to extproc_perl #2

3. It then launches the EXTPROC rocket program (or spawns it, as the manuals
say, which is too Borg for those of us who are followers of the One True Kirk.)

4. Once EXTPROC is deployed, it takes over mission control, and coordinates the
entire operation between the PL/SQL ground station and the external C program
agents. It maps shared code pages into the address space of the user process and
maintains this link until the client session completes. It then retracts its panels
and splashes back down, to be sent up again on later missions. While on sta-
tion, EXTPROC deals with all requests by the client session for external proce-
dural help.

Downloading extproc_perl
You can download the latest stable version of extproc_perl from here:

http://www.smashing.org
http://www.cpan.org/modules/by-authors/Jeff_Horwitz

Setting Up External Procedures

Setting up external procedures is not simple. You will need to do quite a bit of work
to get the setup right. We’ve summarized the main steps here; in the following sec-
tions we’ll show the details for each point:

Embedding Perl Within Oracle | 207

* Add a tnsnames.ora entry for the EXTPROC listener process, which calls the
EXTPROC program. This should be installed in SORACLE_HOME/bin.

* Edit the listener.ora file by adding an entry for the “external procedure listener.”

* Start a separate listener process to exclusively handle external procedures.

N
o The EXTPROC process, launched by the listener, inherits the operat-
o ing system privileges of the listener. Therefore, Oracle recommends
AN Y
112, that privileges for a separate listener process be made restrictive. They

should lack the ability to read or write to database files or to the server
address space. To provide this level of security, you may want to run
your listener as an OS user with limited permissions, such as nobody.

Now let’s look at the setup details:

1. With every significant release of Oracle, the configuration of the .ora files in
$ORACLE_HOME/network/admin seems to change. We recommend that you
refer to your own installation configuration details for the exact setup required
by your system. We’ll concentrate on the logical semantics here, rather than the
exact details for each version. A typical tnsnames.ora, on the same server as the
listener, should be given a new entry such as the following. (This is different for
Oracle9i; see the discussion later for details):

extproc_connection_data =
(DESCRIPTION =
(ADDRESS = (PROTOCOL=IPC)(KEY=extproc_key))
(CONNECT_DATA = (SID = extproc_agent)
)
In some examples, the basic entry name, extproc_connection_data, is fixed. How-
ever, even if this is the case in your version of Oracle, it may need a suffix if your
sqlnet.ora contains a default domain name such as:

NAMES.DEFAULT_DOMAIN=ORACLE.OREILLY.COM

You may need to change the server tnsnames.ora entry name to match the
domain name entries as follows:

extproc_connection data.ORACLE.OREILLY.COM = ...

2. However, the key you specify (in this case extproc_key) must also match the KEY
you specify in the listener.ora file. In addition, the SID name you specify (in this
case extproc_agent) must match the SID entry in the listener.ora file. (You may
just want to call everything extproc to keep it simple.) In the following, we’ve
attached entries to a new listener entry in order to run up a separate listener
purely for external procedures:

EXTERNAL_PROCEDURE_LISTENER =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL=ipc)

208 | Chapter8: Embedding Perlinto PL/SQL

(KEY=extproc_key)

)
)
SID_LIST EXTERNAL_PROCEDURE_LISTENER =
(SID_LIST =
(SID DESC = (SID NAME=extproc_agent)
(ORACLE_HOME=/u02/app/oracle/product/8.0.4)
(PROGRAM=extproc)
)
)

3. Note the following conditions for the preceding listener.ora example:

The EXTPROC program is conventionally referred to as extproc in lower
case.

The ORACLE_HOME must be set to the Oracle software home.
The EXTPROC executable must exist in §ORACLE_HOME/bin.

However, in Oracle9i, most things are automatic with PLSExtProc. With a
small change to DBD::Oracle, described later, this is fine. Let’s examine two
snippets from the two main Oracle9i .ora files. First, listener.ora:

(SID DESC =
(SID_NAME = PLSExtProc)
(ORACLE_HOME = /opt/oracle/product/9.0.1)
(PROGRAM = extproc)

)

And now, tnsnames.ora:

EXTPROC_CONNECTION DATA.LOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
(CONNECT _DATA =
(SID = PLSExtProc)
(PRESENTATION = RO)
)
)

4. Once ready, we can start up a separate listener as a low-privilege user:

$ lsnrctl start EXTERNAL PROCEDURE_LISTENER

Once the listener is running successfully, we can skip the following section. How-
ever, it may prove useful if you encounter any listener problems.

Debugging External Procedure Listeners

You’ll be among friends if your listener setups refuse to work first time around. This
badge of honor even has a special debug routine to help you; look for the following
file under ORACLE_HOME:;

dbgextp.sql

Embedding Perl Within Oracle | 209

Before you install this file, be sure to read it; it contains some good documentation
regarding how you can make use of it with debugging programs.

Now follow these steps:

1. In a perfect world, you should get no errors when you execute the STARTUP_
EXTPROC_AGENT procedure. Notice that in addition to CONNECT and
RESOURCE, other important privileges granted to the new user include both
CREATE ANY LIBRARY and DROP ANY LIBRARY:

SQL> connect system/manager

SOL> create user extproctest identified by extproctest;

SOL> grant connect, resource to extproctest;

SQL> grant create any library, drop any library to extproctest;
SOL> connect extproctest / extproctest

SOL> @?/plsql/demo/dbgextp.sql

SOL> call DEBUG_EXTPROC.STARTUP_EXTPROC_AGENT();

Call completed.

2. If STARTUP_EXTPROC_AGENT refuses to fire, this will indicate that the .ora
files have a configuration problem of some kind. Once everything’s ship shape,
drop this test user:

SQL> connect system/manager;
SOL> drop user extproctest cascade;
A w

The DEBUG_EXTPROC package can be made to work with popular

C program debug utilities. If you don’t have a debugger on your sys-

'y s . X

1k tem and you're using gec, you will be able to use the excellent gdb

" debugger, which is designed to work hand-in-glove with gcc. See http://
www.gnu.org/software/gdb/.

qs
[
N

Building a New Perl

Before doing anything else, you will need to establish whether you’re using a Perl dis-
tribution with a shared libperl. This is a pre-condition for extproc_perl. In the follow-
ing sections we’ll see how to find this out and how to build a new Perl if you need to
do so.

The need for a shared libperl
To find out if you are using a Perl distribution with a shared libperl, you can issue the
following;:

$ perl -MConfig -e 'print "$Config{useshrplib}\n"’

false
Alas, false was the wrong answer. But, every cloud has a mithril silver lining. Because
we’re pointing Perl directly into the heart of the Oracle database, we’ll do as Jeff
Horwitz actually recommends and build a special version of Perl, just for Oracle’s

210 | Chapter8: Embedding Perlinto PL/SQL

use. This way, we can do all the things we need to do without clobbering anyone or
anything else along the way.

We're also going to make use of a DBD::Oracle patch, supplied within the extproc_
perl download, to rebuild Perl DBI. This makes it doubly sensible to break out a
fresh Perl to play with.

Because Oracle lacks support for the dynamic loading of shared objects from exter-
nal procedures, Perl’s Dynaloader is compromised. We have to load shared objects
from targeted modules at runtime, and this static architecture requires XS hooks,
special pleading, and a delegation of Papal Nuncios from Rome. Building a brand
new Perl is definitely the way to go!

Building Perl for the oracle user

In this section, we’ll work through how to build a brand new Perl for the oracle user.
You may want to breeze through Chapter 2, Installing Perl, again to remind yourself
about the basics of Perl installation, but we’ll do an abbreviated installation run right
here and now, and assume that the oracle user’s HOME directory is:

/opt/oracle

If security is an issue, you may wish to create this new Perl for whichever user you
run your listeners with (see our earlier note on listener security):

1. Once the Perl installation user is chosen, you may want to create a new direc-
tory in the $HOME directory (to store the forthcoming downloads) and a related
perl/bin directory (where we’ll ultimately install Perl):

$ cd $HOME
$ mkdir perldown
$ mkdir -p perl/bin

2. Next, get and unpack stable.tar.gz from http://www.perl.com/CPAN/src:

$ cd ../perldown

$ gzip -d stable.tar.gz
$ tar xvf stable.tar

$ cd perl-5.6.1

3. Configure in a shared libperl and a Perl home of /opt/oracle/perl:
$ rm -f config.sh Policy.sh
$ sh Configure -Dprefix=/opt/oracle/perl -Duseshrplib
The configurator will ask lots of questions, depending on your setup. We have to
be careful here and resist pumping the RETURN key like a Motérhead drum-
mer. You must say “no” to the following question:

Many scripts expect perl to be installed as /usr/bin/perl.

I can install the perl you are about to compile also as /usr/bin/perl
(in addition to /opt/oracle/perl/bin/perl).

Do you want to install perl as /usr/bin/perl? [y] n

This is an exception; aside from the use of a shared libperl, we do intend to build
a totally regular, though local, Perl.

Embedding Perl Within Oracle | 211

4. Once Perl is configured, run make:
$ make
5. You may find time to make a nice hot cup of tea, while the Per]l monkey spends a
couple of minutes churning the compilation organ. When it’s completed, check
it over:
$ make test
. All tests successful.
u=0.93 s=0.12 cu=64.77 cs=8.81 scripts=249 tests=12503
6. Now let’s go create (note that for once we can avoid doing this as root):
$ make install
7. At some point during this installation, you may get the following warning:
Warning: perl appears in your path in the following locations
beyond where we just installed it: /usr/bin/perl
This is kind of like a private sentry turning back a known Four Star General
because of a forgotten password; it’s a good thing. To get around this, we must
make sure our local hero Perl comes ahead of any others when we compile our
library. Once the compilation has finished, you’ll still see the older Perl before
our nice new sparkling one:

$ type perl
perl is hashed (/usr/bin/perl)

We can get round this immediately by resetting PATH:
$ export PATH=$HOME/perl/bin:$PATH

$ type perl
perl is /opt/oracle/perl/bin/perl

(We’'ll also have to do this more permanently via whatever profiling system we’re
using, to ensure that our oracle user always gets the right Perl.)
8. Now, the proof of the Christmas pudding is in the eating, so let’s see if we’ve
acquired the use of a shared libperl. Go to it, Red:
$ perl -MConfig -e 'print "$Config{useshrplib}\n"
true

Way to go!

Next, we can move on and install Perl DBI and DBD::Oracle over the fresh new Perl.

Perl DBI and DBD::Oracle

As Figure 8-5 shows, once PL/SQL calls the embedded Perl interpreter via external
procedures, it’s pretty much out on a limb in the outside world. Therefore, although
we can return ordinary values to the host database, we need to use DBI (using its
own form of SQL) if we wish to loop back. This loopback behavior is displayed in
Figure 8-6. (Notice that we can connect to other databases as well, although we have
to establish a proper connection in these cases.)

212 | Chapter8: Embedding Perlinto PL/SQL

e Outside world ' Oracle ------------------- >

extproc_perl.so library

Ccode od
Oracle Call PL/ 3Q|-
10 : Interface code
Embedded h— Oracle database
Perl
/1 OCIExtProcContext
ExtProc::0CIExtProcContext | | | OCIExtProcGetEnv
(Main embedded Perl OCIExtProcRaiseExcpWithMsg
element in use) OCIExtProcAllocCallMemory
- (Main OCl elements in use)
Figure 8-5. The basic circuitry of extproc_perl
B Outside world : Oracle >
extproc_perl.so library

Ccode |_| s

engine
I || !
Embedded Remote Oracle database
Perl :

.. |-_| SQL

DBD::Oracle I_l engine
T | OCIExtProcContext |

ExtProc.pm I D Pl-g 32'—

Host Oracle database

Figure 8-6. Using Perl DBI in loopback mode

The importance of OCIExtProcContext

The OCIExtProcContext structure from OCI, originally set up when extproc_perl is
first called, gives DBI the ability to remain within the current PL/SQL transaction.

Embedding Perl Within Oracle | 213

Download from Wow! eBook <www.wowebook.com>

This prevents the need for a new database connection to be set up. (We’ll say more
about this shortly.)

There is a slight complication to DBI, however, caused by the use of
OCIExtProcContext. In order to get DBI to work within our Oracle Perl interpreter,
we needed to apply a patch to DBD::Oracle. This patch will be included in versions
of DBD::Oracle, from 1.13 onward, but the extproc_per-0.93.tar.gz tarball we down-
loaded had the patch designed for DBD::Oracle 1.08, and we were still on DBD::
Oracle 1.12. To deal with this incompatibility, we therefore obtained DBD::Oracle
1.08, just to make sure the patch we had access to would work as expected. To com-
plete our tarball set, we obtained the following files, including Digest::MDS5 for test-
ing purposes, and copied them to /opt/oracle/perldown:

http://www.cpan.org/authors/id/TIMB/DBI-1.20.tar.gz
http://www.cpan.org/authors/id/TIMB/DBD-Oracle-1.08.tar.gz
http://www.cpan.orglauthors/id/[HORWITZ/extproc_perl-0.93.tar.gz
http://www.cpan.org/authors/id/GAAS/Digest-MDS5-2.16.tar.gz

Before we went into combat, we extracted the Perl ammunition:

$ gzip -d *.gz

$ tar xvf DBI-1.20.tar

$ tar xvf DBD-Oracle-1.08.tar

$ tar xvf extproc perl-0.93.tar
$ tar xvf Digest-MD5-2.16.tar

You may want to get rid of all these .tar files when you’ve finished the installation,

but we always tend to keep these until the bitter end, along with our lucky rabbits’
feet.

Patching DBD::Oracle

At this point, you may find it useful to go into the extproc_perl distribution direc-
tory, and check on the documentation:

1. Open up the README.DBI. This contains the information on the DBI patch:

$ cd extproc_perl
$ vi README.DBI

2. We also need to make sure we’re using the right Perl:

$ type perl
perl is hashed (/opt/oracle/perl/bin/perl)

3. Now we can install DBI, confident that we’re dealing with the right Perl agent
(those agents can get tricky when you’ve got more than one of them):

$ cd ../DBI-1.20
$ vi README

$ perl Makefile
$ make

$ make test

$ make install

214 | Chapter8: Embedding Perlinto PL/SQL

Writing
/opt/oracle/perl/lib/site perl/5.6.1/i686-1inux/auto/DBI/.packlist
Now the patch comes into play. Go to DBD::Oracle’s installation home:
$ cd ../DBD-Oracle-1.08

4. It’s time to start up our target Oracle database and make sure its listeners are
fired up. Make sure that ORACLE_HOME, ORACLE_SID, and ORACLE_
USERID are all set, as per the DBD::Oracle README file:

$ export ORACLE_USERID=scott/tiger@orcl.world

$ env | grep ORACLE

ORACLE_SID=orcl.world

ORACLE_USERID=scott/tiger@orcl.world

ORACLE_HOME=/opt/oracle/product/9.0.1
The DBD::Oracle patch is worth a look if you have time. You’ll notice a sus-
tained use of OCIExtProcContext and other OCI code elements, as from Figures
8-5 and 8-6. We’ve detailed a snippet or two here:

#ifdef OCI V8 SYNTAX

+ SV **svp;

+ struct OCIExtProcContext *this ctx;

+ if (sv_isa(*svp, "ExtProc::0CIExtProcContext")) {
+ IV tmp = SVIV((SV*)SVRV(*svp));

+ this ctx = (struct OCIExtProcContext *)tmp;

+ }

5. To patch DBD::Oracle, carry out the following steps:
$ cp dbdimp.c dbdimp.old
$ chmod 644 dbdimp.c
6. Now move down a directory, as the patch is designed to be applied from the par-
ent directory:

$cd ..

$ cp extproc_perl/DBD-Oracle.patch .

$ patch -po < DBD-Oracle.patch

patching file "DBD-Oracle-1.08/dbdimp.c’

$ cd DBD-Oracle-1.08

$ 1s -la dbdimp.* | grep -v '.h'

-r--T--T-- 1 oracle oinstall 57336 Apr 7 12:02 dbdimp.c
-r--Y--Y-- 1 oracle oinstall 56354 Apr 7 12:01 dbdimp.old

Note the slightly larger dbdimp.c file.
7. Oracle9i users and anyone else with a PLSExtProc listener instance may want to

make a very small manual change to the dbdimp.c file before compiling. Look for
the following line:

if (!strncmp(dbname,"extproc”,7)) is extproc = 1;

Embedding Perl Within Oracle | 215

Change this to:
if (!strncmp(dbname, "PLSExtProc",10)) is extproc = 1;
This will ensure that the correct database context is called later on.
8. We can now install DBD::Oracle as usual:

$ perl Makefile.PL

$ make

$ make test

$ make install
You may also want to install other modules at this point—for example, Digest::MDS5
or anything else from CPAN that catches your fancy. Because we’re embedding Perl
into a C library, we have to embed everything along with it that we might need later.
Fortunately, the main module that makes extproc_perl possible, ExtProc.pm, will
always be installed automatically.

Connecting back to the host database

As far as the host database goes, when you call the external procedure you remain
permanently connected to the database as the PL/SQL client user. However, to use
DBI for host callbacks, you can make use of the OCIExtProcContext object, as noted
earlier. Fortunately, ExtProc.pm has made this easy. You simply use it to grab the
database context from within the bootstrap .pl script file and then use the following
code to phone home:

use DBI;
use ExtProc;

Pick up the current OCI context
my $context = ExtProc::context;

Call back to the host database

my $dbh = DBI->connect("dbi:Oracle:extproc”, "", "",
{ 'context' => $context });

Here’s what’s going on:
1. Notice that there is no user or password required with the DBI->connect state-

ment. You're still technically logged into the database as the user who’s running
the actual PL/SQL and are still part of the current transaction.

2. Notice as well the database SID, extproc within the DBI driver setup string (you
may wish to change this to PLSExtProc, depending on your setup):
dbi:Oracle:extproc
If you choose a more standard connection, such as dbi:Oracle:orcl, you’ll create a
proper DBI connection, which incurs significant overhead. You’ll also need to
supply a user and password. Using dbi:Oracle:extproc is also much faster, as it’s
tuned directly into OCL

216 | Chapter8: Embedding Perlinto PL/SQL

3. Alternatively, if you wish to connect to a remote database or to connect as
another database user, just connect with DBI normally and follow its standard
scott/tiger@my_remote_database_sid pattern. For example:

my $dbh =
DBI->connect("dbi:Oracle:my_remote_database_sid", "scott", "tiger",
{ RaiseError=>1, AutoCommit=>0 });

Installing extproc_perl

We can now move on to the actual installation of extproc_perl. Switch over to the
/lextproc_perl directory and ritually scan the installation files:

$ cd ../extproc_perl

$ vi README INSTALL

Note that the INSTALL file is the one you want to be checking here, rather than
README.

ora_perl_boot.pl

Before configuration, we created a bootstrap Perl script file, ora_perl_boot.pl; at run-
time, the C library will scan this file for functions. ora_perl_boot.pl contains the sub-
routines we’ll be calling later from within PL/SQL. The name of this file on the
configuration step will default to:

$ORACLE_HOME/1ib/ora_perl boot.pl

This seems to be a sensible name. We don’t actually have to create this bootstrap file
right now (see the note later in this section), but it seems a good time to illustrate
doing so. In addition, although test routines are not necessary right now, this also
seems as good a time as any to write some in a new $ORACLE_HOME/lib/ora_perl_
boot.pl file. (See Example 8-1, and notice our alternative use of PLSExtProc in Test 4,
for database context.)

Example 8-1. The ora_perl_boot.pl bootstrap file
sub localtime { # Test 1 - What's the time Mr Wolf? :-)
my $x = localtime(time);

return $x;

1
sub 1s { # Test 2. ==> Hey, this could be rather dangerous! <==

my ($lsarg) = @ ;
$lsarg ||= '.";

my $1s = '/bin/ls -1';
my $lsret = gqx($ls $lsarg);
return $lsret;

Embedding Perl Within Oracle | 217

Example 8-1. The ora_perl_boot.pl bootstrap file (continued)

sub mdshex { # Test 3 - A little enigmatic encryption :)
my ($data) = @_;
use Digest::MD5;
my $ctx = Digest::MD5->new;
$ctx->add($data);
my $digest = uc($ctx->hexdigest);

return $digest;

}

sub tab_keyword { # Test 4 - Using DBI call-back context
Pick up the current OCI context and recall host.

use DBI;
use ExtProc;

my ($keyword) = @ ;

my $context = ExtProc::context;
my $dbh = DBI->connect("dbi:Oracle:PLSExtProc", "", "",
{RaiseError=>1, context => $context});

Viewing all SYSTEM tables, formatted

my $sth = $dbh->prepare("SELECT table name " .
"FROM user tables ");
$sth->execute;

$sth->bind columns(\$table name);
my $return string;

my $counter = 0;

while ($sth->fetch) {

$table name = lc($table name);
$table name =~ s/($keyword)/uc($1)/ieg; # Hey, Regular

Expressions!!! 8-)
$counter++;

if ($counter > 4) {
$counter = 1;
$return_string .= "\n";
}

$return_string .= sprintf("%-30s ", $table name);

218 | Chapter8: Embedding Perlinto PL/SQL

Example 8-1. The ora_perl_boot.pl bootstrap file (continued)

$dbh->disconnect;
return $return string;

You can create this boot file after the installation if you wish. As long
as the subsequent installation knows where to expect to find it, that’s
&+ good enough. You can also change the boot file after the installation to
" add extra subroutines, extra parameters, and so on. The only restric-
tion is that you must use basic Perl, pre-installed modules, or pure Perl
modules. If you wish to use a new optional module—for example,
Oracle::OCl—you must rebuild the extproc_perl.so library with the
Oracle::OCI module explicitly mentioned in the build process. Every-
thing you wish to use has to be included within the extproc_perl.so
library file, although rebuilding this is fairly painless once you’ve suc-
cessfully set up the EXTPROC listener process.

Example 8-1 is not a polished subroutine collection. At this point, we’d recommend
that you go back and check the Is() subroutine in the example. You could almost
drive a Saturn V rocket through its security (or lack of it)! (See Figure 8-7 a bit later
for more details.) You will need to watch out for this kind of thing if you employ the
rocket thrust power of extproc_perl. For more on Perl security, check out:

$ perldoc perlsec

Installation steps
Follow these steps to install extproc_perl:

1. Depending on the Oracle version, some header files may be missing from the
locations where extproc_perl (originally developed on Solaris) expects to find
them. You may have to symbolically link them in where appropriate. For now,
though, let’s assume that all the files are where we need them:

$ perl Makefile.PL

This step will ask several questions. Because of the restriction on dynamically
loaded Perl modules, we have to specifically embed Perl modules statically
within our external procedure library via the extproc_perl configuration process.
The Makefile.PL configurator will automatically suggest several modules you
might like to include. In addition to these, we’ll also add the DBI, DBD::Oracle,
and Digest::MDS5 modules, which we’ll be testing later via subroutine md5hex()
in the boot file:
Modules to include in this

build [IO Socket attrs]: IO Socket attrs Digest::MD5
DBI DBD::Oracle <RETURN>

Embedding Perl Within Oracle | 219

2. We also accepted the default name and location for the bootstrap file:

Path to bootstrap
file [/opt/oracle/product/9.0.1/1ib/ora_perl_boot.pl]: <RETURN>

3. It’s time to compile:
$ make
We hope you have as much fun as we did with the make step!
4. We can now create our special library file, which also automatically installs the
essential ExtProc.pm Perl module:
$ make install

*** You should now copy extproc_perl.so to a convenient location.

So, Mr. Bond, did we cut the library file from the Monte Carlo card pack?

$ 1s -1a *.so
-IWXI-xr-x 1 oracle oinstall 13008 Apr 7 12:18 extproc_perl.so

You win again, Mr. Bond, but we’ll be back! Having created a shiny extproc_
perl.so library, we place it where Oracle can find it later. §ORACLE_HOME/lib
seems the most natural place:

$ cp extproc_perl.so $ORACLE_HOME/lib
Now there’s just one more hurdle before the home stretch; we’ll discuss it in the
next section.

R
s

There are two built-in extproc_perl functions detailed in the README.
special file. The first is _version, which supplies the current extproc_
tit perl version, and the second is _flush, which destroys the current Perl
" interpreter and all the Perl data; a new interpreter is started for the
next query. (You’ll see _flush in action at the end of the chapter in
Figure 8-9.)

Deploying extproc_perl

All of the operating system elements are now in place for being able to use extproc_
perl. The final task is the creation of the actual PERL_LIB library within the data-
base and its associated perl function. We’ll do this in Example 8-2; you can change
this code and add more parameters to suit your own environment, either now or at a
later time.

Example 8-2. Creating the PERL_LIB library and perl function

CREATE OR REPLACE LIBRARY PERL_LIB IS
"/opt/oracle/product/9.0.1/1ib/extproc_perl.so'
/

show error library perl lib

220 | Chapter8: Embedding Perlinto PL/SQL

Example 8-2. Creating the PERL_LIB library and perl function (continued)

CREATE OR REPLACE FUNCTION perl (
sub IN VARCHAR2, argl in VARCHAR2 default NULL,
arg2 in VARCHAR2 default NULL, arg3 in VARCHAR2 default NULL,
dummy in VARCHAR2 default NULL

) RETURN STRING AS

EXTERNAL NAME "ora perl sub"

LIBRARY "PERL_LIB"

WITH CONTEXT

PARAMETERS (

CONTEXT,

RETURN INDICATOR BY REFERENCE,
sub string,

argl string,

argl INDICATOR short,
arg2 string,

arg2 INDICATOR short,
arg3 string,

arg3 INDICATOR short,
dummy string,

dummy INDICATOR short

)s

/

show errors function perl;

create public synonym perl for perl;

grant execute on perl to public;

Testing extproc_perl
To recap, here’s what we’ve done to get ready to run extproc_perl:

* The external procedure listener is running and ready to spawn EXTPROC.

* The PERL_LIB library has been created, along with the related perl function,
and has been made available to public.

* The extproc_perl.so library has been compiled and is accessible to EXTPROC.

* The ora_perl_boot.pl bootstrap file has been put in place; it is waiting now for
calls from the perl function via extproc_perl.

Oh, what a tangled web we’ve woven—but one with a huge potential problem. Let’s
do some testing. You can see our first two tests being called in Figure 8-7; note the
security implications of our Is subroutine. Figure 8-8 shows our third test; note how
the addition of the mdShex encryption subroutine adds a necessary degree of secu-
rity.

Figure 8-9 shows our final context link back to Perl DBI, and the use of regular
expressions. This Perl routine’s purpose is to list all of the tables in USER_TABLES

Embedding Perl Within Oracle | 221

@ a Konsole m

File Sessions Seffings Help |

SOL> select perl!'localtime'} localtime From dual: =
LOCAL TIME

Sun Apr 7 12358135 2002

SUL> =elect
2 perli'ls'. ' fopt/oracledproduct /9.0, 1/Apache/Arache foonf FssLukey '
3 fron dusl:

FERL (LS. ' /OPT/0RACLE/PRODUCT /9.0, 1 /RPACHE AAPACHE /CONF /SSLLKEY '3

1 oracle oinstall 887 Jun 27 2000 demc2CAkey.pem
1 aracle oinstall 887 Jun 27 2000 serwer,key

D New'[@Knnsn\e

[« 11

Figure 8-7. extproc_perl—tests 1 and 2

@= Korrsole . ——|

File Sessions Seftings Help

SOL> create table wdS_test {username varchar2i30).psssword varchar2 (10} . password_chksum varchar2{323): =
Table created.

SOL> insert into ndS_testiusername, password) values ¢ 'SCOTT', ‘biger'):
1 row created,

SOL> update mdS_test set password_chksum = perl{'mdShex' . password:

1 row updated,

SOL> select = from ndS_test:

LISERHAME PASSWORD PASSWORD_CHKSUM

SCOTT tiger 4ZRIOF2040596 10F 198BFCES22F 1ERSFA

D New' @Konsole

Figure 8-8. extproc_perl—test 3

and to highlight a chosen string—in this case, COL. Notice the use of _flush, the
built-in function that clears out the Perl interpreter beforehand.

&+ Konsole <2 ——

File Sessions Seftings Help ‘

SUL> select perl{’'_flush'} from dual: -
PERL (' _FLUSH"'»

SOL> select perld'tab_kegword'. 'COL'} report From dual:

REPORT

ao%_internst_sgents ag¢_internet_agent_privs a0®_cueuss s _cueue_tehles

a#_schedules au def #_aacall def #_aqerror

e *_calldsst. def+_defaultdest def ¢ dest ination def ¢_error

ciefs_Lob defs_origin def §_propagator def#_pushed_transact ons

cef s tempslob help Lognnr_attrCOL* Lognnr_attributes

Lognnr_cCOL# loznnr_cdsf+ loganr_COL# Loznnr_COLtupe+

Lognnr_dict isnarys logmnr_dictstates Logwnr_headsrls Lognnr _header2s L |
Lognmr_iCOL$ Logmnr_ind$ logunir_lobs lognmr_logs fal
Lognnr_ch, i lognnr_processed_log# lognnr_session® lognnr_spills [2]
lognnr_tab+ lognnr_tabcompart + lognnr_tabpart £ lognnr_tabsubpart# v

0O Newj) s

Figure 8-9. Callback DBI, using ExtProc context

As Laurence Olivier might have said, we’ll leave it to your imagination to fill in the
many and varied possibilities of using extproc_perl. Suffice it to say that through
extproc_perl you now have the entire range of Perl and CPAN modules to play

222 | Chapter8: Embedding Perlinto PL/SQL

with—including mailing, regular expressions, FTP, Telnet, IO::Socket, and all the
other golden gems of Perl Internet functionality. If you’re interested in encryption
and related security operations, you’ll find that you now have a full range of Perl
security modules available, including Authen::ACE, Crypt::Beowulf, the various mes-
sage digest algorithms, and the Crypt::Twofish2 encryption module. You can see the
ever-growing list of Perl security modules at http://search.cpan.org/Catalog/Security/.

Embedding Perl Within Oracle | 223

PART Il
The Perl DBA Toolkit

This third part of the book describes the Perl Database Administration (PDBA)
Toolkit, a set of Perl scripts and reusable modules that we’ve developed to help
Oracle DBAs perform both routine database administration and more advanced
monitoring and tuning. It consists of the following chapters:

Chapter 9, Installing the PDBA Toolkit, introduces the components of the
Perl Database Administration Toolkit and explains how to install it and build
the toolkit’s password server.

Chapter 10, Performing Routine DBA Tasks with the PDBA Toolkit, describes
the toolkit’s Perl scripts that help DBAs perform day-to-day administration.
We’ll cover managing user accounts, maintaining indexes, killing sniped
sessions, managing extent usage, and extracting DDL (Data Definition
Language) and data.

Chapter 11, Monitoring the Database with the PDBA Toolkit, describes the
toolkit’s Perl scripts that can be used to monitor both the Oracle alert log
(containing database error and status messages) and the connectivity of the
databases.

Chapter 12, Building a Database Repository with the PDBA Toolkit, describes
the toolkit’s Perl scripts that allow you to build a repository in which to store
information about the many changes made to an Oracle database’s tables,
indexes, roles, schemas, and other objects.

Chapter 13, Extending the PDBA Toolkit, provides information that will be
helpful if you decide to modify any of the scripts or modules in the toolkit.
We'll take a detailed look inside one of the toolkit’s scripts and modules and
illustrate how you can change them to suit your specific database
administration needs.

225

CHAPTER 9
Installing the PDBA Toolkit

In earlier chapters we looked at a number of applications that Perl programmers have
developed to help you perform Oracle database administration tasks. In this part of
the book we’ll introduce our own toolkit of scripts and modules written in Perl.
These scripts are also aimed at Oracle DBAs and focus on areas of database adminis-
tration that aren’t covered in the other applications we’ve examined. You will find all
of the toolkit code freely available on the O’Reilly web site (see the Preface for
details).

Rather than being a ready-made application, you can think of the Perl DBA Toolkit
(PDBA, for short) described in this chapter and the following ones as a collection of
resources. You can run the scripts as is, or you can build on them in any way you
wish. Think of the scripts provided in the toolkit as a handy collection of sailing
knots and rigging splices that you can use for tying various Perl modules together
into the best Oracle DBA solution for your own needs.

In this chapter, we’ll cover these topics:

Introducing the toolkit and its core modules
We'll explain the contents of the toolkit and describe the functionality of the
common modules that are used by many of the Perl scripts described in subse-
quent chapters.

Installing the toolkit
We’ll describe how to install the toolkit on Unix and Win32 systems.

Configuring the toolkit
After installation, we’ll explain how you can configure the toolkit with users,
passwords, and other system-specific characteristics to meet your own site’s
needs.

Subsequent chapters describe different components of the toolkit in greater detail.

227

One part of the toolkit, the PDBA repository, requires special installa-
tion procedures; those are covered in Chapter 12, Building a Database
W Repository with the PDBA Toolkit, not in the general installation pro-
" cedures described in this chapter. If you do not need the capabilities
provided by the repository, you can simply skip that chapter and the
repository installation.

Introducing the PDBA Toolkit

Your authors have been Oracle DBAs for many years. Over that time we’ve encoun-
tered our share of frustration with database problems and inadequate tools. We've
also ended up writing literally thousands of ad hoc scripts to diagnose and fix prob-
lems on the fly. We’ve checked database connectivity, monitored the Oracle alert
log, wrestled with password management, rebuilt indexes, and endured the drudg-
ery of creating thousands of user accounts. We've used many programming lan-
guages and applications. Some we’ve loved and others we’ve hated. Some did the
trick, but at a huge cost in money and complexity. Then we discovered Perl and real-
ized how helpful it could be in developing those quick scripts so essential to an Ora-
cle database administrator. Perl—and the modules that connect it to Oracle—gave
us the keys to the kingdom!

The Perl DBA Toolkit is our own ongoing open source contribution to the world of
Perl and Oracle. We have pooled our own script libraries and modules in order to
build a cohesive Perl tool library for you to use in performing Oracle database
administration tasks. Many of the scripts included here are integrated versions of
those we’ve used on a regular basis in our DBA activities over the years. Others have
been on our wish lists for a very long time, and this book has finally inspired us to
transfer these wishes into reality.

It’s up to you how you want to use this toolkit. It serves as a complete, standalone
application, and it also provides a helpful template for you to use in doing Perl pro-
gramming of your own. In building this toolkit, we’ve tried to demonstrate the flexi-
bility and power of this amazing language by putting together, for your enjoyment, a
living, breathing network of Perl coding examples (in addition to providing a huge
array of Oracle database administration operations, of course).

The toolkit contains two distinct types of programs:

Perl scripts
Standalone scripts, written in Perl, that perform some distinct function; exam-
ples include adding a new user to the database, rebuilding an index, or populat-
ing the toolkit repository with data from the Oracle data dictionary.

Supporting modules
Underlying modules, also written in Perl, that provide more basic functionality
that is shared by multiple scripts; examples include finding and loading various
types of configuration files and processing command-line arguments.

228 | Chapter9: Installing the PDBA Toolkit

Tables 9-1 through 9-5 list the toolkit scripts that are installed automatically, along
with the supporting modules (listed in Table 9-6) when you install the toolkit. All
toolkit scripts are shown here except for a few additional scripts used only for set-
ting up the repository (described in Chapter 12) and for demonstration purposes.

N

o We describe the routine database administration scripts (Chapter 10,
t's’.\ Performing Routine DBA Tasks with the PDBA Toolkit) before the
0 %* monitoring scripts (Chapter 11, Monitoring the Database with the

PDBA Toolkit) and repository scripts (Chapter 12) because they pro-
vide general-purpose functionality. However, if you use the monitor-
ing and/or repository functionality of the toolkit, we recommend that
you install and run those scripts before using any other toolkit scripts.
Essentially, the monitoring scripts provide a first perimeter of security
for your database, and the repository scripts provide a second. For the
safest possible database operation, it’s best to install and run these
scripts before undertaking routine database administration.

Table 9-1 lists the scripts that are associated with the password server described in
Chapter 13, Extending the PDBA Toolkit. (See the sections “Password Server Config-
uration,” and “Password Client Configuration,” later in this chapter.)

Table 9-1. Chapter 9 scripts—Password encryption

Script Description

pwd.pl Password server daemon that encrypts passwords via a TCP socket; works remotely with the other Perl
scripts via the toolkit module set.

pwepl Client that remotely retrieves encrypted passwords from the password server, easing the secure database
access overhead imposed by other scripts.

pwad_service.pl Installs the password server as a service on Win32.

Table 9-2 summarizes the database administration scripts found in Chapter 10.
These scripts perform a wide variety of DBA tasks, including managing user accounts
(e.g., creating new users from the command line, creating new users via duplicated
accounts, creating multiple accounts with automatically mailed passwords), main-
taining indexes, killing sniped database sessions, managing extent usage, and extract-
ing DDL and data (e.g., creating delimited data dump files for SQL*Loader transfer).

Table 9-2. Chapter 10 scripts—Routine database administration

Script Description

ddl_oracle.pl Generates the DDL necessary to recreate schemas, tables, indexes, views, PL/SQL, materialized views,
and other objects.

sqlunidr.pl Dumps entire schemas to comma-delimited files and generates the SQL*Loader scripts necessary to

reload them. Also dumps LONG RAW and BLOB objects, converting them to hex format via the Oracle
HEX_TO_RAW function in the SQL*Loader control file in order to convert the data back into binary for-
mat.

Introducing the PDBA Toolkit | 229

Download from Wow! eBook <www.wowebook.com>

Table 9-2. Chapter 10 scripts—Routine database administration (continued)

Script
create_user.pl

drop_user.pl

dup_user.pl
my_script.pl
mucr8.pl
kss.pl

kss_NT.pl
kss_service.pl
idxr.pl

maxext.pl

Description

(reates Oracle users from the command line. You can create a user and assign passwords, tablespaces,
and privileges, all with one easy command-line call. Best of all, you can use this script to preconfigure
different groups of runtime privileges.

Drops a database user by first dropping all of the users’ tables and indexes before dropping the
account. Doing so avoids most of the resource-intensive SQL recursion incurred when dropping an
account containing many tables and indexes.

Duplicates an account, with the source user’s system privileges, object privileges, roles, and quotas
assigned directly to the target user.

This is a demonstration script used in the explanation of the PDBA::OPT module.

When creating a large number of users, this utility creates them all with a single operation. Config-
urable permissions are granted, and the passwords automatically generated get emailed back to the
new account owners.

Kills sniped sessions. (We'll explain what these are, and why you would want to kill them, in
Chapter 10.)

Win32 version of kss.pl.
Used to create an appropriate snipe-killing service on Win32.

Determines if an index should be rebuilt and, if so, rebuilds it. Checks on a per-schema basis, and is
configured to check indexes based on days since the index was last analyzed. A configurable time limit
isimposed, which allows index rebuilds to fit within a predefined time schedule.

Monitors the size and number of extents in tables and indexes. If they're nearing a maximum allowed
or if the object will be unable to extend because of limited free space, it notifies the DBA. This script is
most useful for databases that use dictionary-managed extents.

Table 9-3 lists the monitoring scripts described in Chapter 11. These will help you
maximize the availability of your databases by alerting you to problems—both error
conditions reported in the Oracle alert log and problems with database connectivity.

Table 9-3. Chapter 11 scripts—Database monitoring

Script
chkalert.pl

chkalert _NT.pl
chkalert_service.pl
dbup.pl

dbup_NT.pl
dbup_service.pl
dbignore.pl

Description

Daemon that monitors Oracle alert logs for error conditions and notifies the DBA via either email
messages or pager calls. Oracle’s alert.log files contain important error messages as well as a log of
database startup and shutdown messages.

Win32 version of chkalert.pl.
Utility script that creates a Win32 service for chkalert_NT.pl.

Working alongside chkalert.pl, a highly configurable database connectivity monitor that checks to
see if databases are up and available.

Win32 version of dbup.pl.
Creates the Win32 service for dbup_NT.pl.

Utility script used with dbup.pl to temporarily disable connectivity checks on an individual data-
base (e.g., while maintenance is being performed).

230 | Chapter9: Installing the PDBA Toolkit

Table 9-4 summarizes the PDBA repository scripts contained in Chapter 12. These
scripts compare different database schema versions over time, detecting database
changes (official or otherwise). They also store SQL execution plans within a library
cache; doing so allows the scripts to compare the current execution plan with plans
previously collected; this way, the scripts can report on changed execution plans and
the reasons behind the changes.

Table 9-4. Chapter 12 scripts—repository and DDL “time travel”

Script Description

baseline.pl Creates the baseline for the PDBA repository (described inChapter 12), establishes “time travel” control
of DDL (Data Definition Language), and stores the entire database structural change record across time

boundaries.

spdrvr.pl Perl driver for SQL*Plus that reports on information created by baseline.pl.

sxp.pl Collects and stores SQL statements from the data dictionary and generates accompanying execution plans for
later comparison with other plans.

sxpemp.pl Examines the current SQL statements, generating execution plans.

sxprpt.pl Generates reports based on the stored SQL and execution plans.

Table 9-5 lists the scripts described in Chapter 13. In particular, you’ll find in that
chapter a line-by-line examination of the dba_jobsm.pl script, providing a detailed
example of how the PDBA Toolkit is used in a Perl script.

Table 9-5. Chapter 13 scripts—extending the PDBA Toolkit

Script Description

dba_jobs.p! Reports on the status of jobs in a database.

dba_jobsm.pl Reports on the status of jobs in multiple databases.
null_test.pl Test script used in explanation of extending the PDBA Toolkit.

Supporting Modules

We’ve written most of the PDBA Toolkit’s functionality in the form of encapsulated
Perl modules. These modules are called by many of the scripts in the toolkit. Our
purpose was to both encourage code reuse and simplify the creation of new scripts.
Table 9-6 provides a summary of the modules; we’ll discuss them in some detail in
the following sections.

Note that these modules are also available for use in scripts you develop yourself.
You will find that taking advantage of this ready-made code will speed your own
development process. If you decide to create your own scripts, you'll find that using
these modules will dramatically reduce the amount of code you’ll need to write
yourself.

Introducing the PDBA Toolkit | 231

Table 9-6. PDBA Toolkit supporting modules

Module Description

PDBA:(M Connection manager that simplifies Perl-to-Oracle connectivity.

PDBA::ConfigFile Finds and opens configuration files.

PDBA::Configload Finds, opens, parses, and loads configuration files into memory.

PDBA::DBA Designed for DBA-specific tasks; many are data-dictionary related.

PDBA::Daemon Runs Perl script daemons on Unix.

Win32::Daemon This module, by Dave Roth, is included here because it is so important to toolkit daemon services on
Win32 systems.

PDBA::GQ Generic query module that simplifies single-table queries.

PDBA::LogFile Creates and locks log files; used by many scripts in the toolkit to perform logging actions.

PDBA::0PT Processes command-line arguments unhandled by calling scripts.

PDBA::PWC Password client module.

PDBA::PWD Password server module.

PDBA::PWDNT Password server modules for Win32.

PDBA::PidFile Used to control script execution.

PDBA Modular collection of widely used methods.

Toolkit Modules

The supporting modules listed in Table 9-6 are described in the following sections.
Over the next few chapters we’ll work through the scripts supported by these mod-
ules.

PDBA::CM (Connection Manager)

The PDBA::CM module is the connection manager for the toolkit. This module
makes connections to Oracle databases via the Perl DBI and DBD::Oracle modules.
PDBA::CM also allows you to predefine Oracle environment variables; we’ll explain
how in the installation instructions for this module later in the chapter.

Why is CM necessary? To see why, we’ll first see how Perl DBI makes the connec-
tion to Oracle without CM. Because we’re only interested in connecting to Oracle
databases, we can safely override or “subclass” the Perl DBI connect method with the
PDBA::CM module. This provides our own Oracle-optimized method. Why would
we want to do that? If you choose to configure the optional PDBA::CM configura-
tion file, you can let it set up the Oracle environment for you.

First let’s look at what’s involved in setting up the environment on your own. Before
running an ordinary standalone Perl script for Oracle, you would usually need to set
up the environment as shown in the following example:

232 | Chapter9: Installing the PDBA Toolkit

$ export ORACLE_SID=mydb

$ export ORACLE_HOME=/u01/app/oracle/product/8.1.7

$ export ORACLE BASE=/u01/app/oracle/

$ export TNS_ADMIN=/u01/app/oracle/product/8.1.7/network/admin

A regular Perl DBI script then connects to the target database like this:

my $db = $ENV{ORACLE_SID}

my $username = 'scott’;

my $password = 'tiger';

my $dbh = DBI->connect('dbi:Oracle:' . $db, $username, $password,

{ RaiseError => 1, AutoCommit => 0 });

By using PDBA::CM and setting its configuration file, you avoid this environmental
overhead:

my $db = 'orcl';

my $username = 'scott’;

my $password = 'tiger';

my $dbh =

new PDBA::CM (DATABASE=>$db, USERNAME=>$username, PASSWORD=>$password);

Here are the main differences between using CM and configuring on your own:

1. There was no manual work needed to set the Oracle environment; this is a bless-
ing when you are faced with many scripts that need to be run for different
remote databases.

2. The CM module makes use of its own configuration file, which lets it determine
at runtime what ORACLE_HOME, ORACLE_BASE, and the other variables
should be set to.

3. By subclassing DBI, we include all of its functionality, via Perl’s object orienta-
tion, for the price of a single new method and a single call at the top of your
scripts:

use PDBA::CM;

The module calls DBI::init_rootclass to set up PDBA::CM as a DBI root class.
(For more detail on this, examine the script t/subclass.t in the DBI distribution.)

We'll look at a few special cases in the following sections.

Special login cases for SYSDBA and SYSOPER

As we describe in Appendix B, The Essential Guide to Perl DBI, if you need to con-
nect via Perl DBI as SYSDBA or SYSOPER, you must explicitly indicate it. Here’s
how SQL*Plus does it:

sqlplus "system/manager as sysdba"
To do this in Per]l DBI, you alter the login sequence as follows:

$dbh = DBI->connect('dbi:Oracle:' . $db, $username, $password,
{RaiseError => 1, AutoCommit => 0, ora_session_mode => 2});

Toolkit Modules | 233

What is happening here?
1. By setting the ora_session_mode to 2, you tell DBI that this is a SYSDBA account.
2. To log in as SYSOPER, you set ora_session_mode to 4.

In our PDBA::CM, you only need to set the MODE attribute to one of two valid val-
ues:

$dbh = new PDBA::CM (DATABASE=>$db, USERNAME=>$username, PASSWORD=>$password,
MODE=>'SYSOPER'); # Or SYSDBA! :-)

RaiseError and AutoCommit

All connections to Oracle databases established via the CM module set the class
attribute RaiseError to 1, and AutoCommit to 0. This is done for the following rea-
sons:

* If RaiseError is set to its DBI default of 0, fatal errors must be explicitly trapped:
my $sth = $dbh->prepare('select * from dual') or die "$DBI::errstr\n";
With RaiseError set to 1, you avoid this code overhead on all method calls, but
the exception is still raised if there is a problem with any method:
my $sth = $dbh->prepare('select * from dual'); # Raises error on failure! :-)
e If AutoCommit is set to 1, or true, as a DBI default to match ODBC, this com-
mits all database transactions automatically. We want to avoid this behavior in
the toolkit, so we turn it off by setting AutoCommit to 0, or false.

PDBA::DBA (DBA Methods)

The PDBA::DBA module stores methods that can be used by the toolkit to simplify
routine Oracle database administration tasks. Although each of these individual
tasks might be perfectly straightforward, as such tasks accumulate most DBAs end
up spending much too much valuable time writing one-off scripts. PDBA::DBA aims
to remedy this situation.

Creating user accounts

One good example of a typical one-off DBA task is the creation of a new user
account. You may already possess several tools for creating new users. User creation
can be a rather cumbersome process. Depending on the target application, there are
often numerous privilege sets that need to be assigned to various application roles.
To complicate matters, users may need multiple roles assigned in ways that are diffi-
cult to predict ahead of time. You’'ll start developing a particularly bad headache
when you’re responsible for several applications. Worse still, this labor-intensive
work is quite prone to human error.

234 | Chapter9: Installing the PDBA Toolkit

Our PDBA::DBA module can automate all of these complexities and remove the
chance for error. Here’s an example of how you can use this module’s new method
to duplicate a user account.

$ dup_user.pl -machine turing -database orcl -username scott \
-new_username scott -source_user samantha

This example creates user scott in the database orcl. A password is generated for the
new scott account, and the account receives the same privileges as the source user—
in this case, samantha.

You can also use PDBA::DBA directly within Perl scripts of your own:

my $newUser = new PDBA::DBA(
DBH => $dbh,
OBJECT TYPE => 'user’',
OBJECT => 'alicia’,
PASSWORD => 'generate’,
DEFAULT TABLESPACE => 'users’,
TEMPORARY TABLESPACE => 'temp',
PRIVS => ['create session', 'resource', 'connect', 'oem monitor'],
QUOTAS => { users => 'unlimited', tools => '10m', indx => 'unlimited'}
)5
eval { $newUser->create };
if($@) { warn "error creating user: $DBI::errstr\n" }
else { print "Password: $newUser->{PASSWORD}\n" }

The main PDBA::DBA methods are summarized in Table 9-7.

Table 9-7. Main PDBA::DBA module methods

Method Description

new Used to instantiate a new PDBA::DBA object.

create Used to create various objects in an Oracle database.

drop Used to drop various objects in the Oracle database.

info Gathers information on target objects within the database.

PDBA::ConfigFile (Configuration File Handler)

The PDBA::ConfigFile module plays a very important part in the PDBA Toolkit. It
facilitiates the creation of powerful and robust scripts that are driven by a configura-
tion file. If you need to change a script’s purpose, all you need do is change the con-
figuration file.

Simplifying configuration

First let’s look at a script that uses a configuration file, on execution, without PDBA::
ConfigFile:
$ myscripti.pl -conf $HOME/pdba/myconfig.conf

Toolkit Modules | 235

The bare bones myscript1.pl script is shown in Example 9-1.

Example 9-1. myscript1.pl—Opening a configuration file with standard Perl
#!/usr/bin/perl

use Getopt::Long;

my %optctl=();
GetOptions(\%optctl, "conf=s");
my $configFile="";

my $fh;

if (exists $optctl{conf}) {
$configFile = exists $optctl{conf};

Exit, if you can't read the file.

unless(-r $configFile){
die "cannot read the config file, $configFile - $!\n";
};
$fh = new I0::File;
$fh->open($configFile) || die "Cannot open $configFile - $!\n"

} else { die "please specify a configuration filel\n"; }

There are a number of drawbacks to this approach:

Code volume
You will need to type in a fair amount of code every time you need to use a con-
figuration file.

Maintenance
It’s difficult to modify the configuration code block when it’s embedded in sev-
eral scripts.

Flexibility
myscript1.pl only looks for the configuration file in the full path location speci-
fied by the command line. It would be nice if you could just supply a file name,
and let Perl go find it, wherever it is. That’s what we’ve done with PDBA::Con-
figFile.

Here’s an example of doing much the same thing with PDBA::ConfigFile:
$ myscript2.pl -conf myconfig.conf

This executes myscript2.pl in Example 9-2. Notice that there is a lot less script code.

Example 9-2. myscript2.pl—Opening a configuration file with PDBA::ConfigFile
#!/usr/bin/perl
use PDBA::ConfigFile;

use Getopt::Llong;
my %optctl=();

236 | Chapter9: Installing the PDBA Toolkit

Example 9-2. myscript2.pl—Opening a configuration file with PDBA::ConfigFile (continued)

GetOptions(\%optctl, "conf=s");
my$configFile="mytest.conf";
my $th;

unless ($fh = new PDBA::ConfigFile(FILE => $configFile)){
die "failed to open $configFile\n";

}

Automatic file searching
In cases where you don’t specify a full OS path, PDBA::ConfigFile checks in several
places for your config file:

1. The first place it looks is the current directory.

2. Next is the home directory, as specified by the HOME environment variable.

3. Next up is PDBA_HOME, assuming that you’ve set up this environment vari-
able.

4. PDBA::ConfigFile then searches through the directories in your PATH.

5. You can also search a specific set of directories:

unless ($fh = new PDBA::ConfigFile(

FILE => $configFile,

PATH => ENV{$HOME} . PDBA->pathsep() . "$ENV{ORACLE_HOME}/conf"
)){ die "failed to open $configFile\n" }

PDBA::ConfigFile returns a value of undef if the configuration file remains
unfound, a behavior used to trap errors, as with the die call above. (The pathsep
method allows the proper parsing of the PATH variable, depending on whether
you’re running via Unix or Win32. We’ll say more about this later on.)

PDBA::ConfigLoad (Configuration File Loader)

The PDBA::ConfigLoad module finds your configuration file and loads it for you. In
doing this, it assumes that the configuration information is structured as Perl code.
This provides several advantages:

* It entails much less script programming.

* You will have an easier time understanding the structure of the configuration
data.

* The reduction in complexity makes scripts much more maintainable.
Let’s consider the example of an old-fashioned configuration file:

1. You want there to be a defaults list when you’re creating users or objects for a
specific database.
2. The configurations must be capable of specifying defaults for different databases.

3. There must be a generic default for unspecified databases.

Toolkit Modules | 237

Let’s examine what these requirements entail in a typical configuration file in
Example 9-3.

Example 9-3. Old-fashioned colon-separated configuration file

tables: object type:database:tablespace:pctfree:pctused:initial:next
table:default:users:60:10:128k:128k

table:dw:dwload:10:5:128m:128m

indexes: object type:database:tablespace:pctfree:initial:next
index:default:indx:5:128k:128k

index:dw:load_idx:5:4m:4m

users: object type:database:tablespace:temp tablespace:privs:quotas
privs must be separated by commas

quotas must be in tablespace/space usage pairs, all comma separated
user:default:users:temp:connect,resource:users,10m,indx,5m
user:dw:dw_users:dw_temp:create session,dw_user:dw_users,200m,dw_indx,100m

As Morpheus might have said to Neo in The Matrix, “Do you think that’s easy to
read, or modify?” If you were to use this configuration file, you’d also need to write
some complex code to parse it. Contrast this to the Perl configuration script in
Example 9-4. Each component is clearly labeled, as in a tnsnames.ora file structure,
and when you need to add to this configuration file, it’s a simple matter of pasting in
appropriate values.

Example 9-4. New-fangled Perl script configuration file

package dbparms;
use vars quw(%defaults);

%defaults = (

table => {
default => { tablespace => 'users', pctfree => 60, pctused => 10,
initial => "128k’, next => '128k’
b
dw => { tablespace => 'dw_load', pctfree => 10, pctused => 5,
initial => "128m’, next => '128m’
b
b
index => {
default => { tablespace => 'index', pctfree => 5,
initial => "128k’, next => '128k’
b
dw=> { tablespace => 'load idx', pctfree => 5,
initial => "4m', next => '4m’
b
b
user => {

default => { default tablespace => 'users',
temporary tablespace => 'temp',
privs => ['connect', 'resource'],

238 | Chapter9: Installing the PDBA Toolkit

Example 9-4. New-fangled Perl script configuration file (continued)

b
)s

quotas => { users => '10m', indx => 'sm' }
J
dw=> { default tablespace => 'dw_users’,
temporary tablespace => 'dw_temp',
privs => ['create session', 'dw_user'],
quotas => { dw_users => '200m', dw_indx => '100m' }

b

Loading a Perl configuration script

Coincidentally, it’s also easier to load into a Perl script using PDBA::ConfigLoad:

use PDBA::ConfigFile;
my $nf = new PDBA::Configload(FILE => 'nf.conf');
unless ($nf) { die "failed to load\n " }

That’s all there is to it. Three lines of Perl makes your configuration file loaded and
ready to use. The data structure for your configuration files is defined and docu-
mented, and there’s an added silver-lining benefit as well; it’s also now a simple mat-
ter to check your configuration file for syntactical correctness. Here’s how:

perl -cw myconfig.conf # -c, checks syntax, -w, looks for warnings

Because this is a Perl script, Perl will throw an error if the file fails to compile.

So how do you access all of these configuration parameters? It’s easier than you
might think. The following script will print some of the values loaded in the previ-

ous

example:

$dwprivs = join(', ', @{$dbparms::defaults{user}->{dw}{privs}});
%dwquotas = %{$dbparms::defaults{user}->{dw}{quotas}};

print qq {
user defaults for dw:

default tablespace : $dbparms::defaults{user}->{dw}{default tablespace}
temporary tablespace: $dbparms::defaults{user}->{dw}{temporary tablespace}
};

print "privs: $dwprivs\n";
print "\ntablespace quotas\n";
for my $tbs (keys %dwquotas) {
print "\ttbs: $tbs quota: $dwquotas{$tbs}\n";

}
Here’s the output from the preceding script, using the configuration file in
Example 9-4:
user defaults for dw:
default tablespace : dw_users
Toolkit Modules | 239

temporary tablespace: dw_temp
privs: create session, dw_user

tablespace quotas
tbs: dw_users quota: 200m
tbs: dw _indx quota: 100m

(Appendix A, The Essential Guide to Perl, walks through the concepts that underly
the discussion in this section; see particularly its discussions of anonymous arrays
and references.)

Referring to configuration variables by package name
Take another look at our first line in Example 9-4:
package dbparms;

By packaging the configuration variables in this way, we also remove the possibility
of overwriting variables in the main script, because they’re in a different namespace.
In Perl’s use strict mode, every variable has to be referred to by its package name,
dbparms, and its variable name. For example, the %defaults hash is accessed by
%dbparms::defaults. (Again, refer to Appendix A if you are confused by all this.)

PDBA::Daemon and Win32::Daemon
(Background Programs)

The PDBA::Daemon module (and its Win32 partner, Win32::Daemon) create back-
ground, server-like programs. These are programs that you start once; they then con-
tinue to run in the background without any necessary user interaction, and they
continue to run until you explicitly tell them to stop. These background programs
differ for Unix and Win32:

Unix
Unix background programs are often referred to as daemons. The term comes
from an ancient Greek definition of daemon as a guardian spirit.

Win32
Background processes on Win32 are more often known as services.

We'll look first at creating a daemon process in Unix and later turn our attention to
Win32.

PDBA::Daemon: Creating a Unix daemon process in Perl

There are a few basic rules you will need to follow when creating simple daemon
processes on Unix:

1. Close unnecessary open files, including STDIN and STDOUT.

2. Disassociate the daemon from the original process group.

240 | Chapter9: Installing the PDBA Toolkit

3. Disassociate the daemon from the controlling terminal.

4. Make sure that the daemon issues a chdir to a directory that will remain
mounted.

This is all done easily, within a few lines of Perl:

if ($pid = fork) { exit 0 } # exit parent
if (defined($pid)) {
close STDOUT;
close STDIN;
chdir('/');
croak "Cannot detach from terminal" unless $sess id = POSIX::setsid();
return $pid;
}
if (++$tries>5) { die "fork failed after $tries attempts: $!\n" }
else {
sleep 3;
redo;
}
}

Let’s see what’s going on here:

1. The call to fork is how Perl starts a new process. In this case, the parent process
exits while the child continues running in the background.

2. The next section closes STDIN and STDOUT and then changes to the root
directory. (It is important that daemons run on file systems that are unlikely to
be dismounted. For instance, if your daemon were started in /u01/oracle/app/
perl/bin and left there, it becomes difficult to unmount that file system for neces-
sary maintenance.)

3. The final task is to disassociate the daemon from the controlling process group.
This is done via the Perl POSIX module using the setsid function.

N
Although daemons require only a small amount of Perl code, there’s a
lot of Unix magic going on behind the scenes. If you are interested in
W+ discovering the Unix system internals underlying daemons, you might
" want to read The Magic Garden Explained, by Berny Goodheart and
James Cox (Prentice Hall, 1994).

aqs
N
N

Let’s demonstrate a short daemon script in Example 9-5.

Example 9-5. daemon_test.pl—Example Perl daemon

#!/usr/bin/perl
use warnings;
use PDBA: :Daemon;

use I0::File;

my $logFile = '/tmp/daemon_test.log';

Toolkit Modules | 241

Example 9-5. daemon_test.pl—Example Perl daemon (continued)

my $lh = new IO::File;
$1h->open("+> $logFile") || die "unable to create log file $logFile - $!\n";
&PDBA: :Daemon: : daemonize;

for (my $i = 0; $i < 5; $i++) {
my ($sec,$min,$hour) = localtime(time);
my $output = sprintf("%02d:%02d:%02d\n", $hour,$min,$sec);
$1h->printflush($output);
sleep 5;

}
$1h->close;

You can check this background daemon’s progress, once it has been started, by tail-
ing its log file as follows:

$./daemon_test.pl

$ tail -f /tmp/daemon_test.log

21:43:39
21:43:44

A little code, and one call to PDBA::Daemon::daemonize, and you have an indepen-
dent Perl daemon up and running. This is an extremely useful feature, as we’ll see
later.

Win32::Daemon: Creating a Win32 daemon in Perl

Win32 also has background processes, better known as services. Win32 services are
implemented differently than Unix daemons. Therefore, our standard daemon cre-
ation operation via PDBA::Daemon needs adjustment. Enter the Win32::Daemon
module, a brilliant piece of software created by Win32 Perl guru Dave Roth of Roth
Consulting. This module creates system services written entirely in Perl and is avail-
able from http://www.roth.net. We’ll show you how to install it later in this chapter.
N

Unlike Unix systems, Win32 platforms typically have a service control
application. Each Perl service must continually respond to signals from

W this, like the High King of the Nazgal periodically checking the fiery

 Red Eye’s beam from Barad-dr.

LA
0w

.

Win32 service scripts look substantially different from daemonized Unix scripts, as
Example 9-6 shows.

Example 9-6. Win32 service script

use Win32;
use Win32::Daemon; # http://www.roth.net! :-)

242 | Chapter9: Installing the PDBA Toolkit

Example 9-6. Win32 service script (continued)

use I0::File;

my $attempts;
Win32::Daemon: :StartService();
sleep(1);

my $lh = new IO::File;
my $logFile = "c:/temp/daemon test.log";
$1h->open($logFile) || die;

LOG($1h, "Service Starting - State is: " . $State);

while(SERVICE_START PENDING != Win32::Daemon::State())

LOG($1h, "Waiting for service - state is: " . $State . "...");

sleep(1);

if ($attempts++ > 15) {
LOG("Failed to start service in " . $attempts .
Win32::Daemon: :State(SERVICE_STOPPED);
Win32::Daemon: :StopService();
exit 2;

attempts");

}
$State = Win32::Daemon::State();

}

Win32::Daemon: :State (SERVICE RUNNING);
$State = Win32::Daemon::State();
LOG($1h, "Service Started - State is: " . $State);

while (1) { # Main loop! 8-)
check for Win32 Service state
my $PrevState = SERVICE RUNNING;
while(SERVICE STOPPED = ($State =
if(SERVICE_RUNNING == $State) {
LOG($1h, "Service running");
last;
} elsif(SERVICE_PAUSE_PENDING == $State) {
"Pausing...";
LOG($1h, "Pausing Service");
Win32::Daemon::State(SERVICE PAUSED);
$PrevState = SERVICE PAUSED;
next;
} elsif(SERVICE_CONTINUE_PENDING == $State) {
"Resuming...";
LOG($1h, "Resuming Service");
Win32::Daemon::State(SERVICE RUNNING);
$PrevState = SERVICE RUNNING;
last;
} elsif(
SERVICE_STOP_PENDING == $State or
SERVICE _CONTROL_SHUTDOWN == $State) {
"Stopping...";
LOG($1h, "Stopping Service");

Win32::Daemon::State())) {

Toolkit Modules

243

Example 9-6. Win32 service script (continued)

Tell the OS that the service is terminating...
Win32::Daemon: :State(SERVICE_STOPPED);
Win32::Daemon: :StopService();
exit 8;
last;
} else {
We have some unknown state...
reset it back to what we last knew the state to be...
LOG($1h, "Unknown State of : " . $State . " - exiting...");
Win32::Daemon: :State(SERVICE STOPPED);
Win32::Daemon: :StopService();
exit 8;
last;
}
sleep 1;
}
LOG($1h, "Main Loop");
sleep 1;
}
HHHHHHHH
sub LOG {
my($1h) = shift;
my @msg = @ ;
my($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst);
mon = 0..11 and wday = 0..6
($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $isdst) =
localtime(time);
change $mon to 1-12 and $wday to 1-7;
$mon++; # to get it to agree with the cron syntax
$day++;
$year += 1900; # Y2K fix
$1h->printflush("%04d/%02d/%02d %02d:%02d:%02d: %s\n",
$year, $mon, $mday, $hour, $min, $sec,@msg);
}

As you can see, setting up Win32 services is an involved process—and remember
that Win32::Daemon has sheltered you from the really gory internals!

Using Unix Daemons and Win32 services in Perl

Now that you have some grasp of Unix daemons and Win32 services, let’s consider
why you would want to use them in the first place. In this chapter, we’ll focus on
how they can help to automate as many Oracle DBA tasks as possible:

* When we’re using daemons and services, we can be instantly notified of prob-
lems, even during evenings and weekends. That way, we can fix them immedi-
ately (rather than end up walking unaware into user firestorms the next day).

* We'd like to avoid reading log files by eye. We’d much rather a Perl robot did
this for us. (Perl robots are very good at reading log files; they don’t get tired or

bored and don’t inadvertently skip over a page.)

244 | Chapter9: Installing the PDBA Toolkit

* We can manage more databases than we could otherwise, and do a better job
of it.

* We can free up more time to do interesting things (often involving even more
Perl!).

Running Unix daemons and Win32 services also helps us maintain those two com-
mandments tattooed in deep purple on a DBA’s soul:

* Thou shalt monitor the alert.log file for serious problems.

¢ Thou shalt ensure that databases can be connected to over the network.

Unless it’s an acceptable plan to manually check alert.log for each database, you’ll
want to automate these processes. To do this, many shops run cron or at scripts,
with names like every10 or LifeSaver. These run every few minutes, attempting data-
base connections, and they notify the DBA if problems occur. In Chapter 11 we’ll
present a better method of checking the alert logs, using Perl of course. It’s a better
method because it allows you to determine which errors are of importance to you,
paging the DBA only when necessary. It will be flexible, will be easy to set up, and
will avoid the straitjacket of a rigidly bound cron schedule.

PDBA::GQ (Generic Query)

DBAs often open cursors to single tables (such as DBA_TABLES), read in some rows
from it, get the column values, and then process the data in some way. If you do this
routine often enough, you’ll soon tire of its repetitive nature, even if you’re just cut-
ting and pasting queries from prestored SQL scripts. The PDBA::GQ module is
designed to streamline this task. The module’s main methods are listed in Table 9-8.

Table 9-8. PDBA::GQ module methods

Method Description

new Instantiates a new GQ query object

next Retrieves the next row from a query object

all Retrieves all the rows from a query object

getColumns Returns a hash reference of column names for a query objecta

aSee Appendix A for a description of anonymous hash references.

The standard DBI query method often uses bind variables in the following way:

my $sql = qf
select object name, created, last ddl time
from dba_objects
where owner = ?
and object type = ?
};
my @bindparms = qw(SCOTT TABLE);

Toolkit Modules | 245

my $sth = $dbh->prepare($sql);
mu $rv = $sth->execute(@bindparms);
while (my $hashRef = $sth->fetchrow hashref) {
print "Object: $hashRef->{OBIJECT_NAME}\n";
print "Created on : $hashRef->{CREATED}\n";
print "Last DDL Time : $hashRef->{LAST DDL _TIME}\n";

}
PDBA::GQ can help simplify that approach as follows:

my @bindparms = qw(SCOTT TABLE);
my $dbaObj = new PDBA::GQ {
$dbh, "dba_objects"”,

{
WHERE => "owner = ? and object type = ?",
BINDPARMS => \@bindparms

}
};
while (my $row = $dbaObj->next) {

print "Object: $row->{OBIJECT NAME}\n";

print "Created on : $row->{CREATED}\n";

print "Last DDL Time : $row->{LAST DDL_TIME}\n";
}

Note how the PDBA::GQ module saves us several steps from the previous code
snippet:

* The prepare and execute methods are called automatically on object creation.
* All column names are made available without explicit specification.

* Column names are still available via the regular fetchrow_hashref mechanism.

PDBA::GQ uses several Perl DBI methods for returning data from Oracle (all of these
are fully described in Appendix B).

fetchrow_hashref
Offers a straightforward interface at the sacrifice of a little speed. Because of its
ease of operation, we've used fetchrow_hashref as the query method in PDBA::
GQ’s next method.

fetchall_arrayref
Used in PDBA::GQ’s all method to retrieve all the rows from a SQL query in one
go; especially helpful when we’re loading small sets of reference data.

The default return value for PDBA::GQ’s all method is a reference to an array of hash
references. Example 9-7 uses this approach. The memory structure is displayed in
Figure 9-1.

Example 9-7. GQ::all—Returning a reference to array of hashrefs

my $vobj = new PDBA::GQ(
$dbh,
'v$parameter',
{ WHERE => g{name like 'job%'} }

246 | Chapter9: Installing the PDBA Toolkit

Example 9-7. GQ;:all—Returning a reference to array of hashrefs (continued)
)s

Default is reference to an array of hash references.
my $arrayref = $vobj->all;
Print it out.
for my $row (@$arrayref) {
print "PARM: $row->{NAME} VALUE: $row->{VALUE}\n";

Name_Addressed memory

RSSO S Anonymous memory

(Three scalar references in array point to three rows)

) }
0000 0000 OO0

S Each end-chain hash has a realscalar $ data
chunk of database row information in the
value part of each key/value pair.

Figure 9-1. An array reference to a list of hashes

We can change this default memory structure by using the [] anonymous array nota-
tion. Example 9-8 shows the same query, this time with data returned as a reference
to an array of array references. (Again, for more about this and other Perl DBI top-
ics, see Appendix B.)

Example 9-8. GQ;:all—returning a ref to array of array refs

my $vobj = new PDBA::GQ(
$dbh,
'v$parameter',
{ WHERE => g{name like 'job%'} }
)5
Send an empty array reference, as an argument to indicate
the requested return type of data.
my $arrayRowRef = $vobj->all([]);
my $colNames = $vobj->getColumns;
Print it out.
for my $row (@$arrayRowRef) {
print "PARM: $row->[$colNames->{NAME}] VALUE: $row->[$colNames->{VALUE}]\n";
}

Toolkit Modules | 247

With the array-to-array method, you generally refer to the exact position of an ele-
ment within an array. However, the getColumns method loads up a hash array, with
the column names as keys and the array elements as values. This allows you to refer
to the column names, even though your data is stored in an array. It’s a kind of
magic!

PDBA::LogFile (Logfile Handler)

Many of our toolkit utilities log their actions by means of the PDBA::LogFile mod-
ule. For example, we have a script called dbup.pl that periodically tests connections
to all configured databases. Every attempted connection gets logged, successes and
failures are recorded, and the failures are emailed to the DBA. The PDBA::LogFile
module’s purpose in life is to facilitate logging by PDBA scripts; its methods are
introduced in Table 9-9.

Table 9-9. PDBA::LogFile methods

Method Description
new (reates a new log file object:

$logFh = new PDBA::LogFile($log);
makepath (reates a path to the logfile:

$log="$ENV{HOME}/pdba/log/log.txt";
PDBA: :LogFile->makepath($log);

print Performs buffered prints to the logfile:
$logFh->print("test line\n");
printflush Performs nonbuffered prints to the logfile:

$logFh->printflush("test line\n");

Logfiles are often locked, so if another instance of a utility is run, it avoids writing
over the logfile in use. Therefore, if you are planning several utility instances, it’s
often best if each gets its own logfile. To open and lock a logfile, here’s what you
need to do:

use PDBA;
use PDBA::LogFile;

my $logFile = PDBA::pdbaHome . '/logs/test.log"';
my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) {
die "failed to open log file for writing - $!\n"
}

It’s a lot simpler than you may have imagined. Here’s part of what was going on
behind the scenes in PDBA::LogFile, when the logfile was created:

if (-r $logFile and -w $logFile) {
This should never happen, but we'll check anyway.

248 | Chapter9: Installing the PDBA Toolkit

$self->open($logFile) || return undef;
$self->close;

Try to open existing log file.
file must be opened with intent to write
$self->open("+<$logFile") || return undef;

Lock file, recreate and relock, and print PID to file.
if (flock $self, LOCK_EX|LOCK NB) {
$self->open("+>>$logFile") || return undef;
print "LogFile 4 : $logFile\n" if $debug;
if (flock $self, LOCK_EX|LOCK NB) {
$self->autoflush;
return 1;
} else { return undef }
} else { $self->close; return undef }

} else { # Lock file does not exist.
$self->open("+>>$logFile") || return undef;
Get an exclusive lock on the file.
if (flock $self, LOCK_EX|LOCK NB) {
print "LogFile 7 : $logFile\n" if $debug;
return 1

}

else { return undef }

}

Setting up logfiles is one of those necessary but code-intensive tasks that most of us
don’t care to spend a lot of time on: we’ll take the modular use of PDBA::LogFile
every time! PDBA::LogFile also avoids assuming anything about logfile location. This
means we can do OS-portable log creation using the built-in File::Spec and File::Path
modules:

use PDBA;

use PDBA::LogFile;
use File::Spec;
use File::Path;

my $logFile = PDBA::pdbaHome . '/logs/test.log';
my ($volume, $directories, $file) = File::Spec->splitpath($logFile);
my $path = $volume . $directories;

Create the path.

File::Path: :mkpath($path, 0, 0750);

Make sure it's there.

-d || -w || -x || -x $path || die "dir $path not usable\n";
my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) { die "could not open log file for writing - $!\n" }

for ((my $i = 1; $i<10; $i++) {
$logFh->printflush("test line # $i\n");
sleep 5;

}

Toolkit Modules | 249

Path creation is made even simpler by adding a makepath method to PDBA::LogFile
as shown in Example 9-9.

Example 9-9. Simplified logfile creation
use PDBA::LogFile;

my $logFile = PDBA::pdbaHome . '/logs/test.log';
PDBA: : LogFile->makepath($logFile);
my $logFh = new PDBA::LogFile($logFile);

if(! $logFh) { die "could not open log file for writing - $!\n" }

for ((my $i = 1; $i<10; $i++) {
$logFh->printflush("test line # $i\n");
sleep 2;

}

On Unix, makepath creates directories with default file permissions of read, write,
and execute for the owner; read and execute for the group, and nothing for others.
On Win32, makepath also tries to set permissions, but doing so depends on the file
system security setup.

PERMS attribute

To set permissions to other values, use the PERMS attribute with an octal permis-
sions value. The following example will prevent anyone other than the system
administrator and the file owner from viewing the contents of the log directories:

my $logFile = PDBA::pdbaHome . '/logs/test.log';

PDBA: :LogFile->makepath($logFile, PERMS => 0700);
The two print methods, print and printflush, both create a timestamp, which is pre-
fixed on each printed line. Both methods print by calling methods in the IO::File
superclass. The output from Example 9-9 would look like this:

20011021233514:test line # 1
20011021233516:test line # 2

20011021233530:test line # 9

R
s

The printflush method is preferred for logging operations, as its out-
put is unbuffered and immediately logged, but you may require print if
4" you need to buffer disk IO.

PDBA::OPT (Option Handler)

The PDBA::OPT module is used in conjunction with the password-control modules
(PDBA::PWC, PDBA::PWD, and PDBA::PWDNT) described in the following sec-
tions. The role of PDBA::OPT is to scan the command line for options that may be

250 | Chapter9: Installing the PDBA Toolkit

intended for the password server, rather than for Oracle itself. PDBA::OPT then
feeds the security information found on the command line to the PDBA:PWC
module to retrieve a password. The following sections describe the basics of how the
various password modules work. See Chapter 11 for an extended example of how
PDBA::OPT supports the alert log monitoring scripts provided in the toolkit.

PDBA::PidFile (Program Id Handler)

A popular mechanism for preventing programs from being run concurrently is to cre-
ate a baton file that is then immediately locked. Subsequent attempts to run the same
program try to lock the baton file as well. If a program is unable to lock the file, that
program exits gracefully with an appropriate message. If the program is able to lock
its baton file, processing continues as in the following code snippet, which uses the
PDBA::PidFile module to control script execution:

use PDBA::PidFile;

my $lockFile = '/tmp/myapp pid.lock';
my $fh = new PDBA::PidFile($lockfile, $$);

if (!$fh){
die "could not lock PID file\n";

}
One approach might be a daemon for monitoring alert.log. Let’s look at the require-
ments:
* You only want this program to run on one instance at one time.

* To ensure that it’s always running, you run it once per hour via the system
scheduler:
* If the script is unable to create and lock a baton file via PDBA::PidFile, the
script simply exits.
* If the previous monitor script dies for some reason, then the next time the
scheduler tries to start another instance, PDBA::PidFile successfully creates
and locks the baton, and normal processing continues.

Example 9-10 shows how PDBA::PidFile accomplishes these goals.

Example 9-10. Locking portion of PDBA::PidFile module

sub lockFile {
my $self=shift;
my (%options) = @ ;

my $lockFile = $options{file};
croak "lockFile requires a file name\n" unless $lockFile;

my $pid = $options{pid};
croak "lockFile requires a PID\n" unless $pid;

Toolkit Modules | 251

Download from Wow! eBook <www.wowebook.com>

Example 9-10. Locking portion of PDBA::PidFile module (continued)

if (-1 $lockFile and -w $lockFile) {
$self->open($lockFile) || return undef;
($lockPid) = <$self>;
$self->close;

try to open existing lock file
file must be opened with intent to write
$self->open("+<$lockFile") || return undef;

lock file, recreate and relock

print PID to file

if (flock $self, LOCK EX|LOCK NB) {
$self->open(">$lockFile") || return undef;

return pid from file if you can't lock
if (flock $self, LOCK_EX|LOCK NB) {
$self->printflush($pid) ;
return $pid;
}

else { return undef }
} else { return $lockPid }
} else { # lock file does not exist

$self->open(">$lockFile") || return undef;
$self->printflush($pid);

get an exclusive lock on the file
if (flock $self, LOCK EX|LOCK NB) { return $pid }
else { return undef }

PDBA::PWD (Password Daemon)

The PDBA::PWD module provides the core functionality in the pwd.pl script that we
use to centralize password management in the toolkit.

Password management is a recurrent issue for DBAs. There is a trend today in many
large Oracle sites towards OS authentication, in which the Oracle database allows all
authentication to be enforced by the operating system. But this type of authentica-
tion may not be feasible in some environments. Many corporate security policies
may prohibit the use of OPS$ Oracle accounts, and many DBAs dislike OS authenti-
cation, preferring the forced use of passwords because that approach gives DBAs
greater control over database security.

Despite the recent advent of single sign-on systems, Public Key Infrastructures (PKI),"
and other advanced security schemes, database accounts protected by passwords are

* For a discussion of the very real risks of PKI, see http://www.counterpane.com/pki-risks.html.

252 | Chapter9: Installing the PDBA Toolkit

likely to be with us for some time to come. Unfortunately, there are some inherent
problems with the use of passwords—for example:

Process monitoring
Passwords entered on command lines are visible to utilities such as the ps pro-
gram.

Maintenance overhead
Passwords that are hard-coded into scripts make code maintenance difficult.

Username rigidity
Inflexible privilege assignment leads to extra work when people join or leave
development teams. If getting help from DBAs takes extra time or effort, users
may compromise security by swapping usernames and passwords among them-
selves.

User resistance
If site policy requires regular password changes, you may find yourself flooded
with users who have forgotten the new passwords they’ve been forced to create.

Password security overload
If password policy prohibits the use of dictionary words and previous pass-
words, and insists upon vowel number replacement,” people will inevitably come
up with password schemes designed to aid memory. Unfortunately, these are
rapidly figured out by cracker systems. As a challenge, see if you can guess the
third password in this list:

P4SSWORDON3

P4SSWORDTWO
?

P4SSWORDTHR33 just got you access to the Human Resources payroll table.

Batch job password problems

Even totally secure password systems may encounter difficult management situa-
tions. Batch table loads, index rebuilds, billing statement runs, and a host of other
long-running jobs are usually run at night. Unless someone is going to run these jobs
manually and input all the passwords as necessary, these jobs need an automated
method for inputting correct passwords.

To deal with this situation, some DBAs create protected files that contain passwords
accessible to scripts requiring passwords. Unfortunately, this solution produces its
own problems:

* Vowel number replacement refers to the practice of replacing vowels in words with numeric digits that
resemble the vowel—for example, the word PASSWORD becomes P4SSWORD. The numeric digit 4 replaces
the letter A, and the numeric digit 0 replaces the letter O.

Toolkit Modules | 253

External password visibility
System administrators often have the ability to read any file on a Unix or Win32
server. When your passwords are stored in a local file or are hard-coded in
scripts on every system that has an Oracle database, this increases the risk to
your databases by exposing those passwords to people who may not have been
granted access to them.

File distribution
You often need to distribute copies of this hard-coded file to all of your servers;
once again, this complicates password management in a distributed environ-
ment.

The PDBA::PWD module lessens these problems. It’s a TCP socket server, written in
Perl, and modeled after the non-forking server found in the excellent Perl Cookbook,
by Tom Christiansen and Nathan Torkington (O’Reilly & Associates, 1998).
Account passwords remain stored in a single Fort Knox file, and passwords are
encrypted over the network.

PDBA::PWC (Password Client)

We’ve also provided a client module, PDBA::PWC, used to communicate with the
password server. The pwe.pl script can retrieve passwords on the command line or,
even better, Perl scripts can import the PWC module and in this way avoid making
passwords visible to operating systems.

PDBA::PWDNT (Password Client for NT)

The PDBA::PWDNT module is the Win32 version of PDBA::PWC. It makes use of
the Win32::Daemon module that allows it to be installed as a Win32 service.

PDBA (PDBA Utilities)

The PDBA module is a collection of utilities. These are used throughout the other
modules, as well as in the individual scripts included in the toolkit. PDBA simplifies
the process of writing portable scripts—or at least minimizes the changes necessary
when porting scripts across platforms. Table 9-10 lists the methods provided in
PDBA. The following sections describe their use.

Table 9-10. PDBA methods

Method Description

email Sends emails from Perl scripts

pathsep Determines the correct separator to use in PATH variables
osname Returns the platform as either Unix or MSWin32
pdbaHome Returns the value of PDBA_HOME

254 | Chapter9: Installing the PDBA Toolkit

pathsep

Back in the IBM PC dark ages, someone decided that PATH entries in MS-DOS
would be separated by semicolons (;). This presented a problem to folks used to the
colon character (:) employed by Unix. Today, PATH variables are seldom used in
Perl scripts, but when they are, the pathsep method comes in really handy. By using
pathsep rather than literal characters, we make the path separator transparent, and
we always end up getting the right one:

use PDBA;
my @pathDirs = split(PDBA->pathsep(),$ENV{PATH});
my $fullPath="";
my $file="test.conf’;
for my $dir (@pathDirs) {
$fullPath = $dir . PDBA->pathsep() . $file;
if file exists and is readable, we're done
last if -r $fullPath;
$fullPath = '';
}
raise an error if not found
unless($fullPath) { die "could not find config file $file\n" }

This code snippet works on either Win32 or Unix without hard-coding.

osname

We sometimes need to let our code know which platform it’s being executed on. In
such cases, you will find the osname method very helpful. For example:

use PDBA;
my $pathsep = ';';
if ("Unix' eq PDBA->osname()) { $pathsep = ":' }

return $pathsep;

pdbaHome

The pdbaHome method determines the location of PDBA_HOME. On Win32,
PDBA_HOME is stored in the Windows Registry. On Unix, it simply needs to be set
as an ordinary environment variable. The following code snippet illustrates the use of
pdbaHome:
use PDBA;
my @searchPaths = ('./', '../', PDBA->pdbaHome());
There’s a lot going on internally here to determine the correct value for PDBA_
HOME:
sub pdbaHome {
if ('Unix' eq PDBA->osname()) {
if (exists $ENV{PDBA HOME}) {return $ENV{PDBA_HOME}}
else{return $ENV{HOME} }

} else {
eval q{use Win32::TieRegistry (Delimiter=>q{/}, ArrayValues => 0)};

Toolkit Modules | 255

if (se) {
die "could not load Win32::TieRegistry in PDBA\n";

} else {
no warnings;
$pdbakey= $Registry->{"LMachine/Software/PDBA/"}; #:-)
use warnings;
$ENV{PDBA HOME} = $pdbaKey->{'/PDBA HOME'};
unless ($ENV{PDBA_HOME}) { die "PDBA_HOME not set in registry\n" }
return $ENV{PDBA HOME};

}

}
}

There is a default for PDBA_HOME on Unix, but not on Win32:

* On Unix, if you examine the code for pdbaHome, you’ll see that the return value
defaults to SENV{HOME} if PDBA_ HOME is unset.

* In contrast, on Win32 the PDBA_ HOME registry value is mandatory, because
some Win32 platforms lack a suitable default value for PDBA_HOME.

By wrapping the use Win32::TieRegistry portion inside an eval{} block, Perl avoids
compiling this code unless it is being executed on a Win32 platform. This feature
allows us to write a script that can be executed on both Unix and Win32 platforms.

email

We've centralized a simple-to-use email method in the PDBA module. There are sev-
eral reasons why you’ll find this method helpful:

* You'll often want to notify someone via email if a Perl monitor detects a prob-
lem.

* You may want a facility for notifying Oracle account owners of various informa-
tion regarding the administration of your databases and their accounts.

The email method shown here in use is based on the Mail::Sendmail module devel-
oped by Milivoj Ivkovic:”

use PDBA;

my @addresses = ('scott.tiger@oracle.com','tony.tiger@oracle.com');
my $message = "yes, we're almost there";

my $subject = "are we there yet?";

if (PDBA->email(\@addresses, $message, $subject)) {
print "Mail sent\n";

} else {
print "Mail unsent\n";

}

* For more information, see http://alma.ch/perl/mail.htm# Mail::Sendmail

256 | Chapter9: Installing the PDBA Toolkit

To conclude, the PDBA module is our workhorse module, the spider module in the
center of the toolkit’s web. Therefore, in addition to the methods described in this
section, it contains additional private methods designed only for internal use by
other modules in the PDBA Toolkit. This module is the one we’re most likely to
update as we continue the development of this toolkit. If you wish to explore it fur-
ther, check out the comprehensive documentation available via the perldoc PDBA
command.

Installing the PDBA Toolkit for Unix

There are three basic steps involved in installing the toolkit on Unix systems:

Set the environment
We need to ensure that the Unix environment has been correctly prepared for
installation.

Load the modules and scripts
Once the environment is set, we can install the main body of code.

Edit the configuration files
Once the code is installed, we can configure, secure, and store all of our data-
base connection parameters.

You will need to follow the steps in this section to install the PDBA Toolkit on your
Unix platform so the scripts introduced in later chapters will work properly.

Setting the PDBA Environment

PDBA_HOME is the default directory for the PDBA Toolkit and all of its associated
files. However, as we mentioned earlier in the discussion of the PDBA module, it
may not be necessary to set PDBA_HOME on Unix. If you create an account dedi-
cated to running the PDBA Toolkit, you may be happy enough storing its configura-
tion files under the HOME structure of that account. Recall from our earlier
discussion that this is where PDBA will look for them if PDBA_HOME has not been
set. For instance, for new user oramon in the /home directory, the default location
will be under /home/oramon/pdba.

Setting PDBA__HOME from the command line
If you do wish to explicitly control the location of PDBA_HOME, it’s as easy as this:
$ export PDBA_HOME=/u01/my_pdba_home_dir

To avoid typing this line as part of every login, edit your .profile file or equivalent,
and add PDBA_HOME to the usual suspects required for the toolkit’s installation.
They are:

Installing the PDBA Toolkit for Unix | 257

ORACLE_HOME
ORACLE_SID (or TWO_TASK)
TNS_ADMIN

R
- It is possible to create the entire PDBA Toolkit, while logged in as the
.‘s\ . Toot account, but we’d like to recommend another approach. The
~* ‘ake toolkit modules and scripts should be installed as root or as the user
* who owns the Perl installation. (For instance, you may have installed a
local Perl for user oracle.) However, the configuration files should be
installed in a user account, such as oramon, oracle, or pdbauser. Tool-
kit scripts should be executed under that account as well to keep your

system administrator happy.

Installing the PDBA Perl Modules and Scripts

Before actually installing the toolkit there are some other tasks you will need to deal
with:
Install additional Perl modules
The PDBA Toolkit is dependent on other Perl modules that must first be
installed.
Determine installation locations

Decide if the default locations for the supporting modules and the scripts are
acceptable. Determine alternate locations as needed.

We’ll first install the additional Perl modules needed for the PDBA Toolkit.

Installing additional modules

There are three external Perl modules we need to load. We’ve kept this list of extras
to a minimum in order to keep installation as simple as possible. However, as we
developed this toolkit, we did try to follow the maxim of Perl programmers every-
where: “Laziness is a virtue.” Put another way, Perl programmers are advised to
avoid reinventing the wheel whenever possible and to make use of existing code
wherever they can.

These are the necessary modules; all of which can be installed from CPAN:

http://www.cpan.org/authors/id/GBARR

Graham Barr’s TimeDate date parser.
http://www.cpan.org/authors/id/S/SI/SIFUKURT

Kurt Kincaid’s Crypt::RC4 cryptographic module.
http://www.cpan.org/authors/id/M/MI/MIVKOVIC

Milivoj Ivkovic’s OS-independent Mail::Sendmail email sender (described ear-

lier).

258 | Chapter9: Installing the PDBA Toolkit

When connected to the Internet, the easiest way of installing these modules is this:

$ perl -MCPAN -e "shell"
cpan> install Date::Format
cpan> install Crypt::RC4
cpan> install Mail::Sendmail
cpan> quit

Lockfile removed.

A
‘ Installing Date::Format automatically picks up the rest of the
TimeDate bundle.

Determining installation locations for Perl modules

Now we can go ahead with the toolkit installation. First you need to download the
toolkit. You can download PDBA-1.0.tar.gz, or its latest derivative, from our
O’Reilly site:”

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit
You now need to make two important decisions:

* Where do we want the PDBA supporting modules to go?
* Where do we want the PDBA scripts to go?

We generally want all of our Perl modules to be stored within the default Perl library
tree. However, if you wish to install these modules elsewhere—perhaps to control
access—use the PREFIX switch. For example, the following will install everything
under ~/oramon/pdba:

$ perl Makefile.PL PREFIX=/home/oramon/pdba

This will mean that the modules get installed in directories that normally are invisi-
ble to Perl. The installer will take care of this by adding a code line near the top of
PDBA executable shell scripts, as in the following:

use 1ib qq{/home/oramon/pdba/lib/site_perl/5.6.1/};

Later on, this specification will tell Perl where to find the PDBA modules as Perl
requires them. However, we recommend that you accept the default Perl library loca-
tions just to keep everything simple.

Determining installation locations for Perl scripts

The recommended location for the Perl scripts isn’t as obvious. Perl’s ExtUtils:
MakeMaker generally places scripts within the /usr/bin location. However, we (or

* We will be regularly updating the PDBA Toolkit as an evolving open source project, although you may wish
to load PDBA-1.0.tar.gz first, just to get the hang of its installation.

Installing the PDBA Toolkit for Unix | 259

your system administrator) may prefer /usr/local/bin. A slight command-line modifi-
cation changes the target script directory as follows:

$ perl Makefile.PL INSTALLSCRIPT=/usr/local/bin

Installing the PDBA scripts in /ust/local/bin has the added advantage of separating
the executable scripts from the OS binaries found in /usr/bin. This makes your scripts
less vulnerable during system upgrades or rebuilds. Making them publicly available
under /usr/local/bin still avoids a security risk (as the configuration files contain the
confidential information). This information may be easily protected inside a user
account such as oramon.

INSTALLSITELIB

Installation variations are possible too. For example, you might wish to put the mod-
ules in /home/oramon/pdba and the executable scripts in /ust/local/bin. But beware!
You might think the following would suffice:

$ perl Makefile.PL PREFIX=/home/oramon/pdba INSTALLSCRIPT=/usr/local/bin

Alas, this produces unintuitive results. Rather than placing executables in /usr/local/
bin, you’ll find them lurking in /home/oramon/local/bin. This is because PREFIX
takes precedence over INSTALLSCRIPT. We must instead substitute INSTALLSITE-
LIB for PREFIX:

$ perl Makefile.PL INSTALLSITELIB=/home/oramon/pdba INSTALLSCRIPT=/usr/local/bin
For more on this and other MakeMaker variations, try the following command:

$ perldoc ExtUtils::MakeMaker

Ready to install

From now on, we’ll assume that the PDBA Toolkit is being built by the oramon
account. Follow these steps:

1. Go to the PDBA_HOME directory:
$ chdir $PDBA HOME
2. Unpack the tarball:

$ gzip -d PDBA-1.0.tar.gz
$ tar xvf PDBA-1.0.tar
3. Now we configure and compile in the traditional manner:

$ cd PDBA-1.0

$ perl Makefile.PL INSTALLSCRIPT=/usr/local/bin

$ make
Let’s test the compilation. This requires setting the ORACLE_USERID environ-
ment variable to a user with the SELECT ANY TABLE privilege:

$ export ORACLE_USERID=system/manager
$ make test

260 | Chapter9: Installing the PDBA Toolkit

4. To install the PDBA Toolkit under the Perl library tree, you’ll need to log in as
root:

$ su - root
cd /home/oramon/PDBA-1.0

5. Now finish the job:
make install
You’ll see output that looks something like this:
Installing /usr/lib/perls/site perl/5.6.1/PDBA/CM.pm

Installing /usr/share/man/man3/PDBA::CM.3pm

Installing /usr/bin/pwd.pl
Writing /usr/lib/perl5/site perl/5.6.1/1586-1inux/auto/PDBA/.packlist
Appending installation info to /usr/lib/perl5/5.6.1/i586-1inux/perllocal.pod

Installing PDBA Unix Configuration Files

We'll store our Unix configurables via the highly sophisticated flat-file method,”
albeit one with a special twist. While PDBA modules and scripts are now installed in
the proper locations, the configuration files remain within the build directory. Let’s
find them a proper home:

$ cd $PDBA HOME/PDBA-1.0
Of course, the final location of the files will depend on how you set PDBA_HOME:

» If PDBA_HOME is set to /u01/app/pdba, for example, this is where the files will
get stored.
* If PDBA_HOME is not set, the configuration files will get stored in $SHOME/
pdba.
To install the default configuration files, you simply need to execute this command:

$ perl cp_config

The c¢p_config script checks any potential PDBA_HOME value, determines what to
do, and then installs the files accordingly (as described earlier). To configure these
files, skip the Win32 installation, and go directly to the section “Configuring the
PDBA Toolkit,” later in this chapter, as configuration is similar for both platforms.

Installing the PDBA Toolkit for Win32

Before we discuss toolkit installation on Win32 systems, we need to make sure that
the PDBA_HOME environment variable is in an accessible place. On Win32, only

* If it’s good enough for Apache, it’s good enough for us!

Installing the PDBA Toolkit for Win32 | 261

one mechanism ensures the availability of this variable—the Windows Registry.
Although we’ll use the Registry just once, we must make sure that PDBA_HOME
can be accessed by programs running through the Windows Scheduler, through the
Windows services system, or just as plain old scripts.

N
We recommend that the PDBA Toolkit and all its configuration files
be stored on the C: drive, because of the way that Windows security
% works. Programs executing from drives other than C: may lack access
" to drives other than C: when running via the Windows Scheduler.
Likewise, Perl scripts running as Win32 services may fail to work
properly when executed from a network drive.

aqs
N
N

You will need to follow the steps in this section to install the toolkit on your Win32
platform so the scripts introduced in later chapters will work properly.

PDBA Registry Settings

Follow these steps to provide the proper registry settings:
1. Visit our O’Reilly site and download PDBA.ppd. Save this to a suitable place
such as CATEMP. (You only need this temporarily and can delete it afterwards):
http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

2. Now install PDBA via ActivePerl’s PPM program:”

DOS> ppm
PPM> install --location=c:\temp PDBA
Install package 'PDBA?" (y/N): vy

ir;:;talling C:\Perl\site\1ib\PDBA\CM.pm
i;l.;)talling C:\Perl\site\1lib\PDBA\util\pdba.reg
ir};talling C:\PerI\bin\pwc.pl

I;di’iting C:\Perl\site\lib\auto\PDBA\.packlist

PPM>
(Notice the --location PPM argument used to locate the PDBA.ppd file. (Note
that there are two dashes in the option, not one.)
3. Once you've installed PDBA via PPM, you’ll need to track down the pdba.reg
file. If your Perl installation is on drive C:, its file path will be:

C:\Perl\site\Nlib\PDBA\util\pdba.reg

* You could also download PDBA_1_00_Win32.tar.gz, uncompress it, and install it manually, copying the
files to the appropriate locations. PPM is much easier, though, and less error-prone.

262 | Chapter9: Installing the PDBA Toolkit

4. Edit this file with a right-click, and check to make sure you're happy with the
default for PDBA_HOME, which we’ve preset to:*
C:/pdba
5. Change it if you wish and then exit from the file. To update the Registry, double-
click the pdba.reg file via Windows Explorer.

6. This installs the key [HKEY_LOCAL_MACHINE/Software/PDBA] with a
PDBA_HOME entry assigned to C:/pdba (or whatever you've changed it to).
Registry work is now over. Sighs of relief, as we go back to our lives, citizens.

7. Finally, you need to copy the supplied configuration files from their installed
location to the directory indicated by PDBA_HOME. You can do this by simply
using the Windows Explorer to cut-and-paste the files from their current loca-
tion. Alternately, you can use the copy command from the command prompt
window. Assuming that the PDBA Toolkit was installed on drive C:, the configu-
ration files will be located in the C:\Perl\site\lib\PDBA\conf directory, as in
Figure 9-2. Assuming that PDBA_HOME is set to C:\pdba, the following com-
mand will locate the configuration files at their final destination:

DOS> copy C:\Perl\site\lib\PDBA\conf*.conf C:\pdba

Bueonf =lol x|

JFiIe Edit Wiew Favorites Tools Help |

J {mBack ~ = - | @Search ||:E;FOIders @HiStDVY ||E 0z % | [Ed~

| address |23 c:perfisitelib\PDBALconf =] @oo
Folders X || Mame £ | Size: | Tvpe | Modified |
0 Mal [|) em.conf ZKE COMFFile 10/28/2001 3:54 PM
D MIME pdba.conf 1KB COMFFile 10252001 3:54 PM
[]‘-D Met DWC.Can ZKE CONFFile 10/28/2001 3:54 PM
E{1 POBA pwd.carf 9KE COMFFile 10/28/2001 3:54 PM

-

----- {23 uti
=1 POBA.old
L2 conf
-{C1 PDEA.old2 =
|4 objectis) (Disk free space: 2,78 GB) 11.5KE | My Computer 4

Figure 9-2. PDBA configuration files

Installing Additional Perl Modules

A few additional modules are required for the toolkit to work properly:

* You may be curious about the use of the forward slash, /, rather than the standard Windows backslash, \.
The backslash has a special meaning in Perl, changing the meaning of following characters. Perl therefore
requires two backslashes, \\, to really mean a single one, \. Because the Windows kernel uses a forward slash
internally as the separator, using it in Perl works just fine.

Installing the PDBA Toolkit for Win32 | 263

TimeDate

Graham Barr’s TimeDate date parser.
Crypt::RC4

Kurt Kincaid’s Crypt::RC4 cryptographic module.
Mail::Sendmail

Milivoj Ivkovic’s OS-independent email sender.

Win32::Daemon
Dave Roth’s invaluable module that allows us to create Win32 services in Perl.

Install the first three from ActiveState via PPM:

DOS> ppm

PPM> install TimeDate

PPM> install Crypt-RC4
PPM> install Mail-Sendmail

The last module,Win32::Daemon, was described earlier in the section “PDBA::
Daemon and Win32::Daemon.” This module allows Perl to act as a service on

Win32, the same way it can run as a daemon on Unix. The URL for Win32::Daemon
is:

ftp://ftp.roth.net/pub/mtperl/Daemon/20000319/Bin/

The latest version, as this book went to press, was daemon_5006.Zip. Download this
file to a suitable location, such as C:\temp, and extract the Win32-Daemon.ppd file
from the archive into C:\temp via your favorite unzip program. You're now ready to
install the module via PPM:

DOS> ppm
PPM> install --location=c:\temp Win32-Daemon
PPM> quit

As we describe later, this PPD file (shown in Example 9-11) loads up various other
software components from Dave Roth'’s site, depending on how Perl interprets your
OS architecture.

Example 9-11. Win32-Daemon.ppd

<SOFTPKG NAME="Win32-Daemon" VERSION="0,2000,06,20">
<KTITLE>Win32::Daemon</TITLE>
<ABSTRACT>The Win32::Daemon extension for Win32 X86. Allows Perl
to be a Win32 service.</ABSTRACT>
<AUTHOR>Roth Consulting (http://www.roth.net/)</AUTHOR>
<IMPLEMENTATION>
<0S NAME="MSWin32" />
<ARCHITECTURE NAME="MSWin32-x86-object" />
<CODEBASE
HREF="http://www.roth.net/perl/packages/x86/Win32/Daemon_5005_AS.tar.gz" />
</IMPLEMENTATION>
<IMPLEMENTATION>
<0S NAME="MSWin32" />

264 | Chapter9: Installing the PDBA Toolkit

Example 9-11. Win32-Daemon.ppd (continued)

<ARCHITECTURE NAME="MSWin32-x86" />
<CODEBASE
HREF="http://www.roth.net/perl/packages/x86/Win32/Daemon_5005.tar.gz" />
</IMPLEMENTATION>
<IMPLEMENTATION>
<0S NAME="MSWin32" />
<ARCHITECTURE NAME="MSWin32-x86-multi-thread" />
<CODEBASE
HREF="http://www.roth.net/perl/packages/x86/Win32/Daemon_5006.tar.gz" />
</IMPLEMENTATION>
</SOFTPKG>

You’re done with the installation! All of the Perl modules and scripts needed for the
toolkit are now installed. Onward and upward to the toolkit configuration.

Configuring the PDBA Toolkit

PDBA Toolkit configuration works the same way for both Unix and Win32. As we
mentioned earlier, it’s based upon a flat-file system.

From this point on, we’ll refer to the file locations as PDBA_HOME/
file_name.conf, regardless of platform.
&

We'll begin with the actual PDBA module and then continue with Connection Man-
ager, the Password Server, and then the Password Client, each with its own configu-
ration file, as shown in Figure 9-2.

PDBA Module Configuration

The PDBA module requires little configuration. It needs to know just two things:

¢ Which mail server to use

* Where it should say the emails are being sent from

The configuration file is PDBA_HOME/pdba.conf. The default contents are shown in
Example 9-12.

Example 9-12. pdba.conf —Default values

package pdbaparms;
use vars qw(%parms);
%emailParms = (
required for sending mail
mailServer => ‘sherlock.jks.com',
who should mail be from?
does not need to be a valid address

Configuring the PDBA Toolkit | 265

Example 9-12. pdba.conf —Default values (continued)

fromAddress => 'oracle@jks.com',

)s

Simply adjust the values to those for your own site. The mailServer parameter needs
to be a valid mail server, but fromAddress can be a purely informational FROM:
address. For example, if your domain is mydomain.com, you may want to simply set
it to oracle@mydomain.com. Or you can set it to a real address, if you prefer, to
make potential replies easier. For instance, you could change the two key lines like
this:

mailServer => 'mail.mydomain.com’,

fromAddress => 'oracle@mydomain.com’,
When you’re finished, check the file for syntactic correctness with the -cw switches:

$ perl -cw pdba.conf

PDBA::CM Module Configuration

We've included the PDBA::CM (Connection Manager) module in the toolkit as an
optional convenience, although we hope you’ll want to set it up. The default PDBA_
HOME/cm.conf is shown in Example 9-13.

Example 9-13. cm.conf —CM configuration file

package cmconf;
use vars qw(%env);
%env = (
default => {
ORACLE_HOME => '/u02/app/oracle/product/8.1.7"',
ORACLE_BASE => '/u02/app/oracle’,
TNS_ADMIN => '/u02/app/oracle/product/8.1.7/network/admin’

b

ts99 => {
ORACLE_HOME => '/u02/app/oracle/product/8.1.7"',
ORACLE_BASE => '/u02/app/oracle’,
TNS_ADMIN => '/u02/app/oracle/product/8.1.7/network/admin’

b
)s

New database connection attempts made via PDBA::CM check for this file as
follows:

1. If it exists, the contents are checked for the target database.

2. If the database entry exists, cm.conf values are used to set ORACLE_HOME,
ORACLE_BASE, TNS_ADMIN, and any other required environment variables.

3. If a database entry is not specified, the default values are used.

266 | Chapter9: Installing the PDBA Toolkit

Download from Wow! eBook <www.wowebook.com>

Setting the environment variables in this way means you get them right every time
you connect to a target database—and you don’t have to remember them. This is
useful for scripts running from a system scheduler. The usual method used to run an
ordinary Perl script is to wrap it. The wrapper sets the environment and then exe-
cutes the script. Example 9-14 may look familiar to cron users. When running a
script via the Unix cron scheduler, you normally must explicitly set all Oracle envi-
ronment variables in the script. This is because scripts that run via cron do not
inherit the environment variables that are normally set when logged into an interac-
tive Unix account.

Example 9-14. mybatch.sh—Setting up a Perl script in a wrapper script
#1/bin/ksh

Set the environment

export ORACLE_SID=tso01

export ORAENV_ASK=NO

. /usr/local/bin/oraenv $ORACLE_SID

Execute the script
mybatch.pl -database -username ayn -password rand

Using PDBA::CM’s configuration file eliminates the need for this kind of logic. You
simply run the Perl script mybatch.pl directly via the system scheduler. For most situ-
ations, you set up cm.conf with just the default values and it works fine. You need
only add specific database parameters as necessary. For Win32 users who need a
simple default, edit the supplied cm.conf file to make it look like Example 9-15:

Example 9-15. cm.conf —Basic CM configuration file

package cmconf;

use vars qw(%env);

%env = (default => {
ORACLE_HOME => 'c:/oracle/ora81’,
ORACLE_BASE => 'c:/oracle’,
TNS_ADMIN => 'c:/oracle/ora81/network/admin’

|9
)s

Note that by default PDBA::CM ignores the c¢m.conf file it ORACLE_HOME is set.
You can override that behavior with the FORCE_CONFIG attribute. You can also
tell PDBA::CM to look beyond PDBA_HOME for a configuration file via PATH and
FILE:
my $dbh = new PDBA::(M (
DATABASE => $db,
USERNAME => $username,

PASSWORD => $password,
FORCE_CONFIG=> 1, # Use the config file! :-)

Configuring the PDBA Toolkit | 267

PATH => '/u02/app/oracle/config’,
FILE => 'oracle_cm.conf'

)s

Password Server Configuration

The password server configuration file, PDBA_HOME/pwd.conf, contains five data
structures:

$port

Sets the TCP port for the password server
%pwd

Sets the passwords for the password server

%users
Sets up password server users

%encryption
Encrypts passwords

%instanceAuth
Sets up per-account authorization

We’ll describe these in the following sections.

$port: Setting the TCP port for the password server

First you need to set the TCP port to be used by the password server. The setting in
the file is currently 1579. You can change this to any other setting as follows:

package pwd;

use vars qw($port %pwd %instanceAuth %users %encryption);

$port=1579;

R
s

Ports < 1024 will require special OS or root permissions.

%pwd: Setting the passwords for password server

This is where the passwords for each account are specified by machine or database
server name, Oracle instance name, and account name, in a manner similar to the
tnsnames.ora file structure. Example 9-16 is taken directly from the pwd.conf file
included in the PDBA distribution. It contains passwords for the sys and system
users, for the databases ts98 and £s99 on the watson server, and for database tsO1 on
the sherlock server.

268 | Chapter9: Installing the PDBA Toolkit

Example 9-16. pwd.conf

%pwd = (
sherlock => {
ts01 => { system => 'hoser',

sys => 'hosehead' }
1,
watson => {
ts99 => { system => 'wazzup',
sys => 'wizard' },
ts98 => { system => 'whynot',
sys => 'bcuz' }
}

)s

This type of data structure is known as a hash of hashes (see Appendix A). The%pwd
Perl hash contains a list of hash keys, in this case sherlock and watson. Each of these
contains another Perl hash. Inside these hashes are the actual accounts and pass-
words. Here’s what you need to do:

* If you're ready to edit your pwd.conf file, go ahead and change the server names,
accounts, and passwords to those appropriate for your site.

* If you do edit the file, be sure to check it with perl -cw pwd.conf when done.

The method used to access this data may appear initially to be somewhat daunting,
but scrutiny reveals that it’s only a loop extracting servers, instances, usernames, and
passwords, as Example 9-17 shows.

Example 9-17. pwd.pl—Accessing data elements

1 use PDBA::ConfigFile;

2

3 unless (new PDBA::Configload(FILE => 'pwd.conf', PATH => './')) {
4 die "could not load pwd.conf\n";

5}

6

7 $t=0;

8 for my $server (keys %pwd::pwd) {

9 print "\t" x $t, "server: $server\n";

10 $t++;

" for my $instance (keys %{$pwd::pwd{$server}}) {

12 print "\t" x $t, "instance: $instance\n";

13 $t++;

14 for my $user (keys %{$pwd::pwd{$server}->{$instance}}) {
15 print "\t" x $t, "username: $user",

16 "password: $pwd::pwd{$server}->{$instance}{$user}\n";
17 }

18 $t--;

19}

20 $t--;

N}

Configuring the PDBA Toolkit | 269

Here’s what is going on.

1. Line 8 extracts the server names from the %pwd hash via the built-in Perl func-
tion keys. (Recall how each server has its own hash inside %pwd.)

2. Line 11 extracts instances.

3. Line 14 uses %{} to de-reference yet another nested hash, this time for each
server.

4. The account names and passwords are finally revealed in lines 15 and 16.

Fortunately, PDBA::PWD takes care of all these technical difficulties. The only place
this password structure is used is within the PDBA::PWD module. Retrieving a sin-
gle password in a real-life script is actually fairly simple, as you can see here:

my $password = $pwd: :pwd{$server}->{$instance}{$user};

%users: Setting up password server users

The password server is only available for clients specified in the %users hash. These
require a password. In case you’re thinking “Oh great, another password to remem-
ber, let’s use P4SSWORDF1V3 or something,” keep in mind that this one greatly
reduces the number of other passwords you need to remember. Attempts to retrieve
a password without a correct username and password will return no data. There are
no informational messages declaring that the password or username is incorrect.
Simply change the content for your own users in pwd.conf as follows:
%users = (andyd => 'perlgeek', # Needs to get out more! :-)

jkstill => 'getalife', # Gotta turn off that computer! 8-)
scott => '"tiger');

%encryption: Encrypting passwords

Most folks have become increasingly security-conscious lately, and rightly so. Send-
ing clear text passwords over a network is now considered unacceptable practice,
because the routing of TCP/IP packets over a multiply-redundant network makes it
easy for unauthorized persons to compromise security. With that in mind, we
designed the PDBA::PWD module to ensure that passwords are transmitted in
encrypted form. To assist in the encryption, we’ve chosen the RC4 encryption algo-
rithm available via the Crypt::RC4 Perl module. It is fast, easy to install, and avail-
able for both Unix and Win32 platforms.” All you need do is specify a string to use as
the encryption key. This is done via the %encryption hash in PDBA/pwd.conf, shown
in Example 9-18.

* Once you're used to Crypt::RC4, you may wish to modify our toolkit to gain even greater security with ever
more secure Perl modules; see http://search.cpan.org/Catalog/Security.

270 | Chapter9: Installing the PDBA Toolkit

Example 9-18. pwd.conf —The %encryption hash

%encryption = (
don't change this
level => 'simple’,
make your key at least 56 characters
key => 'One Ring to bring them all and in the darkness bind them',

don't change this
maxKeylLen => 56

)s

There are three pieces of data in the %encryption hash, and the only one you need to
be concerned with for now is key. Here are the requirements for key:

* It needs to be a phrase and can be practically anything you want.
* Nonsense key phrases are best—anything that is difficult to guess.
* The key is used to encrypt passwords sent over the network.

* If you make the key longer than 56 characters, it will be truncated to a length
of 56.

1. It can be shorter than 56 characters, but for best results make it at least 56.

You may recognize our own key as being from J.R.R.Tolkien’s The Lord of The
Rings. It is too predictable for an actual encryption key, but demonstrates that the
key can be anything you like. Change the key, and then check the configuration file
with perl -cw pwd.conf.

%instanceAuth: Setting up per-account authorization

The %instanceAuth hash provides an optional security feature. It can be used to limit
which users are able to retrieve passwords for a particular account. If you have some
sensitive accounts, you can limit access to them with %instanceAuth. Any accounts
unspecified will be available to all authorized users. If the %instanceAuth structure is
missing completely, all users found in %users have access to all passwords for all
accounts.

Consider Example 9-19: it’s a subset of the servers found within Example 9-16. In
the %pwd hash, there are two servers, with three Oracle instances, and two accounts
in each instance, sys and system. This is a total of six passwords, and we want to fil-
ter their access as follows:

* You want to allow andyd and jkstill to have access to the system account on tsO1.
* Only andyd is to have access to the sys account on ts01.
* Only scott and andyd are to have access to the sys account on ¢s99.

* All authorized users of the password server, as found in the %users hash, are to
have access to the supplied accounts sys and system in the £s98 instance, as well
as to the system account in ts99.

Configuring the PDBA Toolkit | 271

The entries in %instanceAuth shown in Example 9-19 create the required filter. The
only entries needed are for accounts where you wish to limit the users who can
retrieve passwords.

Example 9-19. pwd.conf—Using the %instanceAuth structure

%instanceAuth = (

sherlock => {
ts01 => { system => [qw(andyd jkstill)],
sys => [qw(andyd)] }
1

watson => { ts99 => {
sys => [qw(scott andyd)] }
}

)s
Let’s see what’s going on here.

1. The lowest-level entry in the %instanceAuth structure is something called an
“anonymous array”’—that is, it exists in Perl memory as an array, but it has no
name. (You can read up on anonymous arrays in Appendix A.)

2. You can tell it’s an anonymous array because the data is in square brackets [],
indicating an array, but there is no name associated with it.
3. If this level of security is unnecessary, just delete all of the data inside the
%instanceAuth hash so it looks like this:
%instanceAuth = ();
You must keep %instanceAuth, though, even if it is undefined. If you delete it

entirely, a warning will be raised when you check the file via the command perl
-cw pwd.conf.

Securing pwd.conf

The PDBA/pwd.conf file is sensitive, so you need to set Fort Knox file permissions
enabling only authorized users to read or edit it. On Unix, this is done via chmod:
$ chmod 640 pwd.conf

$ 1s -la pwd.conf
-IW-T----- 1 oramon dba 8508 Apr 14 07:27 pwd.conf

Setting the permission to 0640 allows users belonging to the DBA group to view the
file, while only the file owner can edit it. Win32 security is different. Setting the
proper permissions on Win32 is a point-and-click operation that works as follows:

1. Find the target file in Windows Explorer and right-click on it.

2. If you have network security on your system, you’ll see a Security tab. Click
on it.

272 | Chapter9: Installing the PDBA Toolkit

3. The File Permissions dialog should appear, like the one in Figure 9-3. In this
example, everyone on the network has access to PDBA_HOME/pwd.conf.

4. Allowing all users on the network to have read access should be avoided for a file
containing passwords. You may want to highlight users or groups that should no
longer have access to the file (such as Everyone). Click on Remove so they no
longer have access to this file.

pwd.conf Properties

perlZere
23 Procram Files

Full Control [&l)
Full Contral [&1]

e u] o] u]ul {5 o{]]] 5]

Figure 9-3. Setting file security on Win32

Running the password server on Unix

Those on Unix are now ready to run the password server via the command line as
follows:

$ pwd.pl

That’s all there is to it. The password server has landed. You can verify its operation
via a ps command, using either the -fea or -aux switches, depending on your own
Unix flavor:

$ ps -fea | grep pwd | grep -v grep

oramon 25771 1 008:12 ? 00:00:00 perl /usr/bin/pwd.pl

$ ps -aux | grep pwd | grep -v grep

oramon 25771 0.0 0.8 5668 4540 ? S 08:12 0:00 perl /usr/bin/pwd.pl

Running the password server on Win32

Running the password server on Win32 is slightly more involved. You need to install
the pwd.pl script as a service. Thanks to the Win32::Daemon module, this is straight-
forward.

Configuring the PDBA Toolkit | 273

1. The first thing to do is to locate the script pwd_service.pl. This is used to install
pwd.pl as a service or to remove it. If Perl is installed on C:, the path will be:
C:\Perl\site\1ib\PDBA\util\pwd_service.pl

2. Once the script has been located, you open a command prompt window to exe-
cute the script and install the password server service. The following command
will install the service.

C:\Perl\site\1lib\PDBA\util\pwd_service.pl -install

3. This will automatically detect where Perl.exe and pwd.pl are located and use
them to install the service. Example 9-20 reproduces the relevant script portion.

Example 9-20. pwd_service.pl—Install password server service on Win32

use File::Basename;
use File::Spec;

use English;

use Getopt::Long;
use Win32::Daemon;

my %optctl=();

my $perlExe = $EXECUTABLE_NAME;

my $perlPath = dirname($perlExe);

build a path to pwd.pl

my @dirs = File::Spec->splitdir($perlPath);
push @dirs, quw(pwd.pl);

my $pwdPath = File::Spec->catfile(@dirs);

%Hash = (name => 'Oracle_PWD_Server',
display => ‘'Oracle_PWD_Server',
path => $perlExe,

[

user => , # Unnecessary, for this particular application.
pwd => "', # Unnecessary, for this particular application.
parameters => $pwdPath);

unless (GetOptions(\%optctl, "installl", "remove!")) {

usage(1);

}
if ($optctl{remove}) {
if(Win32::Daemon: :DeleteService($Hash{name})) {
print "Successfully removed.\n";
} else {
print "Failed to remove service: " . GetError() . "\n";
}

}

print "finished.\n";

sub GetError {
return(Win32::FormatMessage(Win32::Daemon::GetlastError()));

}

274 | Chapter9: Installing the PDBA Toolkit

If you should happen to have a nonstandard installation of Perl, you can use
Table 9-11 (password server parameters) as a guide in editing the attributes of the
%Hash data structure in pwd.pl.

Table 9-11. Parameters for installing the password server on Win32

Attribute Description

name The name of the service. We've set it to Oracle_PWD_Server.

display The name to display in the Win32 Service Manager.

path The full path to the Perl executable—for example, C:\Per/\bin\perl.exe.

user Who the user is to run as (unnecessary for this application).

pwd Password for user (unnecessary for this application).

parameters The full pathname to the pwd.pl script—for example, C: \PerN\bin\pwd.pl.
Starting the service

Now all you need do is run Win32 Service Manager to start the service. There are two
different paths, shown in Table 9-12, depending on which Win32 platform you’re
on.

Table 9-12. Installing the password server on Win32

Win32 version Start menu instructions

NT 4.0 Start->Settings->Control Panel. Then double-click on the Services icon. Highlight the Oracle_PWD_
Server service and click Start.

Windows 2000 Start->Programs->Administrative Tools->Services. Highlight the Oracle_PWD_Server, right-click on
it, and press Start.

Password Client Configuration

We’re in the home stretch now. All that’s left is to set up the password client pwe.pl
and give it a whirl. As with the password server, the client program uses a configura-
tion file. Unlike the server, the configuration file is optional. We hope you’ll want to
use it though, as it makes the client program considerably easier to use. Bring up
PDBA_HOME/pwec.conf in your favorite editor and take a look at it. The contents of
the file, as it appears in the PDBA distribution, are shown in Example 9-21.

Example 9-21. pwc.conf—Password client configuration

package pwc;

use vars qw(%optctl);

%optctl = (host => 'sherlock',
port => 1579,
machine => 'watson',
instance => 'ts98',
username => 'sys',
my _username => 'scott’,

Configuring the PDBA Toolkit | 275

Example 9-21. pwc.conf—Password client configuration (continued)

my_password => 'tiger',
key => 'One Ring to bring them all and in the darkness bind them');

All of the command-line options except -conf can be specified in this file, thus avoid-
ing long command-line entries and the use of clear text passwords (which is what we
were trying to avoid in the first place). It assumes that the configuration file name is
PDBA_HOME/pwec.conf, unless another name is specified directly on the command
line with the -conf filename option. Typing pwe.pl -help on the command line dis-
plays all of the options as a useful reminder of what you’ll need to input. Table 9-13
summarizes these options.

Table 9-13. Command-line options for pwc.pl

Argument Value

conf Tells pwc.pl the name of the configuration file to use.

host Win32 or Unix server on which the password server is running.

port Host port being used by the password server. This will be the same value specified for port, in PDBA_HOME/
pwd.conf.

machine Name of the physical host the database instance is on.

instance Database instance.

username Username for which you are requesting the password.

my_username Your password server username.
my_password Your password server password.

key Key used to encrypt/decrypt passwords sent over the network. Your password server authentication is
encrypted as well. Include this value in quotes if spaces or special characters are included.

Note the following:

* Any options not specified in this file will need to be included on the command
line.

* Arguments specified on the command line override those in the configuration
file.

One common approach is to create a configuration file specifying the password
server and port, your username and password, and the key used to encrypt data
across the network. With those options present in the configuration file, you would
only need to specify the configuration file, database server machine, database
instance, and account name on the command line. For example, your command line
would look something like this when you’re retrieving the password for account
system in instance vdr on database server elfenwood:

$ pwc.pl -machine elfenwood -instance VDR -username system -conf pwc.conf

276 | Chapter9: Installing the PDBA Toolkit

To connect to a different host’s password server, you would modify the command
line as follows:

$ pwc.pl -host mycroft -machine elfenwood -instance VDR \
-username system -conf pwc.conf

Example 9-22 is an example of connecting to an alternate password server. In this
case the password server on Unix server sherlock was unavailable, so a connection
was made to the alternate password server on the Win32 server mycroft.

Example 9-22. Connecting to an alternate password server

%oramon > pwc.pl
Uncaught exception from user code:Couldn't connect to sherlock:1579 : IO::
Socket::INET: Timeout at ...

%oramon >

%oramon >

pwc.pl -host mycroft
whynot %oramon >

Let’s see what’s happening in Example 9-22.

1. Notice in the example that the password whynOt was returned for the sys user in
database instance ts99 on the database server watson. You might find the pass-
word, originally found in Example 9-16, a little hard to pick out, because nei-
ther a line feed nor a carriage return is displayed, just the password. (Obviously,
you can adapt your client scripts so passwords are not revealed in this way;
we’ve done it only to demonstrate the concept.)

2. You can copy the configuration file to any file name you like, and use it that
way. This would be useful if you wanted to keep different configuration files for
each database server or to organize them by username.

3. Be sure that you avoid changing the password client package line near the top of
the package, package pwc;, as that line is required for this configuration file to
work properly.

4. Secure PDBA_HOME/pwec.conf to protect it from unauthorized users, as we
showed with pwd.conf earlier.

The pwe.pl script is useful in demonstrating how to use the password server in your
own scripts. It is also useful as a standalone script for retrieving passwords at the
command line. On Unix systems, it may even be used to retrieve passwords and use
them directly as input. This example demonstrates its use in logging in to SQL*Plus
without any need to type the password:

sqlplus system/$(pwc.pl -machine sherlock -database tso01 -username system)

This uses the Korn shell’s $() subshell mechanism, returning the output of pwe.pl to
the current shell.

Configuring the PDBA Toolkit | 277

Alas, we do not know of an equivalent subshell mechanism on the Win32 platform.

Using PDBA::PWCin your own Perl scripts

The password client module is available for use in your own Perl scripts as well. Here
are the basic pieces you’ll need to include in order to connect to the password server:

use PDBA: :PWC;

my $client = new PDBA::PWC(
host => $remote host,
port => $remote port

)5

$client->authenticate(
username => $myusername,
password => $mypassword,
key => $key,
debug => $optctl{debug}

my $password = $client->getPassword(
machine => $machine,
instance => $instance,
username => $username,
key => $key
)5

This completes the toolkit installation. In the following chapters, we’ll see what it
can do for us.

278 | Chapter9: Installing the PDBA Toolkit

CHAPTER 10

Performing Routine DBA Tasks with
the PDBA Toolkit

The Per] DBA Toolkit we introduced and installed in Chapter 9, Installing the PDBA
Toolkit contains dozens of Perl scripts that you can use to simplify—and even auto-
mate—the many routine tasks that Oracle DBAs wrestle with every day. We use
these scripts daily in our own database administration work, and we think you will
find that they make your work much more efficient.

This chapter focuses on the repetitive operations that Oracle DBAs tend to perform
over and over again. In the following chapters we’ll focus on a few more specialized
tasks: in Chapter 10 we’ll show how you can monitor your database using the tool-
kit scripts, and in Chapter 11, Monitoring the Database with the PDBA Toolkit we’ll
build a repository for storing database information.

If you have installed the PDBA Toolkit as described in Chapter 9, all of the scripts
mentioned in this chapter will be on your system. If you’re running on a Unix sys-
tem, you'll find them in /usr/local/bin, and if you’re using Win32, you’ll find them in
C:\Perl\bin (unless you chose alternative locations during the installation). We’ll
examine the scripts in the following categories:

Managing user accounts
We'll use the create_user.pl, create_user.conf, drop_user.pl, dup_user.pl, mucr8.
msg, and mucr.pl scripts and files to create single users and groups of users, to
drop users, and to perform account maintenance.

Maintaining indexes
We'll use the idxr.pl and index_frag test.sql scripts and files to inspect, tune, and
rebuild database indexes.

Killing sniped sessions
We'll use the kss.pl, kss.conf, and kss_NT.pl scripts and files to kill sniped
sessions and manage user connection resources.

Managing extent usage
We'll use the maxext.pl script to determine extents, manage statistics, and reor-
ganize objects.

279

Extracting DDL and data
We'll use the sqlunldr.pl, exp_exclude.conf, and ddl_oracle.pl scripts and files to
extract data and DDL statements in a portable way and to transfer objects and
data transparently across systems.

Managing User Accounts

Managing user accounts can consume quite a bit of database administration time,
especially if the DBA doesn’t have the proper tools to simplify the job. Even when
account management is performed infrequently,” it can be resource-intensive. Any
new account you create must have the proper privileges to log on to the database and
be able to create database objects as necessary. And for any new account, you will
need to make sure you're granting only the necessary privileges on requisite data-
base objects—and not granting any privileges the user should not have.

Dropping database accounts may also be a bit of a chore, but for different reasons.
Dropping an account with a large number of objects can cause an extreme amount of
activity in the Oracle data dictionary. This can result in contention with other pro-
cesses in the data dictionary and may result in failure of the DROP USER command.

This section introduces scripts and configuration files you can use to simplify
account management. We’'ll provide ways for you to:

* Create predefined PDBA roles.
* Create users simply from the Unix or Win32 command line.
* Duplicate existing accounts within the database.

* Drop existing accounts (first removing the account’s tables and indexes to pre-
vent data dictionary contention).

Creating Accounts the Old Way

Oracle DBAs often create new users by means of shell scripts such as the one shown
in Example 10-1.

Example 10-1. Creating users with a shell script

#1/usr/bin/ksh

DBAUSER=system
DBAPASSWORD=manager
DEFTBS=users
TMPTBS=temp

* It may even be that managing accounts is least organized when done infrequently; in such cases, there is less
impetus to organize the tasks.

280 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-1. Creating users with a shell script (continued)

ROLES="connect,resource"

for var in username password database

do
print "please enter the value for $var : \c"
read answer
eval "$var=$answer"

done

sqlplus <<EOF
$DBAUSER/$DBAPASSWORD@$database

CREATE USER $username IDENTIFIED BY $password
DEFAULT TABLESPACE $DEFTBS

TEMPORARY TABLESPACE $TMPTBS;

GRANT $ROLES TO $username;

EOF

While this method is effective if you’re creating a simple account, more work is often
needed to tailor specific accounts. For example, if you’re creating a user within a par-
ticular application suite, there are likely to be specific roles and privileges that must
be granted users so they will be able to gain access to the application’s data. Here is a
typical scenario:

1. You're asked to create a data entry account for someone new working on a
Human Resources package. For this clerical role you've already created an
appropriate role, hr_clerk. Let’s assume this new carla account was created in
the database via the script in Example 10-1. We must now relog into SQL*Plus
and execute the following:

SQL> GRANT HR_CLERK TO CARLA;

2. Because carla does not need to be able to create database objects, we revoke
RESOURCE to prevent inadvertent misuse of database resource.

3. You may recall that granting a user RESOURCE means that Oracle auto-grants
an UNLIMITED TABLESPACE privilege to carla. So now we have to issue a
countermanding REVOKE UNLIMITED TABLESPACE.

Let’s just stop here, because this kind of manual DBA work can quickly spiral out of
control, especially with multiple users on multiple applications coming and going
across the entire company.

Fortunately, Perl provides an easier way, and we’ve packaged some helpful Perl
account maintenance scripts in our toolkit for you to use.

Creating a Single Account with create_user.pl

The toolkit script create_user.pl and its associated configuration file create_user.conf
give you a lot of flexibility in creating new user accounts from the command line. In

Managing User Accounts | 281

Download from Wow! eBook <www.wowebook.com>

comparison with the rather cumbersome way we created carla for use with the HR_
CLERK role in the earlier example, we can now issue a single command. There is no
need to perform the extra manual work of logging onto SQL*Plus for fine tuning.
Let’s look at some examples..

Scenario #1
First, we’re going to create a single user account.

1. Here carla is created with a single script, create_user.pl, and the generated pass-
word is printed to the screen.

2. The -verbose option shows all the CREATE and GRANT steps taken:

$ create_user.pl -machine sherlock -database tso01 -username jkstill \
-new_username carla -new_password generate -pdbarole app clerk -verbose

creating user 'carla’

default tablespace : users
temporary tablespace: temp
grants: create session hr_clerk
quotas:

user 'carla' created
password BNHV815
$

Scenario #2

After creating carla, we learn that a developer needs access to a production database
in order to troubleshoot a newly discovered problem. The developer’s access needs
to be the same as it is in his development database. First let’s see how you’d fix
things without the toolkit. (Later, we’ll show how you’d do it with the toolkit, which
manages the whole operation more simply with configurable and pre-stored ele-
ments that replace manual investigative hunches with precise and reliable infor-
mation.)

1. Although you’re opposed to developers possessing accounts on production data-
bases, through gritted teeth you agree to create alicia on production with the
same privileges she has in development.

2. Using the trusty old shell script method, you create the basic alicia account, then
log in to the development database to determine her exact privilege set (you
might use an application such as Orac or Oracletool to work this out). You then
manually grant the discovered privileges to production, in a process that is both
tedious and error-prone.

The toolkit comes to the rescue. Fortunately, you’ve predefined all of the privileges
needed for the databases you administer in the toolkit’s create_user.conf file. Instead,

282 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

you can simply run a command line similar to what you did to create carla’s account,
with some changes for the user name and privileges granted. Example 10-2 shows
how it’s done.

Example 10-2. Create a developer account with create_user.pl

%oramon> create user.pl -machine sherlock -database tso1 \
-username jkstill -new_username alicia -new_password generate \
-pdbarole developer -verbose

creating user 'alicia’

default tablespace : users
temporary tablespace: temp

grants: connect resource plustrace javauserpriv javadebugpriv
select catalog role

revokes: unlimited tablespace

quotas:
indx: 5m
users: unlimited

user 'alicia' created
password: CBLD1749

With a single command you create the new alicia account and grant the following
roles to it:

CONNECT

RESOURCE

PLUSTRACE
JAVAUSERPRIV
JAVADEBUGPRIV
SELECT_CATALOG_ROLE

In addition, you set the user quotas on the USERS and INDX tablespaces. Let’s take
a closer look now at create_user.conf and create_user.pl.

The create_user.conf configuration file
Make sure that the create_user.conf file is in your PDBA_HOME directory:
1. If it’s missing from PDBA_HOME (perhaps because you are logged on as a new
user), copy it from the PDBA installation directory. For Unix, type:
$ cp /u01/build/PDBA-1.00/routine_tasks/create user.conf $PDBA_HOME
On Win32, type:
DOS> copy C:\Perl\site\lib\PDBA\conf\create user.conf C:\PDBA

Managing User Accounts | 283

2. Now open the file with your favorite text editor. The working contents of the file
will look similar to Example 10-3. This example also gives us a good opportu-
nity to show how Perl’s qw{} quote word constructor is used.”

Example 10-3. create_user.conf

package cuconf;
use vars qw{ %roles %tablespaces };

%roles = (
developer => {
grants => [qw{ connect

resource

plustrace

javauserpriv
javadebugpriv
select_catalog_role }],

revokes => ['unlimited tablespace'],

quotas => { users => 'unlimited', indx => 'sm', },
b
app_clerk => {

grants => ['create session', 'hr clerk'],

revokes => [],

quotas => {},

)
app_admin => {
grants => ['create session','hr_admin',],
revokes => [],
quotas => {},

b
backup => {
grants => [qw{ connect exp full database imp full database }],
revokes => [],
quotas => {},
b
dba => {
grants => [qu{connect dba}],
revokes => [],
tablespaces => { default => 'tools', temporary => 'temp2', },
quotas => {},

sysdba => {
grants => [qw{connect dba sysdba}],
revokes => [],
quotas => {},

* For much more on the qw(}, q{}, and qq{} quote constructions in Perl (these essentially allow us to use less
punctuation within our code), check out perldoc perlop.

284 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-3. create_user.conf (continued)

}
)s

%tablespaces = (default => 'users', temporary => 'temp',);

create_user.conf defines a number of logical roles; we’ll refer to these as PDBA roles,
to differentiate them from standard Oracle database roles. Near the top of the %roles
hash in Example 10-3, you’ll find the role DEVELOPER. Each PDBA role is a privi-
lege group assigned as a single entity. (Example 10-2 shows account alicia, as cre-
ated using the PDBA role DEVELOPER.)

If you compare the granted privileges listed for DEVELOPER in Example 10-3, you’ll
see that they match the screen in Example 10-2.

Notice also the UNLIMITED TABLESPACE revoke, reversing its automatic assign-
ment to those granted RESOURCE. The create_users.conf configuration file directed
this operation without your needing to remember. You can extend this approach to
any combination of grants, revokes, and quotas.

New entries can be added to %roles. For example, you might need to create lots of
inventory testers on your application. You could then add the following PDBA role:
inventory tester => {
grants => [qw{

connect

resource

plustrace

select catalog role

inventory user }],

revokes => ['unlimited tablespace'],
quotas => { users => '1om', indx => 'sm', },
b
Let’s see what’s going on here:
1. In addition to the standard database roles of CONNECT, RESOURCE, PLUS-

TRACE, and SELECT_CATALOG_ROLE, the application-specific role of
INVENTORY_USER is included.

2. Because RESOURCE was granted, UNLIMITED TABLESPACE is specified
under revokes, ensuring its immediate removal from any new account.

3. Finally, any user created under inventory_tester will receive quotas of 10 and 5
megabytes on the USERS and INDX tablespaces, respectively.

To create a more limited production version of INVENTORY_TESTER, you can
limit the grants to CREATE_SESSION and the database role INVENTORY_USER:

inventory production => { grants => ['create session','inventory_user'}],
revokes => [],

quotas => {}) })

Managing User Accounts | 285

Tablespaces

When you are creating an account, it is good practice to specify a default tablespace
for the user’s object creation needs, and a temporary tablespace for disk sorts and
related operations. Specifying tablespaces in this way avoids having the generic SYS-
TEM tablespace being assigned for both purposes (this also avoids point deductions
by the Big DBA in the sky, who generally frowns upon disk sorts in the SYSTEM
tablespace’s data dictionary area and the potential for SYSTEM to run out of room).

Going back to Example 10-3, you’ll notice that the DBA PDBA role has the follow-
ing clearly specified tablespaces:

tablespaces => { default => 'tools', temporary => 'temp2', },
Every other account makes use of another special hash, %tablespaces:
%tablespaces = (default => 'users', temporary => 'temp',);

This ensures that every new user created gets USERS and TEMP as its default
tablespaces; this avoids having us clobber SYSTEM!

We can also override all these configured tablespaces, as we’ll find out shortly.

create_user.pl

Now let’s examine the create_user.pl script, which does the actual user account cre-
ation. The script’s options are listed in Table 10-1.

Table 10-1. Command-line options - create_user.pl

Option Description

-machine Server where target database resides.

-database Target database.

-username DBA account that is creating the new account.

-password DBA's account password (optional if password server used).

-new_username New user account to be created.

-new_password Password for new account. (Specifying a value of generate causes automatic password generation; see
Example 10-2.)

-pdbarole PDBA role to assign to the new account.

-default_tbs Overrides the default tablespace value in create_user.conf.

-temp_tbs Overrides the temporary tablespace value in create_user.conf.

-verbose Outputs every user creation step to the screen.

-list_roles Prints the list of available PDBA roles and privileges.

The password generation code for the -new_password switch is found in the PDBA::
DBA module and is shown in Example 10-4. This code simply selects several charac-
ters of the alphabet, based on the current time value of seconds as returned by
SYSDATE and a MOD value of v§timer.hsecs.

286 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-4. Generating passwords in PDBA::DBA.pm

my $Alphabet = 'ABCDEFCHIJKLMNOPQRSTUVWXYZ';

my $PasswordGenSql = qq {select
substr(' $Alphabet’,MOD(TO CHAR(SYSDATE,'SS'),25)+1,1) |
substr('$Alphabet ' ,MOD(substr(mod(hsecs,99999999)+?,5,2),25)+1,1) ||
substr('$Alphabet' ,MOD(substr(mod(hsecs,99999999)+?,6,2),25)+1,1)] |
substr (' $Alphabet',MOD(substr (mod(hsecs,99999999)+?,7,2),25)+1,1) ||
mod(hsecs,9999) as password
from v\$timer

};

sub genPassword {
my $newPassword;
my $sthPasswordGen = $dbh->prepare($PasswordGenSql);
$sthPasswordGen->bind _columns(undef, \$newPassword);
my $seed = (localtime(time))[0];
use DBI qw{:sql types};
$sthPasswordGen->bind param(1, $seed, SOL INTEGER);
$sthPasswordGen->bind param(2, $seed, SQL INTEGER);
$sthPasswordGen->bind param(3, $seed, SQL INTEGER);
$sthPasswordGen->execute();
$sthPasswordGen->fetch();
return $newPassword;

}

This routine lacks true randomness but possesses sufficient uniqueness for the
assignment of new account passwords. Users should, of course, be told to change

these passwords upon receipt.

The list_roles switch reveals all of the roles, types, and privileges as follows:

$ create_user.pl -list_roles
ROLE: app_clerk
TYPE: grants
PRIV: create session
PRIV: hr clerk
TYPE: quotas
TYPE: revokes
ROLE: dba
TYPE: grants
PRIV: connect
PRIV: dba
TYPE: quotas
TYPE: revokes
TYPE: tablespaces
PRIV: default: tools
PRIV: temporary: temp

The -default_tbs and -temp_tbs switches assign specific tablespaces by overriding
create_user.conf. The following creates a new DBA user, homer, with default and

temporary tablespaces of USERS and TEMP, respectively:

$ create_user.pl -machine sherlock -database tso1 \
-username system -password manager \

Managing User Accounts

287

-new_username homer -new password doh \
-pdbarole dba -default_tbs users -temp_tbs temp

Creating a Single Account With dup_user.pl

At times, you may wish to simply duplicate a user account by copying all of the char-
acteristics of one user to another user. However, the source account may come with
a large number of directly granted privileges. Duplicating accounts like this is diffi-
cult; you will need to untangle all of the source account’s privileges, no matter how
twisted they’ve become. Moreover, you must log in as the owner of original objects
and re-grant these privileges. In Figure 10-1 we’ve illustrated a new account’s receiv-
ing direct privileges from the GL, AP, and HR accounts.

HR AP
employees purchase_orders

i k-

New Oracle
Account

Privileges for new account:

SELECT

UPDATE GL

DELETE account_codes
INSERT

Figure 10-1. Multiple direct grants to a new account

If your new account name were rowan, here’s what you’d need to do to assign the
correct database privileges:

CONNECT HR/password

GRANT SELECT,UPDATE, INSERT,DELETE ON EMPLOYEES TO ROWAN;

CONNECT GL/password;

GRANT SELECT,UPDATE, INSERT,DELETE ON ACCOUNT_CODES TO ROWAN;

CONNECT AP/password;
GRANT SELECT,UPDATE,INSERT,DELETE ON PURCHASE ORDERS TO ROWAN;

This may look fairly painless. However, if the source account has many such privi-
leges, this process can become very complex. This inspired us to create the dup_user.
pl script. It fully duplicates a complete Oracle user, including all roles, directly
granted privileges, system privileges, default and temporary tablespace assignments,
and tablespace quotas. Its options are summarized in Table 10-2.

288 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Table 10-2. Command-line options—dup_user.pl

Option
-machine
-database
-username
-password
-source_username
-new._username
-nosystemprivs
-systemprivs
-noobjectprivs
-objectprivs
-noroles

-roles

Description

Server where the target database resides.

Target database.
DBA account.

DBA account password (optional if password server in use.)

Account to duplicate.

User account to create.

Avoids assigning source system privileges to target.

Assigns source system privileges to target (the default).

Avoids assigning source object privileges to target.

Assigns source object privileges to target (the default).

Avoids assigning source roles to target.

Assigns source roles to target (the default).

We'll demonstrate the use of dup_user.pl on our test database by creating a dupli-
cate of scott who has been granted a few extra privileges:

SELECT GRANTEE, 'ROLE' PRIVTYPE, GRANTED ROLE PRIVNAME,
NULL OWNER, NULL TABLE_NAME
FROM DBA_ROLE_PRIVS
WHERE GRANTEE = 'SCOTT'

UNION

SELECT GRANTEE, 'SYSPRIV' PRIVTYPE, PRIVILEGE PRIVNAME,
NULL OWNER, NULL TABLE_NAME
FROM DBA_SYS_PRIVS
WHERE GRANTEE = 'SCOTT'

UNION

SELECT GRANTEE, 'TABPRIV' PRIVTYPE, PRIVILEGE PRIVNAME,
OWNER, TABLE_NAME

FROM DBA_TAB_PRIVS
WHERE GRANTEE = 'SCOTT'
ORDER BY 1, 2, 3, 4, 5;

GRANTEE

PRIV
TYPE PRIV NAME

ROLE CONNECT

RESOURCE

SELECT_CATALOG_ROLE
SYSPRIV CREATE SESSION

CREATE TRIGGER
TABPRIV DELETE

EXECUTE

SELECT

UPDATE

JKSTILL
JKSTILL
JKSTILL
JKSTILL

TABLE NAME

LCL 1

TRUNCATE_TEST_NAMES

LCL 1
LCL 1

Managing User Accounts

289

We'll use dup_user.pl to create SCOTT_DUP, a duplicated clone of SCOTT. Note

the following:

1. The script must log in to the test database as JKSTILL, and grant privileges on
the LCL_1 table and TRUNCATE_TEST_NAMES procedure.

2. For this to work, the Password server (see the discussion in Chapter 9) must be
running and configured with passwords from accounts holding necessary privi-

leges.

3. JKSTILL’s password on the ts01 database is also required.

Here’s the command line needed to create the duplicate account:

$ dup_user.pl -machine sherlock -database tsol -username jkstill \

-source_username scott -new_username scott_dup

The data dictionary confirms SCOTT_DUP’s creation, with SCOTT’s privileges:

PRIV
GRANTEE TYPE PRIV NAME

OWNER

TABLE NAME

SCOTT_DUP ROLE CONNECT
RESOURCE
SELECT_CATALOG_ROLE
SYSPRIV CREATE SESSION
CREATE TRIGGER
TABPRIV DELETE
EXECUTE
SELECT
UPDATE

Creating Multiple Accounts with mucr8.pl

JKSTILL
JKSTILL
JKSTILL
JKSTILL

LCL 1
TRUNCATE_TEST_NAMES
LCL 1
LCL 1

Most requests for new accounts come one at a time. However, you may occasionally
have to deal with the need to create a large number of new accounts all at once. For
example, you may be asked to migrate an existing application to Oracle or to install a
new company-wide application. Whatever the reason, creating hundreds of new
users can be a heavy piece of work, and it’s essential to create an accurate list of all
the new account names. This will be our starting point in this section. But entering
many account names by hand is a time-consuming and potentially error-prone pro-
cess. So let’s first try to obrtain the list, with permission, from such places as:

* The project manager of the company-wide application.

* The company personnel records (although it’s often rightly difficult to obtain

this sensitive information).

The information we’ll need is the following;:

The account name
The user’s email address

290 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

The user’s first name (optional)
The user’s last name (optional)

The essential elements are the account name and the email address, though the first
and last names are useful for constructing account names if specific account names
remain unavailable. Once we have the list, we could employ single-user creation
tools executed inside a Unix for loop.

However, our cross-platform mucr8.pl (Multi User Create) toolkit script provides
functionality well beyond this. Here’s what we do:

1. We'll start by getting a copy of the mucr8.conf file and placing it into your
PDBA_HOME directory (you may have already done this in Chapter 9). (We
also need the create_user.conf configuration file that was configured earlier in
this chapter in the “Creating A Single Account” section.)

2. On Unix, copy configuration files from the PDBA installation directory:
$ cp /u01/build/PDBA-1.00/routine tasks/mucr8.conf $PDBA_HOME
On Win32, type:
DOS> copy C:\Perl\site\lib\PDBA\conf\mucr8.conf C:\PDBA
3. Now open up mucr8.conf within a text editor, as shown in Example 10-5.

Example 10-5. mucr8.conf

package mucrs;

use PDBA;
use vars qw(%conf %tags) ;

%conf = (
messageFile => PDBA->pdbaHome . '/mucr8.msg’,
fieldSeparator => ':',
usernamePosition => 0,
emailAddressPosition => 1

)s

%tags = (
'<<APPLICATION>>' => '$optctl{application}', # Used later,
'<<DATABASE>>" => '$optctl{database}", # in messages! :-)

'<<USERNAME>>' => '$newUsername’,
'<<PASSWORD>>" => '$newUser->{PASSWORD}'
)5

1;

The %conf hash sets up script controls, and %tags personalizes the email messages
sent to each new account. There are four keys in %conf:

messageFile
Points to the message file emailed to users. This file contains tags used as place-
holders for runtime data, which we’ll discuss shortly.

Managing User Accounts | 291

fieldSeparator
Separates fields in the list file data used by mucr8.pl.

usernamePosition, email AddressPosition
Numeric positions of data within the text record; for example:

rogerwil : rogerw@yourdomain.com:Wilco:Roger

The rogerwil username is held in field 0, the email address in field 1.

mucr8.msg

The mucr7.msg file contains the text that will be automatically emailed to the own-
ers of new Oracle accounts. It makes use of <<>> tags to customize the message, as
we’ll explain shortly.

On Unix, copy the mucr8.msg file from the directory from which PDBA was
installed:

$ cp /u01/build/PDBA-1.00/routine_tasks/mucr8.msg $PDBA HOME
On Win32, the copy operation is very similar:
DOS> copy C:\Perl\site\lib\PDBA\conf\mucr8.msg C:\PDBA

Take a look at mucr8.msg in Example 10-6.

Example 10-6. mucr8.msg

An account has been created for you on one of the company Oracle databases in support of
the following application:

Application: <<APPLICATION>>

The information you need to logon to this database is as follows:

Username : <<USERNAME>>
Password : <<PASSWORD>>
Database : <<DATABASE>>

If you are unsure why you received this email or are having difficulty, please contact the
Help Desk at 555-346-2852.

Thank You,
Your DBA Team

At runtime, the mucr8.pl script replaces the <<*>> tags with the attributes assigned
in mucr8.conf within the %tags hash (shown in Example 10-5). These replace the
corresponding tag values found in mucr8.msg. The following cut-down code from
mucr8.pl accomplishes this:

open(MSG, "< mucr8.msg") # Open the email message file.

my @mailMsg = <MSG>; # Slurp the message file into @mailMsg array.
close MSG;

292 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Create a scalar variable, $msg, made up of all elements from the
@mailMsg array, slurped in earlier.

my $msg = join('',@mailMsg);
Loop through all tags defined in the %tags hash, found in mucr8.conf.
foreach my $tag (keys %mucr8::tags) {

For each tag from %tags, replace the tag found in the message
file with the value specified from %tags.

eval '$msg =~ ' . "s/$tag/" . (eval $mucr8::tags{$tag}) . "/gm" ;
}
If the tag found in mucr8.msg is <<USERNAME>>, it’s replaced by the variable
$newUsername from the mucr8.pl script, and so on. Any of the attributes associated
with a new user object may also be used as replacement text message values. Here
are some you may find useful:
Scalars

OBJECT
Name of the created user.

PASSWORD
Scalar containing the password assigned.

DEFAULT_TABLESPACE
Default tablespace.

TEMPORARY_TABLESPACE
Corresponding temporary tablespace.

PROFILE
Assigned profile, if any.
Array references

PRIVS
Reference to an array of privileges granted.

REVOKES
Reference to an array of privileges revoked.

Hash references

QUOTAS
Hash reference to the account quotas.

You add the scalars to the mucr8.conf like this:
'<<DEFAULT TBS>>' => "$newUser->{DEFAULT TABLESPACE}',
The following array reference lists privileges in the mucr8.conf file:

"<CPRIVS>' => g{join('," @{$newUser->{PRIVS}})},

Managing User Accounts | 293

The following hash reference fills the <<QUOTAS>> key in any message:

'<<QUOTAS>>"

=>

g{join(',",map { $_ . ' => " . $newUser->{QUOTAS}{$ }}
keys %{$newUser->{QUOTAS}})},

The variable information from an example email using <<PRIVS>> and
<<QUOTAS>> might look like this:

Application: ACCT and HR

The information you need to log on to this database is as follows:

Username
Password
Database

Grants
role
Quotas

: brubble
: KAEE7858
: tso01

: connect,resource,plustrace, javauserpriv, javadebugpriv,select_catalog_

¢ indx => 5m,users => unlimited

Running mucr8.pl

Creating actual database accounts in a test database may make our discussion easier
to understand, so let’s try out the mucr8.pl script. Create a file called myusers.txt
with the following lines:

brubble,<your email address here>
fflintstone, <your email address here>

(Change the email addresses to some valid and observable test values.) Table 10-3
summarizes the muc8.pl command-line options.

Table 10-3. Command-line options—mucr8.pl

Option
-machine
-database
-username
-password
~filename
-application
-pdbarole
-default_tbs
-temp_tbs
-verbose

-message_file

Description

Server where the target database resides.

Target database.

DBA account.

DBA password (optional if Password server in use).
File name containing the new account information.
Informational only; allows the use of this value within the email message file to specify the application.
Which PDBA role to assign to the new account.
Overrides default tablespace.

Overrides temporary tablespace.

Outputs all of the user creation steps to the screen.

Name of the email message file sent to new account owners. This overrides the file name in mucr8.conf.

294 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Table 10-3. Command-line options—mucr8.pl (continued)

Option Description

-logfile Log of operations. Defaults to mucr8.log.

-field_separator Field separator for list file. Overrides mucr8.conf value.

-mail_password Causes mucr8.pl to email account information to users.

-dryrun Prints an operational dry run. Logging is turned off, email is unsent, and the new accounts remain
untouched.

Account creation dry run

We'll try the new -dryrun option in our first example. Example 10-7 shows a dry run
for our friends Barney Rubble and Fred Flintstone.

Example 10-7. A mucr8.pl dry run

mucr8.pl -machine sherlock -database tso01 -username jkstill \
-filename myusers.txt -pdbarole developer -verbose \
-application 'ACCT and HR' \
-dryrun

dry run only

default tablespace: users

temp tablespace: temp

grants: connect resource plustrace javauserpriv javadebugpriv
select_catalog_role
indx: 5m
users: unlimited

user: fflintstone email: fred.flintstone@yourdomain.com
user: brubble email: barney.rubble@yourdomain.com

Here’s what’s going on in Example 10-7:

1. Because the -dryrun option was specified, account creation failed to take place.
Only a report of the future task is shown on the screen.

2. Next, having checked the output, we actually create the accounts:

$ mucr8.pl -machine sherlock -database ts01 -username jkstill \
-filename myusers.txt -pdbarole developer -verbose \
-application 'ACCT and HR'
user: brubble password: KAEE7858
user: fflintstone password: KBPF7869
3. As you can see, the only output when creating accounts for real includes the
username and password. You may wish to record these, even though the pass-
words have been mailed to the user. They’re also recorded in mucr8.log, so make
sure that this file is secure or simply delete it afterwards.

Managing User Accounts | 295

If you run a test with PDBA role DEVELOPER, you may encounter
errors against databases with some Java components missing. If so,
%5 use the CONNECT PDBA role, which has minimal privileges; it
* should work on most databases.

Dropping Oracle Accounts

You can drop most user accounts easily using Oracle’s SQL*Plus, as in the following
example:

SQL> DROP USER username CASCADE;

However, account removal can become complex. When an Oracle account owns a
large number of objects, removing that account with DROP USER can cause a great
deal of recursive data dictionary SQL. This can be a major resource drain, and take
excessive time to complete. To avoid this situation, some DBAs drop all account
tables before executing DROP USER username CASCADE. In the toolkit, we’ve pro-
vided a Perl script that allows you to do this automatically—drop_user.pl. Table 10-4
summarizes the command-line options for this script.

Table 10-4. Command-line options—drop_user.pl

Option Description

-machine Server where the target database resides.

-database Target database.

-username DBA account.

-password DBA password (optional if password server in use).
-drop_username Name of the user to drop.

-force Drops user without verification (the default is to ask).

The drop_user.pl script allows you to change your mind; before actually dropping
the user, it will ask you to verify that you really do want to drop that user. In the fol-
lowing example we use drop_user.pl to erase the newly created account for Barney

Rubble:

$ drop_user.pl -machine sherlock -database ts01 -username system \
-drop_username brubble

dropping user 'brubble’

Really drop user brubble?: Y/N: y

user brubble successfully dropped
Because the -force option was not specified, drop_user.pl required verification. Any
response starting without Y (or y) results in drop_user.pl exiting without dropping
the account.

296 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Maintaining Indexes

Indexes on tables are required in any database to help enforce integrity constraints
and, more importantly, to increase database performance. If you don’t maintain your
indexes, there will be a measurable and noticeable effect on performance. In this sec-
tion we’ll provide some index maintenance scripts aimed at helping Oracle DBAs
keep their databases running efficiently.

Looking at Oracle Space Problems

When table space is freed due to DML deletes or updates within previously full index
blocks, Oracle ordinarily fails to reuse this space except under special circum-
stances. Oracle reuses such an index block only when it becomes completely empty,
and this situation naturally leads to b*tree index fragmentation. If unattended,
indexes eventually become like Tom and Jerry’s favorite snack—except Swiss cheese
is supposed to be full of holes. An exaggerated example using index_frag_test.sql
illustrates the point.

On Unix, you'll find this script in the PDBA installation directory:
$ 1s /u01/build/PDBA-1.00/routine tasks/index_frag test.sql

On Win32, type:
DOS> type C:\Perl\site\lib\PDBA\sql\index frag test.sql

This test script is shown in Example 10-8.

Example 10-8. index_frag_test.sql

DROP TABLE IDX_FRAGMENT;
PROMPT creating test table IDX FRAGMENT
CREATE TABLE IDX_FRAGMENT (PK NUMBER NOT NULL, TESTDATA VARCHAR2(2000));

PROMPT inserting test data into IDX_FRAGMENT
DECLARE
Maxcount CONSTANT INTEGER := 1000;
Insert Str VARCHAR2(2000);
BEGIN
Insert Str := RPAD('X',1000,'X");
FOR N IN 1 .. maxcount
LooP
INSERT INTO IDX_FRAGMENT(PK,TESTDATA)
VALUES(N, Insert Str);
END LOOP;
COMMIT;
END;
/
PROMPT creating primary key IDX_FRAGMENT_PK
ALTER TABLE IDX FRAGMENT ADD CONSTRAINT IDX FRAGMENT PK PRIMARY KEY(PK);

PROMPT creating index IDX_FRAGMENT_IDX

Maintaining Indexes | 297

Example 10-8. index_frag_test.sql (continued)
CREATE INDEX IDX FRAGMENT IDX ON IDX_ FRAGMENT(TESTDATA, PK) PCTFREE 0;

COL SEGMENT NAME FORMAT A30 HEAD 'SEGMENT NAME'
COL EXTENT ID FORMAT A10 HEAD 'EXTENT ID'

COL BYTES FORMAT 999,999,999 HEAD 'BYTES'
COMPUTE SUM OF BYTES ON REPORT

BREAK ON REPORT

-- show number of extents, and then number of rows in table
SELECT SEGMENT NAME, DECODE(EXTENT ID,0,'0"',TO_CHAR(EXTENT ID)) EXTENT_ID,
BYTES
FROM DBA_EXTENTS
WHERE OWNER = USER
AND SEGMENT NAME = 'IDX_ FRAGMENT IDX'
ORDER BY TABLESPACE_NAME, SEGMENT_TYPE, SEGMENT_NAME;

SELECT COUNT(*) IDX_FRAGMENT ROW_COUNT FROM IDX FRAGMENT;

PROMPT delete every 5th row from the table and reinsert it
DECLARE
Maxcount CONSTANT INTEGER := 1000;
insert str VARCHAR2(2000);
BEGIN
insert str := RPAD('X',1000,'X");
FOR N IN 1 .. Maxcount
LOOP
-- DELETE EVERY 5TH ROW
IF MOD(N,5) = 0 THEN
-- DELETE THE ROW
DELETE FROM IDX_FRAGMENT WHERE PK = N;
-- PUT IT BACK
INSERT INTO IDX FRAGMENT(PK,TESTDATA)
VALUES(N, Insert Str);
END IF;
END LOOP;
COMMIT;
END;
/
SELECT SEGMENT NAME, DECODE(EXTENT ID,0,'0',TO_CHAR(EXTENT ID)) EXTENT_ID,
BYTES
FROM DBA_EXTENTS
WHERE OWNER = USER
AND SEGMENT NAME = 'IDX_FRAGMENT IDX'
ORDER BY TABLESPACE_NAME, SEGMENT TYPE, SEGMENT NAME;

SELECT COUNT(*) IDX_FRAGMENT ROW_COUNT FROM IDX FRAGMENT;

In a nutshell, index_frag_test.sql creates a two-column table with 1000 rows, each
row averaging 1002 bytes. We’re going to fragment this index to make our point.

298 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Both columns help create an IDX_FRAGMENT_IDX index, creating 12.6 rows per
index block on our 8K block database. Let’s take a look at the output. We’ll pick up
the important lines afterwards:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

creating test table IDX_FRAGMENT
inserting test data into IDX_FRAGMENT
creating primary key IDX FRAGMENT PK
creating index IDX FRAGMENT IDX

Index created.

SEGMENT NAME

IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX

sum

11 rows selected.

O oo~ oaulTh WN R O

=
o

IDX_FRAGMENT _ROW_COUNT

1 row selected.

131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072

1,441,792

delete every 5th row from the table and reinsert it

PL/SQL procedure successfully completed.

SEGMENT NAME

EXTENT ID

IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX
IDX_FRAGMENT_IDX

O oo~ oulTh WN L O

B e
N B O

131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072
131,072

Maintaining Indexes

299

Download from Wow! eBook <www.wowebook.com>

50: IDX_FRAGMENT IDX 13 131,072

51: IDX_FRAGMENT IDX 14 131,072
52: IDX_FRAGMENT IDX 15 131,072
53: IDX_FRAGMENT IDX 16 131,072
54: IDX_FRAGMENT IDX 17 131,072
55: IDX_FRAGMENT IDX 18 131,072
56: IDX_FRAGMENT IDX 19 131,072
57: IDX_FRAGMENT IDX 20 131,072
58: IDX_FRAGMENT IDX 21 131,072
59: IDX_FRAGMENT IDX 22 131,072
60: e
61: sum 3,014,656
62:

63: 23 rows selected.
Viewing the code output shows that:

* At line 24, IDX_FRAGMENT_IDX gets created with a total of eleven 128K
extents.

* At line 31, a procedure deletes every fifth table row before immediately reinsert-
ing it. The index impact can be seen at line 63. Even though the index is still
pointing to the same 1000 rows, it now requires more than twice as much space
to do so; 3,014,656 bytes.

* If this were a million-row index, the additional space required would cause many
more index buffer gets and disk reads. The holes in the index would have a
noticeable impact on performance.

The idxr.pl script described in the next section will help you maintain your indexes
for peak performance.

Rebuilding Indexes with idxr.pl

To assist you in rebuilding an index and improving the efficiency of index opera-
tions, we've included the script idxr.pl in the toolkit. This script uses Oracle’s
ALTER INDEX REBUILD statement. Some of its features include:

Compute index statistics
You can generate statistics for the index at the time of the rebuild.

Control over length of runtime
You can specify a limited runtime. The script runs within a maintenance win-
dow, rebuilding as many indexes as possible in that time frame.

Incremental index rebuilds
Based on LAST_ANALYZED dates, and runtime windows, you control how
many idxr.pl executions are necessary to completely rebuild indexes.

Index optimal height calculation
The optimal index height is calculated from index statistics. If the actual height
is greater than the calculated value, the index will be rebuilt.

300 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Percent of deleted rows threshold
A threshold based on the percentage of deleted rows in the index can be used to
force the index to be rebuilt.

The idxr.conf configurationfile contains only a few parameters, as shown in
Example 10-9.

Example 10-9. idxr.conf

package idxr;

use PDBA;
use vars quw{ %config };

%config = (
don't check indexes that have been analyzed more recently
than a specified number of days. The reason for this is
that large systems may have many thousands of indexes, more
than can be done in a single pass. It may take several passes
if you have an hour each night to run this, and it takes 20
hours to validate structure, rebuild and analyze your indexes,
you would set mostRecentlyAnalyzed to 20 and maxRunTime to 60

specifify maxRunTime in minutes

maxRunTime => 60,

don't check indexes that have

been analyzed more recently than

mostRecentlyAnalyzed, expressed in days
mostRecentlyAnalyzed => 0,

rebuild the index if percent of deleted

rows is greater than this
pctDeletedThreshold => 10,

logFile => PDBA->pdbaHome . q{/logs/idxr.log},

);

1;

Three parameters determine the runtime characteristics of the script, and one locates
the log file:

maxRunTime
Time in minutes that idxr.pl is allowed to run. This time won’t be exact, because
it is rechecked after each index rebuild. If 60 minutes are set, and a rebuild
requiring 10 minutes starts at 58 minutes, the script exits at 68 minutes.
mostRecentlyAnalyzed
This parameter determines how old an index must be before it will be consid-
ered for rebuilding. If this parameter is set to 3, and the script is set to run on a
Sunday, indexes analyzed more recently than the previous Thursday will be
ignored. Suppose that:

* You have 500 indexes, and it takes 20 hours to rebuild them all.

* You have a one-hour maintenance window each evening.

Maintaining Indexes | 301

With these constraints in mind, you set mostRecentlyAnalyzed to 20 and
maxRunTime to 60. All of your indexes will be gradually rebuilt over a 20-day
period.

logFile
Sets the location of the output log file.

pctDeletedThreshold
If the deleted row percentage in the index exceeds the value of this parameter,
the index is rebuilt.

Fragmentation

The idxr.pl script also determines whether the height of the b*tree index has
exceeded its optimal value. We've ignored the standard formulas for this value and
adapted our SQL from a popular paper on Oracle fragmentation.” The relevant por-
tion of idxr.pl is reproduced in Example 10-10. The script’s command-line options
are summarized in Table 10-5.

Example 10-10. Determining optimal b*tree height

sub getStat {
my ($self, $dbh) = @_;

my $statSql = q{
SELECT
NAME INDEX_NAME
, DECODE (
SIGN(
CEIL(
LOG(
BR_BLK_LEN/(BR_ROWS_LEN/BR_ROWS),
LF BLK LEN/((LF_ROWS LEN - DEL_LF_ROWS_LEN)
/(LF_ROWS - DEL_LF_ROWS))
)
) + 1 - HEIGHT
)
, -1, 'YES'
, 'NO'
) CAN_REDUCE_LEVEL
,DEL_LF_ROWS*100/DECODE(LF_ROWS, 0, 1, LF_ROWS) PCT DELETED
FROM INDEX_STATS
WHERE LF_ROWS <> 0
AND DEL_LF_ROWS <> 0
AND DEL_LF_ROWS_LEN <> 0
AND LF_ROWS_LEN <> 0
AND BR_ROWS <> 0
AND BR_ROWS_LEN <> 0

* See “ How To Stop Defragmenting and Start Living: The Definitive Word On Fragmentation” by Bhaskar
Himatsingka and Juan Loaiza at http://www.oreilly.com/catalog/oressentials/chapter/defrag.pdf

302 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-10. Determining optimal b*tree height (continued)

}

};

my $statSth = $dbh->prepare($statSql);
$statSth->execute;

my $row = $statSth->fetchrow_hashref;

return $row ? $row : undef;

Here are the steps that determine whether an index should be rebuilt:

Run ANALYZE INDEX VALIDATE STRUCTURE for each index. (If you have
index partitions and subpartitions, these will be analyzed too.)

Retrieve ANALYZE figures from the INDEX_STATS system view.

If the CAN_REDUCE_LEVEL row from the getStat method is YES, or the
deleted rows percentage exceeds pctDeleteThreshold, then rebuild.

If -compute_statistics was specified, then rebuild and compute statistics.

Table 10-5. Command-line options—idxr.pl

Option Description

-machine Server where the target database resides.

-database Target database.

-username DBA account.

-password DBA password (optional if Password server in use).

-conf Configuration file. This defaults to idxr.conf.

-target_schema Target schema on which to rebuild indexes.

-compute_statistics Compute statistics when rebuilding index. (Adds very little overhead.)
Testing idxr.pl

We’ll demonstrate the use of idxr.pl with the following test:

1

. A single-column test table HASH_TEST is created with a HASH PARTI-
TIONED index of HASH_TEST_PK.

2. We insert 100,000 table rows and then immediately delete 20,000 of them.

3. For our test we set the mostRecentlyAnalyzed parameter in idxr.conf to 0. This

will cause idxr.pl to consider all indexes as candidates for rebuilding regardless
of age. We also set the pctDeletedThreshold parameter in idxr.conf to 10 so that
candidate indexes with more than 10% deleted rows will be rebuilt.

. Because this deletion exceeds the deleted rows percentage of 10% in the index
hash partition, the index partitions should all be rebuilt:

$ idxr.pl -machine sherlock -database tso1 \
-username system -target schema jkstill

Maintaining Indexes | 303

All the output from idxr.pl is directed to a log file, so nothing should appear on the

screen while it’s running. The results of the test are seen here:

20020217105027:
20020217105027:
20020217105027:
20020217105027:
20020217105027:
:checking indexes analyzed more than 0 days ago
20020217105028:
20020217105028:
20020217105028:

20020217105027

20020217105030:
20020217105032:
:Attempting to Rebuild Index online
20020217105032:

20020217105032

20020217105035:
20020217105035:
:Attempting to Rebuild Index online

20020217105035

20020217105036:
20020217105036:

starting
maxRunSeconds: 3600
sysDate:2002/02/17 10:50
globalName:TS01.JKS.COM
schema:JKSTILL

checking INDEX CHILD PK_IDX
checking INDEX DM_UNQ
checking INDEX IDX_FRAGMENT_IDX

checking INDEX PARTITION HASH_TEST P1
Rebuilding INDEX PARTITION HASH TEST P1

Rebuilt INDEX PARTITION HASH TEST P1 online

checking INDEX PARTITION HASH TEST P8
Rebuilding INDEX PARTITION HASH_TEST_P8

Rebuilt INDEX PARTITION HASH TEST P8 online
exiting

Because we specified that all indexes of any age having more than 10% deleted rows
should be rebuilt, all of the indexes were rebuilt in this test.

Tracking

An internal idxr.pl feature tracks how long the script has been running. We’ve used a
form of closure to determine when the maximum runtime is breached. In standard
Perl terms, a closure is simply a subroutine reference that preserves the value of a lex-
ically scoped variable between calls. In this case, it’s simply an anonymous code
block that accomplishes the same thing.

The closure is formed by curly braces {} on lines 10 and 29 of Example 10-11. The
lexically scoped or my variables of $maxRunSeconds and $startTimeSeconds are
enclosed within this block. When the startTimer method is called at line 1, it sets the
value of $maxRunSeconds. Even when the startTimer method returns, the value of
$maxRunSeconds is maintained because the code block containing it is never actu-
ally exited.

After each index is rebuilt, the checkTimer method at line 21 is used to determine if
the maximum allowable runtime has been reached. If so, the number of actual sec-
onds elapsed is returned; otherwise, zero is returned. If a nonzero value is returned
by checkTimer at line 3, messages are logged indicating the actual runtime, and the
index rebuild loop is exited via the last statement. The script then exits.

304 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-11. Closure in idxr.pl

1 my $maxRunSeconds = idxrp->startTimer($idxr::config{maxRunTime});

if (my $runSeconds = idxrp->checkTimer) {
$logFh->printflush("Max seconds $maxRunSeconds reached\n");
$logFh->printflush("Actual runtime was $runSeconds seconds\n");
last;

o N oUW N

10 my $maxRunSeconds = undef;
1 my $startTimeSeconds = time;

12

13 sub startTimer {

14 my ($self, $maxMinutes) = @ ;

15 $maxRunSeconds = $idxr::config{maxRunTime} * 60;
16 $startTimeSeconds = time;

17 return $maxRunSeconds;

18}

19

20 sub checkTimer {

2 my $self = shift;

2 my $currTimeSeconds = time;

23 my $runSeconds = $currTimeSeconds - $startTimeSeconds;
24 if ($runSeconds >= $maxRunSeconds) {

25 return $runSeconds;

26 } else { return o0 }

7}

28}

Killing Sniped Sessions

A sniped session occurs when a user has exceeded his idle time. The situation has
been noted in the database, and the user’s actual database session has been sus-
pended. However, the user is still consuming a dedicated server resource that has not
yet been allocated to someone else. This situation can have an adverse effect on over-
all database performance.

Limiting Resource Consumption

Oracle provides the ability to limit resource consumption via the user PROFILE, a
collection of limits holding resource hogs in check. We’ve found that some of these
limits are very useful, particularly IDLE_TIME. The IDLE_TIME limit disconnects
user sessions if they remain unused for too long. When a session is disconnected in
this manner, Oracle changes the status of the session to SNIPED in the V$SESSION
system view. We’ve used this limit effectively—especially in data warehouse applica-
tions where a session may be consuming large swathes of memory even it is when

idling.

Killing Sniped Sessions | ~ 305

Here’s how you create a PROFILE called IDLE_LIMIT with an IDLE_TIME of
1 minute.” We’ll assign it to scott:

SOL> create profile idle limit limit idle time 1;
SOL> alter user scott profile idle limit;

This following displays all non-default profile parameters:

SELECT *
FROM DBA_PROFILES

WHERE PROFILE != 'DEFAULT'
AND LIMIT != 'DEFAULT';

PROFILE RESOURCE_NAME RESOURCE LIMIT

IDLE_LIMIT IDLE TIME KERNEL 1

1 row selected.
This next example shows all users with nondefault profile assignments:

SELECT B.USERNAME, A.RESOURCE_NAME, A.LIMIT
FROM DBA_PROFILES A, DBA USERS B

WHERE A.PROFILE = B.PROFILE
AND A.PROFILE != 'DEFAULT'
AND A.LIMIT != 'DEFAULT';

USERNAME ~ RESOURCE_NAME ~ LIMIT

SCOTT IDLE_TIME 1
SCOTT_DUP IDLE_TIME 1

2 rows selected.

When a session has been idle for longer than IDLE_TIME, Oracle changes the ses-
sion status to SNIPED. The user typically notices this session suspension in the fol-
lowing way when he tries to run some more SQL commands, perhaps after a very
long lunch break:

SQL> select USER from dual;

select USER from dual
*

ERROR at line 1:

ORA-02396: exceeded maximum idle time, please connect again
Even though the session has timed out, memory resources are still being consumed,
as you can see in Example 10-12. The ps -fp18471 command shows that the Oracle
dedicated session server is still in place. The SQL used to select this information from
the V$SESSION view is shown in Example 10-13.

* You can create an idle limit of 1 minute, but Oracle interprets it as 2 or 3 minutes, the lowest IDLE_TIME
value it recognizes. The actual value depends upon the OS platform.

306 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-12. Status of timed-out session in V$SESSION

13:24:31 SQL> /
SRVR
USERNAME SID SERIAL# STATUS PID LOGON TIME IDLE TIME

SCOTT 16 1321 INACTIVE 18471 02/17/02 13:23:53 00:00:00:41
1 row selected.

13:24:33 SQL> /
SRVR
USERNAME SID SERIAL# STATUS PID LOGON TIME IDLE TIME

SCOTT 16 1321 SNIPED 18471 02/17/02 13:23:53 00:00:02:10
1 row selected.

13:26:02 SQL> !ps -fp18471
uID PID PPID C STIME TTY TIME CMD
oracle 18471 18470 0 13:23 ? 00:00:00 oracletsol (DESCRIPTION=(LOCAL=YES)

13:26:11 SQL>

Example 10-13. Displaying status of sessions

SELECT S.USERNAME, S.SID, S.SERIAL#, S.STATUS,
TO_CHAR(LOGON TIME, 'MM/DD/YY HH24:MI:SS') LOGON TIME,
SUBSTR('0' | | TRUNC(LAST CALL_ET/86400),-2,2) || ':' ||
SUBSTR('0" | | TRUNC(MOD(LAST CALL_ET,86400)/3600),-2,2) || ':' |
SUBSTR(' 0" | | TRUNC(MOD(MOD(LAST CALL_ET,86400),3600)/60),-2,2)] |
A
SUBSTR('0" | |MOD(MOD(MOD(LAST CALL_ET,86400),3600),60),-2,2)
IDLE_TIME

FROM V$SESSION S, V$PROCESS P
WHERE S.USERNAME = 'SCOTT' AND P.ADDR(+) = S.PADDR
ORDER BY USERNAME, SID;

Notice in Example 10-12 that this is a database using dedicated server
processes. Avoid killing sniped sessions with the kss.pl script in a data-
base using Oracle’s Multi-Threaded Server (MTS), because in such sit-
uations the script will disconnect all sessions that are using the same
MTS dispatcher.

On a busy database with frequently created sessions, lapsed memory resource con-
sumption may be tolerable. Sniped sessions are reused by newly logged-in sessions,
minimizing resource wastage. However, on databases with infrequently created ses-
sions, snipes can remain with us for quite some time. We’ve seen this happen in data
warehouses with plenty of memory wastage, so we decided to go snipe hunting—
and lo, the kss.pl (Kill Sniped Sessions) script was born.

* For information on snipe hunting, please see http://www.snipehunter.com.

Killing Sniped Sessions | ~ 307

To make use of Oracle PROFILE allocations, your database must have
the following parameter set in the INIT.ORA file: RESOURCE_LIMIT
1+ = TRUE. Using a PROFILE will have no effect otherwise. This param-
" eter can also be set at runtime with the command:

SOL> ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

When removing a session from Oracle, the ALTER SYSTEM KILL SESSION com-
mand is often sufficient. In the toolkit, we’ve taken it one step further, though, and
we actually kill" the session’s dedicated server process. We then use ALTER SYS-
TEM KILL SESSION if the session still exists with a status of KILLED.

So why the literal overkill? On numerous occasions over the years—and through sev-
eral versions of Oracle—we’ve run into serious problems when killing sessions.
Nearly every time, the standard method works just fine, but every once in a while it
fails. The sessions may possess a status of KILLED, but they’re never actually
removed. When this happens, and the session is holding a vital table lock, it seems
that nothing less than a plasma cannont is sufficient to remove these poltergeist ses-
sions (or a database bounce, but we’d rather avoid going there). We've seen this hap-
pen on every version of Oracle from 7.0.16 through to 8.1.6 and on both Unix and
Win32. It’s sporadic enough that we’ve never learned how to reproduce it, but regu-
lar enough so we’ve learned how to cope with it. We cope by killing the dedicated
server process on Unix (or the thread on Win32). We’ve never experienced a hang-
ing session using this method. Remember, though, that this method is inappropriate
for Multi-Threaded Servers (MTS), where you would end up disconnecting a great
many other sessions by killing the MTS dispatcher.

Enough rationale. Now it’s time to set up kss.pl and run it. Because this script runs as
a daemon on Unix and a service on Win32, we’ll show you how to set it up for both.

Installing kss.pl on Unix

Installing this script on Unix systems is easy. Simply make sure the kss.conf file is in
the right place. If it is still uninstalled, copy it in like this from the toolkit installation
directory:

$ cp /u01/build/PDBA-1.00/routine tasks/kss.conf $PDBA_HOME

That’s it—we’re done! Running the kss.pl daemon is equally simple. Here’s the com-
mand we used on our Linux server; Table 10-6 summarizes the command-line
options:

$ kss.pl -machine sherlock -database ts01 -username system

* On Unix, we kill the Oracle thread using kill -9. On Win32 we use orakill.

T For definitive information on plasma cannons, the following web site may be helpful: http:/www.
schlockmercenary.com/d/20000829.html

308 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Without the password server (see Chapter 9), add the password argument:

$ kss.pl -machine sherlock -database ts01 -username system \

-password manager

Table 10-6. Command-line options—kss.pl

Option
-machine
-database
-username

-password

Description

Server where the target database resides

Target database

DBA account

DBA password (optional if password server in use)

The kss.pl script must run as the owner of the Oracle processes. This is
necessary to enable the use of the kill command on dedicated Oracle
Server processes.

Installing kss_NT.pl on Win32

Follow these steps on Win32 systems:

1. Make sure that the kss.conf configuration file is installed in PDBA_HOME, as
with the other configuration files described previously in this chapter.

2. Install kss_NT.pl as a Win32 service using kss_service.pl.

3. If you are using the password server (see Chapter 9), install kss_NT.pl like this:

DOS> C:\Perl\site\lib\PDBA\util\kss_service.pl \
-machine database_server -database database_name \
-username DBA account

4. Without the password server, you need to include the relevant password:

DOS> C:\Perl\site\lib\PDBA\util\kss service.pl \
-machine database_server -database database_name \
-username DBA account -password DBA_password

5. We used the following to install kss_NT.pl on our Windows 2000 server:

DOS> C:\Perl\site\lib\PDBA\util\kss service.pl \
-machine mycroft -database ts20 -username system

6. To start the server you need to navigate to the Services administration applica-

tion

. The specitics will vary, depending on your Win32 platform:

Windows 2000: Click through Start — Settings — Control Panel, double-click
on Administrative Tools, and double-click on Services. Scroll down to the
Oracle_SID_kss_monitor service and highlight it. Click on Action — Start
from the menu to start the service.

Windows NT: Click through Start — Setting - Control Panel, double-click
on Services. Scroll down to Oracle_SID_kss_monitor, highlight it with the
mouse, and click the Start button.

Killing Sniped Sessions | 309

The service appears on Windows 2000, as shown in Figure 10-2.

=lalx|
| action yiew |J<- - ||@|J N IS
Tree I Mame # | Description | Status | Startup Tvpe | Log Or:l
W %Network DDE DSOM Manages s... Manual Locals:
%Norton Program Scheduler Morkon Pro... Started Automatic Localss
%NT LM Security Support Provider Provides s, ., Manual Localss
%Oracle_dbup_Monitor Manual Localsy
%Oracle_PWD_Server Manual LocaIS\,J
%Oracle_tsZD AlertLoghon Manual Localsy
racle M Started TManual
%OracleOraDesCIlentCacheSD Manual Locals:
%OracleOraHomeSlAgent Manual Localsy
%OracleOraHomeSlclientCache Manual Locals:
%OracleOraHomeSlCMAdmin Manual Locals:
i@rﬁrarlﬁﬂraHnmﬁﬂ](Man Mannal I Inral: T

Figure 10-2. The kss service on Windows 2000

Configuring kss.pl

The configuration file for the kss.pl script requires little editing. The contents of kss.
conf are shown in Example 10-14. Note the following about this example:

* The only parameter that should be edited is sleepTime. The default is 180, which
is the number of seconds between each snipe check. Avoid setting it too low; if
you do, the monitor will consume unnecessary resources, just as snipes do.

* The remaining parameters (killSql, snipeSql and killCmd) should stay as they are
for the foreseeable future. They work fine for both Unix and Win32. (The
killCmd parameter uses PDBA->osname to determine whether the Unix kill or
Win32 orakill commands should be used. The others will only need changing if
Oracle itself changes significantly.)

Example 10-14. kss.conf

package kss;

use PDBA;
use File::Spec;
use vars quw(%config);

%config = (
sleepTime => 180,
killSql => q(ALTER SYSTEM KILL SESSION '<<SID>>,<<SERIAL>>"),
snipeSql => Q(SELECT S.USERNAME USERNAME, S.SID SID, S.STATUS STATUS,
S.SERIAL# SERIAL, P.SPID SPID
FROM V$SESSION S, V$PROCESS P

310 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-14. kss.conf (continued)

WHERE S.USERNAME IS NOT NULL
AND P.ADDR(+) = S.PADDR
AND S.STATUS = 'SNIPED'
ORDER BY USERNAME, SID
)
killCmd => PDBA->osname() eq 'unix'
? q(/bin/kill -9 <<PID>> >/dev/null 2>&1)
: File::Spec->catfile(PDBA->oracleHome, 'bin','orakill')
. q{ <<ORACLE_SID>> <<PID>> },
)

1;

After starting the Oracle_ts20_kss_monitor service, on Win32, we created an IDLE_
LIMIT profile with a one-minute threshold for IDLE_TIME. The profile was then
assigned to scott. Example 10-15 shows the action taken by kss_NT.pl after scott’s
session timed out. At marker 20020217184600 the thread for scott’s session is first
killed with Oracle’s orakill utility, then terminated with ALTER SYSTEM KILL
SESSION.

Example 10-15. scott session cleaned up by kss_NT.pl

20020217184355:attempting to load Win32::Daemon
20020217184356:Service Starting - State is:
220020217184356:Service Started - State is: 4
20020217184356:password retrieved for user system
20020217184356:Service running

20020217184359: SCANNING

20020217184359:SLEEP: 30

20020217184429:Service running

20020217184430: SCANNING

20020217184430:SLEEP: 30

20020217184500:Service running

20020217184500: SCANNING

20020217184500:SLEEP: 30

20020217184530:Service running

20020217184530: SCANNING

20020217184530:SLEEP: 30

20020217184600:Service running

20020217184600: SCANNING

20020217184600: STATUS:SCOTT:8:9:1384
20020217184600:0SKILL:SCOTT:8:9:1384:D:\oracle\ora81\bin\orakill ts20 1384
20020217184600:DBKILL:SCOTT:8:9:1384:alter system kill session '8,9'
20020217184600:SLEEP: 30

20020217184630:Service running

20020217184630: SCANNING

20020217184630:SLEEP: 30

20020217184700:Service running

Killing Sniped Sessions | 311

Managing Extent Usage

An extent in Oracle parlance is the size of the chunks of storage that are allocated to
a table or index upon creation or when that table or index needs to be extended to
accommodate more data. Extent management was always a problem in older ver-
sions of Oracle because it could never be precisely controlled.

With the advent of locally managed tablespaces (LMTs) in Oracle8i, Oracle has
greatly simplified space management. LMTs allow DBAs to control the extent sizes
allocated for tablespace objects, regardless of their STORAGE specifications. This
eliminates the fragmentation that can occur in dictionary-managed tablespaces when
objects are created with different extent sizes. Such fragmentation is impossible
when LMTs are used. With LMTs, the extent size can be controlled so that all
tablespace extents are the same size. In this section, we’ll look at the benefits of
LMTs and then see how the toolkit script maxext.pl can make this feature even more
effective.

Locally Managed Tablespaces (LMTs)

If CREATE TABLE statements request an extent greater than the tablespace’s uni-
form extent size, they receive multiple smaller extents, satisfying the total storage
amount requested. This is illustrated in Example 10-16. There, a tablespace is cre-
ated with locally managed extents of 128K. Even though the requested extent size for
EMPTEST is 512K, the space is allocated in 128K chunks. USER_EXTENTS shows
four allocated chunks of 128K each.

Example 10-16. Extent allocation in a locally managed tablespace

CREATE TABLESPACE USERS DATAFILE '/u01/oradata/tso1/users.dbf' SIZE 20M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

CREATE TABLE EMPTEST (FNAME VARCHAR2(20), LNAME VARCHAR2(20))
TABLESPACE USERS STORAGE(INITIAL 512K NEXT 512K);

BREAK ON TABLESPACE_NAME SKIP 1 ON SEGMENT TYPE SKIP 1 ON SEGMENT NAME SKIP 1 ON REPORT
COMPUTE SUM OF BYTES ON REPORT

SELECT TABLESPACE_NAME, SEGMENT TYPE, SEGMENT NAME,
DECODE (EXTENT _ID,0,"'0",TO_CHAR(EXTENT ID)) EXTENT ID, BYTES
FROM USER_EXTENTS
WHERE SEGMENT NAME = 'EMPTEST'
ORDER BY TABLESPACE_NAME, SEGMENT_TYPE,
SEGMENT_NAME, TO_NUMBER(EXTENT_ID);

TABLESPACE TYPE NAME D BYTES
USERS TABLE EMPTEST 0 131,072
1 131,072
2 131,072

312 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Example 10-16. Extent allocation in a locally managed tablespace (continued)

3 131,072

skkorokoksksksksk kookokoksk skekskskkokokokokk

sum 524,288
4 rows selected.

Even though fragmentation is eliminated, storage still needs monitoring. In
Example 10-16 a table is created, with four empty extents. If no more tablespace
extents are available, does this require an increase in tablespace size?

Increasing tablespace size may be unnecessary. Even if your table sits within a full
tablespace, the table itself contains no data. If you could determine whether all
tablespace objects have a sufficient number of unused blocks to satisfy application
data needs for six months, for example, there would be no immediate need to
increase tablespace size. To figure this out, we will need to check the individual
objects to determine if their free space is sufficient. The statistics of interest in deter-
mining if an object will soon need more space are the following:

EXTENTS
Total number of extents allocated for an object.

FREE_BLOCKS
Number of blocks on the freelist. Either these blocks are filled below the PCT-
FREE threshold, or the space used has fallen below the PCTUSED threshold
after having been above PCTFREE at some point. Free blocks also include
UNUSED_BLOCKS, discussed next.

UNUSED_BLOCKS
Number of blocks allocated to an object which have never contained any data.
All unused blocks are also FREE_BLOCKS.

MAX_EXTENTS
Maximum number of extents an object may be allocated.

MAX_BYTES_FREE
Largest chunk of free space in the object’s allocation.

NEXT_EXTENT
Size of the next extent for the object.

TOTAL_BLOCKS
Total number of database blocks consumed by an object.

Examining Object Space with maxext.pl

The maxext.pl script in our toolkit determines if an object may be running out of
space. It follows the steps illustrated in Figure 10-3 and listed here:

* It checks to see if there are any more segments in DBA_SEGMENTS.

Managing Extent Usage | 313

* If so, it checks to see if the current segment is nearing its maximum number of
extents or will be unable to extend .

* If either of the previous conditions is true, it checks the number of UNUSED_
BLOCKS with DBMS_SPACE.UNUSED_SPACE.

* It sends a warning to the DBA if UNUSED_BLOCKS is below the threshold.

More segments
to check

A\ \ 4 \4

No Space —

MaxExtentsReached CannotExtend

SufficentBlocksFree?

NO

SendWarning

Figure 10-3. Flowchart of maxext.pl operations

In maxext.pl we rely upon UNUSED_BLOCKS, rather than FREE_BLOCKS, because
the amount of space available in a used freelist block is unknown. It can be calcu-
lated, but we prefer to rely on the ratio of UNUSED_BLOCKS / TOTAL_BLOCKS
to determine if a tablespace or tablespace object needs space attention. Before run-
ning maxext.pl, make sure that you have a copy of the maxext.conf file stored in
PDBA_HOME, as for the other configuration files described earlier in this chapter.
There are only a few parameters in this configuration file that you will need to edit,
shown in the following list. The entire file maxext.conf is reproduced in
Example 10-17.

Example 10-17. maxext.conf
package maxext;
use vars quw{ %config @emailAddresses };

%config = (minExtentsCanExtend => 3, minPctBlocksUnused => 10,);
@emailAddresses = ('dba@yourdomain.com', 'dba2@yourdomain.com’,);

314 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

minExtentsCanExtend
Set this to the minimum number of extents by which an object should be able to
extend. In the preceding configuration file, this is set to 3, and a table has 98
extents allocated and a MAXEXTENTS value of 100; in this case, a value of 3
will cause a check to be made with DBMS_SPACE. This is because it is only pos-
sible for two more extents to be allocated to the table.

minPctBlocksUnused
Percentage of unused blocks that an object should have before a warning is sent
to the DBA. If an index has 100 total blocks, and 11 of those are unused blocks,
no warning will be issued because 11% of unused blocks is greater than the 10%
minimal threshold set.

@emailAddresses
Array of email addresses to which reports should be mailed.

There are only a few command options for maxext.pl, summarized in Table 10-7.

Table 10-7. Command-line options—maxext.pl

Option Description

-machine Server where the target database resides.

-database Target database.

-username DBA account.

-password DBA password (optional if password server in use).
-email Send email to DBAs if a report is generated.

-silent Only send email, and process without printing output.

The results of running maxext.pl can be seen in Example 10-18. We forced these
tables to appear in the report by setting the minPctBlocksUnused parameter to 100 in
the maxext.conf file.

Example 10-18. Results from maxext.pl

%oramon > maxext.pl -machine sherlock -database ts01 -username \
system -email

RPT:
Database Objects That Cannot Extend Page: 1
Database: TS01.JKS.COM Date: 2002/05/20 01:12
NUMBER
EXTENTS NEXT
OWNER NAME TYPE AVAILABLE EXTENT SIZE MAX BYTES FREE
JKSTILL BIG_TABLE TABLE UNLIM 65536 0
JKSTILL FILL_ER UP TABLE UNLIM 65536 0

%oramon >

Managing Extent Usage | 315

Extracting DDL and Data

Oracle supplies the Export (exp) and Import (imp) utilities to export Oracle data-
base objects and then import them back into Oracle databases. The Export utility
extracts not only the data for these objects but the DDL (Data Definition Language)
to create them.

These venerable utilities work well enough, but sometimes fall short in a number of
Important ways:

Performance
Exports are fairly quick, but imports can be unbearably slow. Importing more
than 10 gigabytes of data can be too time-consuming to consider.

Portability
The Import file format is proprietary to Oracle. This makes it virtually impossi-
ble to load other databases with exported data. We suppose that’s fair enough,
because Oracle Corporation is, after all, in the business of Oracle databases.
What’s really frustrating though, is Import’s inability to work with Oracle’s own
superb high-speed data handler, SQL*Loader.

Limited DDL extraction
It’s possible to extract most (but not all) of the DDL from an export file via the
indexfile feature of imp. The following command, for example, extracts most of
the DDL from an export file, but fails to retrieve stored procedures:

$ imp userid=scott/tiger file=mydata.dmp indexfile=myddl.sql

Compatibility
The Oracle export utility is highly version-dependent. Trying to export data
from an 8.0.5 database with an 8.1.7 export utility results in the error message:

EXP-00037: Export views not compatible with export version.

We’ve included two Perl/DBI scripts in the toolkit to help fill these gaps. Using
sqlunldr.pl and ddl_oracle.pl you can dump all schema data to comma-delimited files,
generate SQL*Loader control and parameter files, and then generate DDL for all user
tablespaces and schemas.

Extracting Data With sqlunidr.pl

Sometimes you need raw portable data—to populate another database, build a cus-
tomer’s spreadsheet, or perform some other data operation. Unfortunately, Oracle’s
Export utility is the wrong mousetrap. One popular solution to such problems is to
build SQL*Plus dump scripts. This approach works for single tables, but grows cum-
bersome when dumping entire schemas or even a handful of selected tables. What'’s
needed is a single dump utility that creates portable output. It would also be nice if
the data field separators were configurable and if enclosed quote characters were
both configurable and optional. The sqlunldr.pl script fits the bill on all counts. Here

316 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

are some of its main features. In the following sections we’ll include several exam-
ples that show you to use this script.

SQL*Loader support
Generates parameter and control files for SQL*Loader.

Configurable characters
The default for field separation is a comma. The default for enclosing fields is the
double quote. Each is configurable via the command line.

LONG column support
Long columns of arbitrary length are supported.

Binary data support (with limitations)
Binary data of LONG, CHAR, VARCHAR, and VARCHAR?2 types can be
dumped as hexadecimal by the script and reloaded into binary format. This fea-
ture is limited to data 32K in length. Note that the Oracle function UTL_RAW.
CAST_TO_VARCHAR?2 converts data from hex to binary within the
SQL*Loader control script, which is also limited to strings of 32K.

Binary data limits
The sqlunldr.pl script only partially supports LOB (large object) data. Both
CLOB (character large object) and BLOB (binary large object) columns may be
dumped to output files, but you will need to manually edit the generated
SQL*Loader control .ctl script to load the data. Binary data is subject to the 32K-
byte limit because of the Oracle software predefined limitation. This is probably
fine for 95% of systems, however.

The script’s command-line options are summarized in Table 10-8.

Table 10-8. Command-line options—sqlunldr.pl

Option Description

-machine Server where the target database resides.

-database Target database.

-username DBA account.

-password DBA password (optional if password server in use).

-owner Owner of tables to dump.

-directory Directory in which to unload data. Defaults to <owner>.dump.

-dateformat NLS_DATE_FORMAT—for example, -dateformat ‘mm/dd/yyyy’

-header Includes the column names as the first line of output.

-noheader Outputs without column names.

-table Dumps tables. May be repeated as often as necessary —for example, -table emp -table dept -table
salary

-schemadump Dumps entire schema. Makes sqlunldr.plignore -table.

-rowlimit Limits number of rows output for each table to N rows.

ExtractingDDLand Data | 317

Table 10-8. Command-line options—sqlunldr.pl (continued)

Option
~fieldsep

-quotechar

-longlen
-bincol

Description

Separates row fields, defaults to comma. If used, you probably need to escape the character—for exam-
ple, -fieldsep \|.

Character used to enclose each field. Defaults to a double quote. A literal value of none will disable
quotes.

Maximum length of LONG datatypes you expect to encounter. Defaults to 65535.

Columns of binary data which should be translated to hex format before dumping. Maximum length is
32767 bytes. Specified as <table>=<column1, column2,...>, etc.

Dumping and reloading SCOTT’s schema

In this first example, we’ll use sqlunldr.pl to dump the entire scott schema. This time
we can ignore the -dateformat option, as we’ll simply reload the data straight back
into the same database. However, we’d need this option if the data were to be loaded
into a database with a different NLS_DATE_FORMAT. Here’s the command to
dump the scott schema:

$ sqlunldr.pl -machine watson -database ts99 -username system \
-owner scott -noheader -schemadump

Once this entirely portable command completes, you’ll find all the output in the
scott.dump directory. Example 10-19 displays the output on a Unix system.

Example 10-19. Dumping the SCOTT schema with sqlunldr.pl

%oramon> sqlunldr.pl -machine watson -database ts99 -username system \
-owner scott -noheader -schemadump

Table: EMP
Table: BONUS

Table: SALGRADE

Table: DEPT

Table: BINCOL_TEST
%oramon> 1s -1 scott.dump

total 704
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
-IW-T--T--
%oramon>

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

jkstill dba 141 May 20 01:17 bincol test.ctl
jkstill dba 85 May 20 01:17 bincol test.par
jkstill dba 56 May 20 01:17 bincol test.txt
jkstill dba 129 May 20 01:17 bonus.ctl
jkstill dba 67 May 20 01:17 bonus.par
jkstill dba 0 May 20 01:17 bonus.txt
jkstill dba 123 May 20 01:17 dept.ctl
jkstill dba 64 May 20 01:17 dept.par
jkstill dba 104 May 20 01:17 dept.txt
jkstill dba 167 May 20 01:17 emp.ctl

jkstill dba 61 May 20 01:17 emp.par

jkstill dba 661709 May 20 01:17 emp.txt

jkstill dba 132 May 20 01:17 salgrade.ctl
jkstill dba 76 May 20 01:17 salgrade.par
jkstill dba 89 May 20 01:17 salgrade.txt

318 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Let’s see what’s going on in this code:

1. We'll delete all the table rows from SCOTT’s schema in our test database:

SQL>
SoL>
SQL>
SQL>
SoL>

DELETE FROM BONUS;
DELETE FROM SALGRADE;
DELETE FROM EMP;
DELETE FROM DEPT;
COMMIT;

2. We're now ready to reload the data via SQL*Loader using the control and
parameter files generated by sqlunldr.pl. Here’s how to reload DEPT:

$ cd scott.dump
$ sqlldr parfile=dept.par

3. We're asked for SCOTT’s password. After we supply it, SQL*Loader reloads the
DEPT table and generates dept.log. The contents of this log should be similar to
what’s shown in Example 10-20. We can now reload the other tables:

$ sqlldr parfile=emp.par
$ sqlldr parfile=salgrade.par
$ sqlldr parfile=bonus.par

Example 10-20. SQL*Loader log file—dept.log

Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

Term Encl Datatype
, 0(") CHARACTER
, 0(") CHARACTER
, 0(") CHARACTER

Column Name Position Len
DEPTNO FIRST
DNAME NEXT
LOC NEXT
Table DEPT:
4 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array:
Space allocated for memory besides bind array:

Total logical records skipped:
Total logical records read:
Total logical records rejected:
Total logical records discarded:

o O~ O

Run began on Sun Feb 24 17:18:17 2002
Run ended on Sun Feb 24 17:18:24 2002

00:00:07.40
00:00:00.10

Elapsed time was:
CPU time was:

49536 bytes(64 rows)
0 bytes

Extracting DDL and Data

319

Dumping binary data

Now we’ll look at a more complex example. We’ll create a table with one column of
plain text, convert it to unreadable binary form, and then dump the table with
sqlunldr.pl. We'll then delete all of the data from the table, reload it with the gener-
ated SQL*Loader scripts, and then validate it. Example 10-21 shows a test of this
operation.

Example 10-21. Binary data test

DROP TABLE BINCOL TEST;
CREATE TABLE BINCOL_TEST
(CLEAR_TEXT VARCHAR2(10), BINARY DATA VARCHAR2(10));

1
2
3
4
5 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Post-Dated');
6 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Check');

7 INSERT INTO BINCOL_TEST(CLEAR_TEXT) VALUES('Loan');

8 COMMIT;

9

10 VAR xorstr VARCHAR2(10)

"

12 BEGIN

13 :xorstr := RPAD(CHR(127),10,CHR(127));

14 END;

15/

17 UPDATE BINCOL_TEST
18 SET BINARY_DATA =

19 UTL_RAW.CAST_TO_VARCHAR2(

20 UTL_RAW.BIT_XOR(

2 UTL_RAW.CAST_TO_RAW(CLEAR_TEXT),

n UTL_RAW.CAST_TO_RAW(SUBSTR(:xorstr,1,LENGTH(CLEAR_TEXT)))
3)

%);

25 COMMIT;

26 SET TERM OFF

SPOOL BINCOL_TEST.LOG

28 SELECT * FROM BINCOL TEST;
29 SPOOL OFF

N
~

30 SET TERM ON

31

32 ED bincol_test.log

33 SELECT UTL_RAW.CAST_TO_VARCHAR2(

34 UTL_RAW.BIT_XOR(

35 UTL_RAW.CAST_TO_RAW(BINARY_DATA),
36 UTL_RAW.CAST_TO_RAW(:XORSTR)

37)

38

w

9 FROM BINCOL_TEST;

320 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

Download from Wow! eBook <www.wowebook.com>

You’ll find the example scripts bincol_test.sql and bincol_test2.sql in the following
locations, so you can run these tests yourself if you wish:

Unix (assuming a build directory of /u01/build)
/u01/build/PDBA-1.00/routine_tasks

Win32
c:\Perl\site\lib\PDBA\sq!

Let’s see what’s going on in this example:
1. In lines 2-3 in Example 10-21 we create BINCOL_TEST.
2. In lines 5-7 we insert “Post-Dated Check Loan” into three of its rows.

3. In lines 10-15 we build a 10-character string, :xorstr, from ASCII character 127
elements. In lines 1724, :xorstr is used with the Oracle built-in functions UTL_
RAW.CAST_TO_VARCHAR2, UTL_RAW.CAST_TO_RAW, and UTL_RAW.
BIT_XOR to create binary data that is unreadable by humans.”

4. In line 27 the data is spooled to a file, and in line 32 the output is sent to our
favorite vi text editor. (Notice that in line 26 the console output was turned off.
This stops the binary data displaying to our SQL*Plus session, possibly making it
unreadable.)

5. Here is the result of this edit, as it would appear viewed safely in vi.
CLEAR_TEXT BINARY_DATA

Post-Dated /~PALAKR;AMAKAZA[

Check WA

Loan 3MPANAQ

6. After closing the editor, the SQL script continues. Lines 33—39 convert the newly

created binary data back into human-readable form, and if you’re running this
test yourself, the output should be similar to that shown here:

PL/SOL procedure successful completed.

3 rows updated.

Commit complete.
UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.BIT_XOR(UTL_RAW.CAST_TO_RAW(BINARY_DATA),UTL_RA

Post-Dated

Check

Loan

SQL>

7. We're now ready to dump the data, delete the rows from BINCOL_TEST,

reload from the output of sqlunldr.pl, and then validate the results. Use sqlunldr.
pl to dump the table:

$ sqlunldr.pl -machine watson -database ts99 -username system \

-owner scott -noheader -table bincol test \
-bincol bincol test=binary data

* Except half-Vulcans and machine-code gods, of course.

ExtractingDDLand Data | 321

8. Now we’ll delete the test rows from BINCOL_TEST:

$ SQLPLUS SCOTT/TIGER

SOL> DELETE FROM BINCOL TEST;
SQL> COMMIT,

SQL> EXIT

9. We can now reload the table from the sqlunldr.pl dump. The data will be in
directory scott.dump, one level below your current directory. Go there and exam-
ine the files bincol_test.par, bincol_test.ctl, and bincol_test.txt. You can see how
they appeared in our tests in Example 10-22. Notice that the binary data con-
tained in BINCOL_TEST.BINARY_DATA has been converted to hexadecimal
format. When loaded back, the Oracle built-in procedure UTL_RAW.CAST_
TO_VARCHAR? will convert it back into binary.

Example 10-22. Files generated by sqlunldr.pl

%oramon > cat bincol_test.par
userid = scott

control = bincol test.ctl

log = bincol test.log

bad = bincol test.bad

%oramon > cat bincol_test.ctl
load data

infile 'bincol test.txt'

into table BINCOL TEST

fields terminated by ','
(

CLEAR_TEXT,

BINARY DATA "utl raw.cast to varchar2(:BINARY DATA)"

)

T

optionally enclosed by

%oramon > cat bincol_test.txt
"Post-Dated","2F100C0B523B1E0B1A1B"
"Check", "3C171A1C14"

"Loan","33101E11"
%oramon >

10. We can now reload the data using SQL*Loader and the parameter files gener-
ated by sqlunldr.pl:
$ cd scott.dump
$ sqlldr parfile=bincol test.par
11. The most important line to observe in bincol_test.log is the one saying 3 Rows
successfully loaded:

SQL*Loader: Release 8.1.7.0.1 - Production on Sun Feb 24 16:43:54 2002
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Table BINCOL TEST:
3 Rows successfully loaded.
0 Rows not loaded due to data errors.

322 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.
12. Now log back into SQL*Plus and run the script bincol_test2.sql. The output
should be identical to that shown earlier. We can now drop the test table from
SCOTT’s account:

$ SQLPLUS SCOTT/TIGER
SQL> DROP TABLE BINCOL_TEST;
SQL> EXIT

Extracting DDL with ddI_oracle.pl

Although Perl-based Oracle tools like Orac and Oracletool supply options to regen-
erate DDL, and although the DDL::Oracle module was designed to explicitly per-
form this operation (we describe all of these applications in Chapters 3 and 4), it
would sometimes be convenient to extract DDL from a database in one easy opera-
tion. We could then recreate all the objects in user and application schemas. Ora-
cle’s Export utility does extract all of this information, but often in unusable form.

It is possible to use the indexfile=myddl.sql construct with the Export utility to
extract the DDL for tables, indexes, and constraints from an Oracle export file, but
this utility fails to cover packages, procedures, functions, and triggers. To fill the gap,
we've developed the ddl_oracle.pl script to generate the DDL to recreate the follow-
ing schema database elements; in the list we’ve noted any exceptions to what can be
generated:

Tablespaces
Generates DDL to recreate all tablespaces except the SYSTEM tablespace.

Rollback segments
Generates DDL to recreate all rollback segments.

Public database links
Generates DDL to recreate all public database links.

Public synonyms
Generates DDL to recreate public synonyms with the exception of public syn-
onyms referring to a configurable list of user accounts. This exception prevents
the inclusion of public synonyms created as part of a standard database.
User profiles
Generates DDL to recreate all user profiles with the exception of DEFAULT.
Roles
Generates DDL to recreate all database roles with the exception of a config-
urable list of roles. This exception prevents the script from recreating roles cre-
ated as part of a standard database.

User accounts
Generates DDL to recreate all user accounts with the exception of those found in
a configurable list of user accounts.

ExtractingDDLand Data | 323

Schemas
Generates DDL to recreate all schema objects, including PL/SQL, with the
exception of objects belonging to users in a configurable list.

Grants from schemas
Generates DDL to recreate all grants made from all user accounts.

Before going any further, let’s examine the configurationfile exp_exclude.conf. This
file is simply a list of user accounts and roles that we don’t care to preserve in DDL
files, often because they are created for us when creating a new database.

The file included in the PDBA distribution is shown in Example 10-23. Most of the
generic Oracle database users and roles are included.

Example 10-23. exp_exclude.conf

package expexclude;
use vars qw{ @users };

@users = gw{ SYS SYSTEM
OUTLN DBSNMP
TRACESVR ORDSYS
ORDPLUGINS MDSYS
AURORAIISUTILITYS OSE$HTTP$ADMIN
AURORAORBUNAUTHENTICATED };
@roles = qw { CONNECT RESOURCE
DBA SELECT_ CATALOG _ROLE
EXECUTE_CATALOG_ROLE DELETE_CATALOG_ROLE
EXP_FULL_DATABASE IMP_FULL_DATABASE
RECOVERY_CATALOG OWNER AQ_ADMINISTRATOR ROLE
AQ_USER_ROLE SNMPAGENT
OEM_MONITOR HS_ADMIN ROLE
JAVAUSERPRIV JAVAIDPRIV
JAVASYSPRIV JAVADEBUGPRIV
JAVA_ADMIN JAVA DEPLOY
PLUSTRACE TIMESERIES_DEVELOPER
TIMESERIES_DBA CTXAPP };
1;

Make sure that the exp_exclude.conf file is in your PDBA_HOME directory, as with
other configuration files described earlier in this chapter. There’s no need to edit
exp_exclude.conf unless you need to edit the roles or user lists. For instance, if you
want OUTLN included in DDL generation, remove it from @users. Most of the DDL
generation is accomplished via Richard Sutherland’s DDL::Oracle module, which we
discussed in Chapter 3, Perl GUI Extensions. If that application is not available on
your system, you will need to install it (making sure to use at least Version 1.10).
Here’s a Perl one-liner to determine what version of DDL::Oracle you are using;:

perl -e "use DDL::Oracle 1.10; print qq{OK!\n}"

324 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

If the proper version is installed, you’ll see OK! printed on the screen; otherwise,
you’ll need to install the latest version. This is easier for Win32 users. Simply start
the ActiveState PPM package manager and install directly as follows:

C:\> ppm

PPM> install DDL::Oracle
Unix users will need to download the latest version and install it. If you want to do a
manual install (as we described in Chapter 2, Installing Perl), you can get the file at
http://search.cpan.org/search?dist=DDL-Oracle. For a direct CPAN install, do the fol-
lowing:

$ perl -MCPAN -e "shell"

cpan> install DDL::Oracle

Running make for R/RV/RVSUTHERL/DDL-Oracle-1.10.tar.gz

Although we make use of DDL::Oracle to generate much of the DDL output from
ddl_oracle.pl, we don’t use it for all of the DDL. Let’s see why.

One of the goals of the script was to be able to generate a single file of all object
grants made on a schema’s objects from the perspective of the grantor, or owner, of
the objects. If the SCOTT schema owns 10 tables and SCOTT has issued SELECT
grants on all of his tables to the JONES, ADAMS, and CLARK accounts, we wanted
a single script to contain all of those grants. This way, the DBA needs to issue only a
single Oracle logon to the SCOTT account so that the DDL script containing those
grants can be run.

The DDL::Oracle module generates grants from the perspective of the grantee, or
recipient of the granted privileges. In the case of generating the DDL required to
grant SELECT privileges to the JONES, ADAMS, and CLARK accounts, this would
require three separate logons by the SCOTT account to create those grants.

In our script, we crafted our own DDL generation for certain aspects to get just the
output we wanted. For example, we did this in generating the DDL to create users
and roles, and in generating the GRANT statements by grantor rather than grantee.”

The command line for ddl_oracle.pl is rather basic, with the usual command-line
options summarized in Table 10-9.

Table 10-9. Command-line options—ddl_oracle.pl

Option Description
-machine Server where the target database resides.
-database Target database.

*

If you want to see the details of this, examine the %ddl hash and the ddl, _userPrivs, _rolePrivs, and _
grantorPrivs methods in the PDBA::DBA toolkit module.

ExtractingDDLand Data | 325

Table 10-9. Command-line options—ddl_oracle.pl (continued)

Option Description

-username DBA account.

-password DBA password (optional if password server in use).
-conf Config file. The default is exp_exclude.conf.

Running ddl_oracle.pl is very simple, as shown here:

$ ddl oracle.pl -machine watson -database ts99 -username system
Building List

working on profiles

working on public database links
working on public synonyms
working on rollback segments
working on tablespaces

working on users

working on SCOTT

working on COMMON

working on JKSTILL

working on PDBA_ROLE

The output consists of a number of SQL scripts; each script name is prefixed with a
number, which indicates the order in which the scripts need to be run (assuming that
all are to be used). An abbreviated version of the 1_create.sql script is shown in
Example 10-24. See Table 10-10 for all of the script names.

Table 10-10. SQL scripts generated by ddl_oracle.pl

SQL Script Description

1_create.sql Used to call all of the other scripts. See Example 10-24.

2_tbs_ddl.sql DDL for all tablespaces other than SYSTEM.

3 rbs_ddl.sql DDL for all rollback segments.

4 _pub_db_link.sql DDL for all public database links.

5_pub_synonyms.sql DDL for all public synonyms for all objects other than those owned by accounts in the @users array
of exp_exclude.conf.

6_user_profiles.sql DDL for all user profiles except for DEFAULT.

7_role_ddl.sql DDL for all database roles except those listed in the @roles array of exp_exclude.conf.

8_user_ddl.sql DDL to create all accounts not listed in @users. Includes grants for all privileges, roles, profiles, and
quotas.

9 _schema_<USER>. One file generated for each account. Includes the DDL for all database objects owned by the

sql account: tables, indexes, constraints, views, sequences, stored procedures, stored functions, pack-
ages, etc.

10_grant_<USER>.sql One of these files generated for each account. It includes all grants made by the grantor to other
accounts and roles.

326 | Chapter10: Performing Routine DBA Tasks with the PDBA Toolkit

The output is designed so it could be run sequentially by running 1_create.sql, but
you’ll rarely do things this way. By grouping objects and privileges by owner, it’s a
bit easier for you to recreate a single schema. This approach also reduces the num-
ber of files you must deal with.

Example 10-24. The 1_create.sql script

@@2_tbs ddl.sql
@@3_rbs_ddl.sql
@@4_pub_db_link.sql
@@5_pub_synonyms.sql
@@6_user profiles.sql
@@7_role_ddl.sql

@@8 user ddl.sql

PROMPT connecting to SCOTT - please enter the password
CONNECT SCOTT

@@9_schema_scott.sgl

@@10_grant_scott.sqgl

PROMPT connecting to PDBAREP - please enter the password
CONNECT PDBAREP

@@9_schema_pdbarep.sql

@@10_grant pdbarep.sql

ExtractingDDLand Data | 327

CHAPTER 11

Monitoring the Database
with the PDBA Toolkit

So far we have looked at a variety of scripts in the Perl DBA Toolkit and have seen
how they can help make our lives as Oracle DBAs more productive. In this chapter
we’re going to focus on two particularly urgent areas of DBA activity:

Alert log monitoring
The Oracle database alert log is an important source of information about error
conditions, and DBAs need to keep a careful eye on this file. However, finding
the time to do manual monitoring is difficult for most DBAs. In this chapter,
we’ll create an alert log monitor that detects Oracle errors and messages and
emails them to specific addresses, all in real time. The primary scripts used to do
this monitoring are ckalert.pl, ckalert_NT.pl, and ckalert.conf.

Connectivity monitoring
DBAs also need to constantly monitor all of their Oracle databases to ensure that
connections to these databases can be established. If a database goes down, the
DBA needs to find out about the problem—and fix it—ideally before users are
even aware that their connectivity has been affected. In this chapter we’ll
describe a toolkit connectivity monitor that does this real-time monitoring using
the scripts dbup.pl, dbup_NT.pl, and dbup.conf.

Monitoring the Alert Log

When an Oracle database is created, a file commonly referred to as the alert log is
created. As errors and other conditions occur during processing, messages are logged
to this file. Basically, every important event that occurs causes a record to be written
to the alert log: when the database starts up, when it shuts down, and everything in
between (e.g,. creating tablespaces and datafiles, performing privileged operations).
Every important error message ends up in the alert log; in some cases, a message
directs the DBA to a trace file that contains more detailed alert information.

It is the responsibility of the DBA to monitor the alert log on a regular basis so as to
deal with any problems or potential security issues before they affect the database or

328

its users. The sooner you find out about error conditions, the better; unlike wine and
cheese, database problems don’t improve with age. Monitoring the alert log can be a
challenge, however: there is an alert log for every database, and busy DBAs have
many other things to do that are more pressing than manually scanning alert log
files. As somewhat dyed-in-the-wool geeks,” your authors find that the thought of
spending valuable daily minutes manually poring over database alert logs sends shiv-
ers up and down our workstations. Frankly, trawling through alert logs makes for a
great insomnia cure, but it’s hard to fit into the day.

To automate this tedious process and help DBAs keep close watch over their data-
bases, we’ve written a collection of scripts designed to monitor the Oracle alert logs
in real time and to report directly to the DBA the instant a database problem is
detected. These scripts let you configure what to look for in the alert log and the
email addresses to which to send messages. In addition, they allow messages to be
mailed individually or batched up (depending on platform) and to be sent either
immediately or at particular time intervals.

Where is the Alert Log?

The location and name of the file containing the alert log are operating system and
version-dependent; they may also be subject to local DBA standards or the caprice of
a third-party application’s enforcing its own standards for the location of the alert
log.

Given a database of the name orcl, the alert log may normally be found at either of
these locations on Unix systems:

$ORACLE_HOME/admin/orcl/bdump/alert_orcl.log
$ORACLE_BASE/admin/orcl/bdump/alert_orcl.log

On Win32 systems it would likely be found at:
%O0RACLE_HOME%\admin\orcl\bdump\orclALRT.log

Monitoring with chkalert.pl

The chkalert.pl script is at the center of the toolkit alert-monitoring application. This
Perl script provides the following capabilities:

Constant monitoring
Monitors the alert log for errors and collects these into an array that is emailed
automatically to the addresses you’ve specified.

Multiple email address
Emails error messages to multiple email addresses if you configure them.

* If you think this is synonymous with “aging geeks,” you’re right. Your authors readily admit to being over
18 years old.

Monitoring the AlertLog | 329

Message throttling
Controls the rate at which that email is sent; this is very helpful in cases where a
large number of error messages occur simultaneously. (This feature is only avail-
able on Unix systems.)

Flexible configuration of errors to check
Allows you to specify the errors the script should check for in the alert log. You
specify errors via a list of Perl regular expressions (giving you the ultimate in flex-
ibility).

This script runs in the background as a daemon on Unix. A version of it, ckalert_NT.

pl, runs as a service on Win32.

One particularly important feature of chkalert.pl is the set of configurable controls it
provides in an effort to prevent error messages from overwhelming your mail server.
You may wonder what terrible circumstances would generate so many error mes-
sages that it could bring a mail server to its knees! Actually, this happens more than
you would imagine. A relatively common example is an imperfectly tested program
that ignores error messages and continues to attempt the same operation over and
over. For example, consider a PL/SQL routine that collects records from an OLTP
system and inserts them into a data warehouse. After a month of record-breaking
sales, the warehouse table chews through all the available space allocated for that
month—suddenly, you’ll run into a brick wall in the form of an Oracle error such as
the following;:

ORA-1653 unable to extend table MY_TABLE by 16 in tablespace OLTP_DATA.

A reasonable and well-behaved PL/SQL routine would catch this error and abort the
process, notifying someone of the problem. However, if a miscreant piece of code
fails to catch an exception of this kind, it can easily generate thousands of error mes-
sages in a very short time. This can keep a mail server very busy!

The problem is compounded when the receivers of such emails are running a mail fil-
ter, such as procmail, which spawns a new process for each email received. This can
easily cause your company’s mail server to suddenly display poorer performance
than the old Commodore 64 you still have in your closet (don’t try to deny it).

As you can well imagine, system administrators are somewhat less than amused by
such denials of service, especially when they occur in the wee hours of the morning.
And let’s face it, things like this always occur in the wee hours of the morning. We
like our own sysadmins, and try to avoid giving them reasons to feel otherwise about
us, so we use chkalert.pl to keep mail server disasters from occurring.

330 | Chapter11: Monitoring the Database with the PDBA Toolkit

Although in almost every other case we provide a single script that
operates on both Unix and Win32 platforms, that isn’t the case here.
We originally designed the chkalert.pl script to run on Unix and subse-
quently created a modified version that works on Win32. When deal-
ing with background daemons for Unix or services for Win32, the
code base becomes quite unwieldy if it tries to do both jobs. So in this
case we achieved much better performance out of maintaining sepa-
rate Unix and Win32 versions.

In the installation procedures described later in this chapter, we cover
Unix installation followed by Win32 differences. Because most aspects
of installation and configuration are the same for the two platforms,
we recommend that if you are running on Win32, you nevertheless
read the Unix section first.

Installing and Configuring chkalert on Unix

If you followed the installation instructions in Chapter 9, Installing the PDBA Tool-
kit, the Unix version of the alert-monitoring script, chkalert.pl, will already be
installed on your system. You’ll find it in the same location as the other executable
scripts, most likely in /usr/local/bin. (As long as PATH includes the script installation
directory, your system will find it.) Once underway, the Perl daemon carries out the
following tasks (all of which can be configured)

chkalert.conf

The first installation step is to locate and update the chkalert.conf configuration file
used by the chkalert.pl script. The configuration file contains settings for the parame-
ters used to control alert monitoring at your site. Default settings are provided in the
configuration file that is included in the toolkit when you first install it. You can then
edit this file as desired. We perform this editing process as follows:

1. Change directory to wherever you unzipped the PDBA Toolkit archive, and then
move into the ../chkalert directory. For example, if you unpacked PDBA-1.00.
tar.gz into /tmp, you would move to /tmp/PDBA-1.00/chkalert:

$ cd /tmp/PDBA-1.00

$ cd chkalert

$ pwd
/tmp/PDBA-1.00/chkalert

2. If you don’t already have the chkalert.conf file in PDBA_HOME (perhaps you
have installed it as another user), make sure you do, and then c¢d to PDBA_
HOME:

$ 1s $PDBA HOME/chkalert.conf
1s: chkalert.conf: No such file or directory

$ cp chkalert.conf $PDBA HOME
$ cd $PDBA_HOME

Monitoring the AlertLog | 331

3. Make sure you can write to the file, and then begin to edit its configuration. (The
chkalert.conf filename is specified in chkalert.pl, so please don’t change the name

of the file.)

$ chmod u+w chkalert.conf
$ cp chkalert.conf chkalert.old # Once bitten, twice shy! :-)
$ vi chkalert.conf

There are just a few parameters you’ll need to modify. We’ve reproduced the config-
uration file from the PDBA distribution in Example 11-1. Following the example we
describe the main parameters you can specify in the file.

Example 11-1. Configuration for chkalert.pl—chkalert.conf

package chkalert;
use vars quw{ %ckConf };

%ckConf = (
recipients of email for alert log errors
dbaAddresses => [qw{ scott@tiger.com 7775551212@mobile.att.net }],
mail addresses for debugging
debugDBA => [qw{someone@somewhere.com}],
oratabFile => '/etc/oratab',
or whatever the location of your oratab file is
it consists of the instance name, Oracle Home and
a flag field of Y or N.

alarmTime => 300,

this is the number of seconds to wait before sending
a batch of error messages as email

this is batched to prevent large numbers of email

maxLoglLines => 100,
this is the override for alarmTime. If maxLoglines
of messages are received, mail them now

watchdoglLength => 5,
this is the max size of the array used to
determine if too much mail is being sent too fast

watchdogTime => 10,
this is the elapsed number of seconds between email
batches that is used to determine if mail is being
sent too quickly

if the time between the first and last times in the
watchdog buffer is <
(watchdog[watchdoglength] - watchdog[o])
* (watchdoglength * watchdogTime)
then the mail delivery is throttled back until things slow down

H O B H

throttleDelaySeconds => 10,
how many seconds to delay between email batches
when many errors are being generated

332 | Chapter11: Monitoring the Database with the PDBA Toolkit

Example 11-1. Configuration for chkalert.pl—chkalert.conf (continued)

)5

1;

this is to protect the system from being choked
with procmail processes if you are using it

what is the name of this server?
serverName => 'sherlock.jks.com’,

list of errors to check for

must be a comma separated list of regular expressions
e.g. errorlist = "ORA-, ~TNS-, crash

the qw operator may also be used

errorList => qw{"ORA- ~TNS- crash},

Here are the configuration file parameters:

dbaAddresses

Address list to which email is sent when errors are detected. Notice that the list
is included inside paired square brackets, [/, indicating an anonymous array ref-
erence (see Appendix A, The Essential Guide to Perl, for a description of anony-
mous arrays). The qw (quote word) Perl operator also avoids the need to use
quote punctuation, which simplifies editing.

debugDBA

Has the same form as dbaAddresses, but consists of a list of addresses for use
when debugging the application. You will only need one address for this entry.

oratabFile

An all-important directive that locates the crucial oratab file. We won’t try to
guess the location of this file, as it can differ widely on various Unix flavors. Sim-
ply insert the location of your own oratab file so chkalert.pl can find the proper
ORACLE_HOME for each target database.

alarmTime

Number of seconds you want chkalert.pl to hold onto error messages before
mailing them. Sometimes errors come in large grape-like bunches, so you may
wish to avoid separate emails being sent out for each one (especially if the email
destination happens to be your pager and it’s 2:00 AM on Sunday morning). One
piercing scream from a pager is enough to wake most of us. If you really do want
to receive a separate email for each error, possibly because you own shares in the
phone company, read on.

maxLogLines

Maximum number of lines chkalert.pl should buffer before mailing them out.
This overrides alarmTime. At its default setting of 100, if 100 error messages
appear in the alert log before alarmTime times out, this overrides the timer and
causes the messages to be mailed immediately. The timer simply resets to 0

Monitoring the AlertLog | 333

when this happens. To see error messages immediately, just set maxLogLines to
avalue of 1. An email is then sent the moment the monitor detects an error.

watchdogLength , watchdogTime, throttleDelaySeconds

These closely related parameters prevent chkalert.pl from overwhelming a mail
system in the event of a runaway error’s flooding the alert log:

Whenever error messages are mailed out, the time is recorded in an array called
@watchdog. The number of entries in @watchdog is controlled by the parame-
ter watchdogLength. The parameter watchdogTime is the number of seconds and
is used as a control to determine whether chkalert.pl should slow down mail
deliveries.

Whenever error messages get mailed, chkalert.pl compares the current time with
the oldest timestamp in @watchdog. If the difference in seconds between these is
less than (watchdoglength * watchdogTime), chkalert.pl inserts a sleep of
throttleDelaySeconds between each mailing until the incoming error message rate
slows down.

For example, if your database starts throwing errors into the alert log faster than
a Tribble population can munch its way through a star cruiser shipment of
Quadrotriticale,” this could send your mail server into a reproductive frenzy try-
ing to keep up. The script tries to prevent that from happening. Let’s assume
these values are set as in Example 11-1, and that chkalert.pl finds that the first
batch of error messages got sent out less than 50 seconds ago and this is the fifth
batch since then. A 10-second wait will be inserted between mailings, giving the
mail server time to breathe.

serverName

Name of the database server. This name is used purely for informational pur-
poses whenever error messages are emailed.

errorList

Allows us to specify exactly what we want chkalert.pl to consider as an error.
This is a list of regular expressions contained within either a comma-separated
list or a list specified by Perl’s qw operator. (See Appendix C, The Essential Guide
to Regular Expressions, for more information.)

Running chkalert.pl

We’re now ready to run chkalert.pl to see how it works. Let’s test it first, on a copy of
an alert log in which we’ve generated our own error messages:

1.

Our test database is ts01, and we copy its alert log to /tmp:
cp $ORACLE_HOME/admin/ts01/bdump/alert tsoi.log /tmp

* Star Trek, season 2, episode 15. See http://www.scifi.com/startrek/episodes/102.html.

334

| Chapter11: Monitoring the Database with the PDBA Toolkit

2. We can now start running chkalert.pl against this test log copy:

$ chkalert.pl -debug -database tso1 -alertlog /tmp/alert_tsoi1.log
oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: tso1

ALERT LOG: /tmp/alert_tsoi.log

DBA's : someone@somewhere.com

3. In another shell, we add an error message onto the end of our test log:
$ echo "ORA-20000: this is a chkalert test error" >> /tmp/alert tsoi.log

The content of the message is unimportant, as long as it begins with ORA-. The
output in the first window should now gain an extra line:

$ chkalert.pl -debug -database tso1 -alertlog /tmp/alert_tsoi.log

oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: ts01

ALERT LOG: /tmp/alert tso1.log

DBA's : someone@somewhere.com

ORA-20000: this is a chkalert test error

4. We’ve now confirmed that monitoring is properly configured, so let’s ensure

that the mailing works. Stop chkalert.pl with a Ctrl-C, and then restart it with a
new -sendmail switch added:

$ chkalert.pl -debug -sendmail -database tso1 \
-alertlog /tmp/alert_tso1.log

oratab: ts01:/u02/app/oracle/product/8.1.7:Y

ORACLE_HOME: /u02/app/oracle/product/8.1.7

DATABASE: tso1

ALERT LOG: /tmp/alert tsoi.log

DBA's : someone@somewhere.com

5. Add another fake error message to the end of the test alert log, and then sit back

with your feet up, sipping a quick coffee. The default configuration waits five
minutes before sending out the following Alarm Time message:

ORA-20000: this is a chkalert test error
Alarm Time: 2002/12/02 - 14:26

SUBJ: ts01 Database - Alert Log Errors -

ORA-20000: this is a chkalert test error encountered in tso1 at 2002/12/02 - 14:

26

sending email
After chkalert.pl says it’s sent the email, check to see that we’ve actually received
it. If not, you may need to verify that the mail server specified in $PDBA_
HOME/pdba.conf is valid. (If necessary, see Chapter 9 for details on the mail
server configuration.)

Monitoring the AlertLog | 335

Testing with a real alert log

This time we’ll execute chkalert.pl against a real alert log without the previous -debug
option. This forces chkalert.pl to run as a daemon process:

$ chkalert.pl -sendmail -database tso1 \

-alertlog $ORACLE_HOME/admin/tso01/bdump/alert tsoi.log

DATABASE: ts01

ALERT LOG: /u02/app/oracle/product/8.1.7/admin/ts01/bdump/alert_tsoi.log

DBA's : oradba@yourdomain.com 7775551212@mobile.att.net
We're set. If you've included your cell phone or pager number as one of the email
addresses and if the database has a sudden problem at 2:00 AM, you’ll get the call
first so you can deal with it. You’ll then be able to stroll casually into your office
at 8:45 AM without anyone ever knowing there was a problem. No more angry mobs
ambushing you in the car park, no more smirkers loafing round the coffee machine
waiting for the DBA to fix the database, no more sudden surprises.”

Just to maintain this blissful nirvana moment and help ensure that chkalert.pl is
always running, you might want to schedule it to start periodically via your system
scheduler (often cron on Unix systems).

When chkalert.pl starts, it creates a lock on a temporary baton file of the form /tmp/
chkalert. SORACLE_SID. Subsequent attempts to run chkalert.pl on the same data-
base will fail when the file lock operation is attempted. This is harmless, because
chkalert.pl merely exits when it’s unable to lock the temporary baton file.

If you need to terminate the chkalert.pl daemon, it’s easily done via chkalert.pl’s own
-kill option. When chkalert.pl starts, it creates a temporary file containing its own
process ID—sort of like an Apache .pid file. The -kill option tells chkalert.pl to open
that file, in read-only mode, and use its artificial intelligence, glowing red eyes, and
liquid metal, to locate the PID of the running process. Once tracked down, the pro-
cess is terminated.

The file containing the process ID is always named chkalert.<database>. On our
Unix server for instance, the database is named ts01. When chkalert.pl is started, a
file named chkalert.ts01 is created. On Unix systems this file is created in the /tmp
directory, and on Win32 servers it’s created in CATEMP. The contents of this file are
fairly simple:

$ cat /tmp/chkalert.tso1

15575
The following is an example of stopping a currently running chkalert.pl daemon. All
of the command-line options are summarized in Table 11-1:

oramon > chkalert.pl -database tso1 -kill
DATABASE: tso1

* OK, so we’re the first to agree that restful slumber’s being broken is a long way from being good, but perfor-
mance reviews where share options may go up, rather than down, should provide adequate compensation.

336 | Chapter11: Monitoring the Database with the PDBA Toolkit

ALERT LOG: /u02/app/oracle/product/8.1.7/admin/ts01/bdump/alert tsoi.log
DBA's . someone@somewhere.com 7775551212@mobile.att.net
chkalert process 3790 killed

Table 11-1. Command-line options—chkalert.pl

Option Description

-alertlog Full path to the database alert log file

-database ORACLE_SID of database to check

-debug Runs in console mode and prints debugging messages

-kill

Used with -database option to stop the chkalert.p/ daemon

-sendmail Error messages mailed to DBA addresses in configuration file

Installing and Configuring chkalert_NT.pl for Win32

So far, we’ve been focusing on how to do alert monitoring on Unix systems. The
methods for handling background processes differ significantly for Win32, and as we
mentioned, there is a separate script for Win32. That script, chkalert_NT.pl, was
installed along with the rest of the toolkit. This script is dependent on the Win32::
Daemon Perl module, also installed in Chapter 9, which allows chkalert_NT.pl to run

as a

service. These are the main configuration steps. Note that in many cases, the

installation is the same for Unix and Win32, so we’ll refer to the earlier Unix discus-
sion where appropriate:

1.

When the PDBA Toolkit was installed, a number of configuration files were
installed along with it in a temporary location. Copy the chkalert_NT.conf file
from this temporary location to the PDBA_HOME directory. As in Chapter 9,
we’ll assume that Perl is installed on your C: drive and that PDBA_HOME is set
to C:\PDBA. You'll need to alter the following command appropriately if your
installation is different:

C:> copy C:\Perl\site\lib\PDBA\conf\chkalert_NT.conf C:\pdba

. Now edit” PDBA_HOME\chkalert_NT.conf and set the required parameter val-

ues, as discussed earlier for Unix chkalert.pl configuration (see the parameters in
Example 11-1, such as dbaAddresses and serverName). Example 11-2 is an exam-
ple of how this file will appear with comment lines removed.

. We recommend that you leave the default values of alarmTime, maxLogLines,

watchdogLength, watchdogTime, and throttleDelaySeconds. Changing the watch-
dog values currently has no effect on Win32 platforms. They have been retained
for future use when the alarm() call may be available in Perl on Win32. In the

* Both authors of this book are Bruce-Willis-style die-hard vi fanatics. We won’t give it up. We used gvim, the
windowing version of vim, an improved version of the vi text editor, for much of the code editing in this
book. It’s available at http://www.vim.org.

Monitoring the AlertLog | 337

meantime, the watchdog functionality found in chkalert.pl on Unix systems is
not available in chkalert_NT.pl.

4. Because alarm() is unavailable, keep the default alarmTime parameter.

5. You must also leave maxLogLines set to 1 on Win32; the timeout method for
periodic mailing of error messages is not available on Win32.

Example 11-2. Editing chkalert_NT.conf on Win32 platforms

package chkalert;

use vars quw{ %ckConf };

%ckConf = (
dbaAddresses => [qw{yourname@yourdomain.com 8885551234@mobile.att.net}],
debugDBA => [qw{someone@somewhere.com}],
alarmTime => 5,
maxLoglines => 1,
watchdoglength => 5,
watchdogTime => 10,
throttleDelaySeconds => 10,
serverName => 'mail.yourdomain.com’,
errorList => gqw{"ORA- ~TNS- crash},

)5

1
6. To install the chkalert_NT.pl service, navigate to the install directory:

C:> cd C:\perl\site\lib\pdba\util

7. Now run the chkalert_service.pl utility. The following command assumes that
our database server is Oracle 8.1.x on Drive D: and that the target database is
ts20. Your mileage may vary. (The following command must be entered on one
line; we’ve split it only for formatting purposes):

C:> chkalert service.pl -install -database ts20 -alertlog \
d:\ora81\admin\bdump\ts20\ts20alrt.log

8. If you need to remove the service, replace -install with -remove:

C:> chkalert_service.pl -remove -database ts20 -alertlog \
d:\ora81\admin\bdump\ts20\ts20alrt.log

Table 11-2 summarizes the command-line options for chkalert_service.pl.

Table 11-2. Command-line options—chkalert_service.pl

Option Description

-install Installs the alert log monitor service
-remove Removes the alert log monitor service
-database Supplies the SID of the database
-alertlog Provides the full path to the alert log

338 | Chapter11: Monitoring the Database with the PDBA Toolkit

Download from Wow! eBook <www.wowebook.com>

Starting the service

Now that chkalert_NT.pl has been installed, we fire up the Win32 Service Manager
to start the service. You can navigate to this tool with one of the following sets of
keystrokes. (Note that Service Manager works much the same on the two platforms.)

Windows NT
Start — Settings — Control Panel, click Services

Windows 2000
Start — Settings — Control Panel, click Administrative Tools, click Services

Figure 11-1 is an example of what you should see in Service Manager after success-
fully installing chkalert_NT.pl. The new service appears as Oracle_ts20_
AlertLogMon. Simply click on the Start button, and your alert log monitor should be
off and running. (If this install fails to go smoothly the first time around, check
Chapter 9 for all the modules required by chkalert_NT.pl.)

=10ix|
| action view |J«-’|&||@|jblll " |
Tree I Mame /. | Description | Status | Startup Twpe | Log On As | ;I
W %OraclefPWDjerver Manual LocalSystem
%Oracle_tsZU_AIertLogMon Autamatic LocalSystem
%OracleOraDesC\iEntCachEBD Manual LocalSystem
Bycadcrarinsatic 2]
%OracleoraHomaSlCli
%OracleoraHomeSlCl\ General I Log Elnl Hecnveryl Dependenclesl
%OracleOraHnmEBlCl\
%OracleOraHumESIDe Service name: Oracle_ts20_AletloghMan
%OracleoraHomaSlH‘l .
%OracleoraHomeSlPa Loyl
horaclsOratomeB1 T Daserigtion:
%OracleServiceTSZD
%pcnnywhera Host 5& Path to executable:
%Performance Logs ar C:\Perlsbin'Perl.exe C:\Perlbinhchkalert_MNT.pl -database tz20 -sendmail b
%P\ug and Play
%P””t Spooler Startup type: Aukomatic j
%Pmtected Storage
8005 RSVR
%Remnte Access Auto Service status: Stopped
%Remute Access Conr
%Remote Procedure Start | Stop | Fause FiesLme |
%Remote Procedure C .
%Remnte Reegistry Ser ;:DU; ;::Espec\fy the start parameters that apply when you start the service
%Remuvable Storage :
%Routing and Remate Start parameters: I
Runas Service
%Secur’ity Accounts Mi
Server
%Smart card ok I Cancel | Ll |
8 5mart Card Helper Provides s... Fanual Local=ystem Jd
\ | \

Figure 11-1. The new Oracle_ts20_AlertLogMon service

If the install should have the temerity to run imperfectly first time out, you may see a
screen like that shown in Figure 11-2. You will need to go to the command line to try
to sort it out. Check to see if Perl can compile the script:

C:> perl -cw c:\perl\bin\chkalert NT.pl

Monitoring the AlertLog | 339

You can see the results of that in the following:

Can't locate Win32/Daemon.pm in @INC (@INC contains: C:/Perl/1ib

C:/Perl/site/lib .) at c:\perl\bin\chkalert NT.pl line 10.

BEGIN failed--compilation aborted at c:\perl\bin\chkalert NT.pl line 10.
It appears that we missed installing the Win32::Daemon module. Should something
like this happen, go back and review the installation instructions in Chapter 9 to
make sure that all the required elements were installed.

Microsoft Management Console x|
& Could not start the Oracle_ts20_alertLogMon service on Local Computer,

Error 1053: The service did not respond to the start or control request in & timely Fashion,

Figure 11-2. Oracle_ts20_AlertLogMon service failure

After re-installing Win32::Daemon to its former glory (we kept removing it in our test
runs), the compile was successful, producing this output:

c:\perl\bin\chkalert_NT.pl syntax OK

If you continue to experience difficulties in running the service, make sure that the
fully qualified file name, specified for the alert log during chkalert_service.pl installa-
tion, is correct. If it is incorrect, it won’t cause an error until you attempt to restart
the service.

Testing Oracle_SID_AlertLogMon

Now that we have the Oracle_SID_AlertLogMon service running, we can verify that
it’s working as expected. Carry out this test only while a test database is down, as we
need to directly edit its alert log.

1. Use your favorite text editor to edit the database’s alert log:
C:> vi c:\oracle\admin\ts20\bdump\ts20alrt.log # Just say vi! :-)

2. Navigate to the last line of the file. We’ve displayed a fragment of our own alert
log seen here. The last line begins with ORA-20000. Add a similar line at the end
of your own alert log.

Current log# 3 seq# 918 mem# 0: D:\ORACLE\ORADATA\TS20\RED0O3.LOG
Successful open of redo thread 1.
Tue Aug 21 21:45:02 20015
MON: enabling cache recovery
Tue Aug 21 21:45:02 2001
ARCO: Beginning to archive log# 2 seq# 917
ARCO: Completed archiving log# 2 seqg# 917
Tue Aug 21 21:45:07 2001
SMON: enabling tx recovery
Tue Aug 21 21:46:28 2001

340 | Chapter11: Monitoring the Database with the PDBA Toolkit

Completed: alter database open
ORA-20000: chkalert test error

3. Enter a RETURN at the end of the line, and then save the file.

4. When chkalert_NT.pl was installed earlier, the logging feature was turned on. To
access this log, we navigate to the C:\temp directory in Explorer.

5. Sort the entries by date so the newest files appear at the top of the window. You
just need to click twice on the Modified column in the file detail pane. (Note that
this is not a double-click. The first click will sort the files by date in ascending
order, and the second click will sort by date in descending order.) Your display
should be similar to that shown in Figure 11-3.

[10|

J File Edit \ew Favarites Tools Help |

J PBack = = - | @Search |%FOIders @Historv ||:|3 03 x w5 | Ed-

JAgdress I[:I C:itermp j @Go
Folders X | | Mame | Size | Type | Modified © |
-0 DRIVERS 2| |E] chkalert ksz0 1KB T520 File 12/3{2001 8147 PM
m-{1 1386 chkalert_daemon_1076.log 1KB TextDocument 1232001 &:47 PM
-7 images chkalert_daemon_1 308 log 1KB TextDocument 12/2/2001 11:47 PM
-1 jdk1.3.1_01 chkalert_daesmon_1144.log 1KB Text Document 12/2/2001 11:38 PM
{2 My Music chkalert_dasmon_1052.lag 1KB TextDocument 12(2/2001 10:28 PM
G- NTRESKIT chkalert_daemon_tS12.og 2KB TewtDocument 12/1/2001 8:05 FM
@ ols PDEA.ppd 1KE PPDFile 10/31/2001 4:55 PM
{0 passkeep e8] run.sal S1KB SQLFile 8/8/2001 11:59 PM
- pdba Win3z-Admintisc. ppd LKB PPDFile 7152000 3:30 &M
S% Ere:gram s win32-Daemon.ppd KB PPDFile 6/20/2000 1:25 AM
-0 QUICKEMW
{7 reghack -
4] b I:J_J_<I I

|Type: Texk Document Size: 603 bytes |603 bytes | My Compuker v

Figure 11-3. Locating the chkalert_NT.pl log file

6. The logging files are created with the process ID embedded in them. If we start
and stop the alert checking service a few times, we’ll therefore see several files of
the form chkalert_daemon_PID.log. Choose the newest one, and open it with
your favorite editor. Here’s ours; notice that the ORA-20000 error appears in the

middle of the file.

Waiting for service...Service started, ready to change stateService state changed
to SERVICE_RUNNUNG

Options loaded from command line

DATABASE: ts20

ALERT LOG: d:\oracle\admin\ts20\bdump\ts20alrt.log

DBA's : someone@somewhere.com 7775551212@mobile.att.net
Top of main loop

Top of main loop

Top of main loop

Error: ORA-20000: chkalert test error

Top of MailMsgs

Mail To: someone@somewhere.com:7775551212@mobile.att.net

Monitoring the AlertLog | 341

Mail Subject: Alert Log Errors in ts20 on sherlock.jks.com

Mail Message:

ORA-20000: chkalert test error encountered in ts20 at 2001/12/03 - 20:47
Top of main loop

Top of main loop

Top of main loop

Stopping Service

exiting - files cleaned up

7. The log file should prove two things:
* The fake error was detected.
* The fake error was mailed to the configured email addresses.
8. That’s it. We're done installing and verifying chkalert_NT.pl. Now we can go
back to the Services Manager application and stop the Oracle_PID_AlertLogMon
service. We should also remove the fake error message from the alert log. Once

this is done, restart the database and then restart the Oracle_PID_AlertLogMon
service.

The command-line options for chkalert_NT.pl are listed in Table 11-3; note that they
differ somewhat from the earlier Unix list. If you want to change any of these, you
will need to remove the alert checking service, modify chkalert_service.pl and then
reinstall the service.

Table 11-3. Command-line options—chkalert_NT.pl

Option Description

-alertlog Full path to the database alert log file

-database ORACLE_SID of the database to check

-debug Indicates debugging messages to be included in log file
-logging Turns on the logging feature

-sendmail Error messages mailed to the configured DBA addresses

Monitoring the Databases

Another very high priority for Oracle DBAs is the monitoring of database connectiv-
ity. You need to constantly poll all of the databases at your site to make sure they are
up and running. If a database is unavailable for any reason, you must be proactive
and check out the problem as soon as possible. It is definitely not good practice to
wait until your users discover a connectivity problem before you take care of it. It’s
far better to deal with such problems as soon as they occur in order to minimize the
impact on users. Much as we dislike the dissonant refrains of a pager in the small
hours, we still prefer that to having users inform us of database problems as we stroll
innocently into the office the next morning! As databases grow more critical to busi-
ness, the importance of uptime continues to grow too. It’s clear that we need a tool
to help us maintain 24x7 connectivity, or at least edge us closer to this ideal state.

342 | Chapter11: Monitoring the Database with the PDBA Toolkit

We’ve included a collection of database monitoring scripts in our PDBA Toolkit that
will help you keep track of database connectivity and alert you when something goes
wrong. The scripts described in the following sections continually poll databases to
make sure they’re up and running. When a database is unavailable, the on-call DBA
is immediately emailed and paged, and every member of the DBA team also receives
an email. Using our scripts, you can configure the emailing and timing to meet your
specific needs.

Monitoring Database Connectivity
with dbup.pl and dbpu_NT.pl

We’ve written a pair of connectivity monitoring scripts: dbup.pl for Unix and dbup_
NT.pl for Win32. Both are highly configurable and offer these features:

Database uptime
You specify the time periods that a specific database should be up. If the data-
base goes down outside these hours, the DBA gets emailed but is not paged.

DBA rotation
You can create an on-call rotation for DBAs, and you can specify a default DBA
to cover any exposed gaps you may choose to leave. We'll show a sample DBA
schedule later.

Supervisor notification
You may optionally page a supervisor (or anyone else) when a database fails,
regardless of the DBA that is on call. You can also email the supervisor.

Connection test interval
You can configure the intervals between database connection attempts.

Delayed paging
You can also delay paging during off-duty hours. The configuration parameter
hoursToPagelmmediate determines the hour range when paging is suspended.
The parameter maxConnectRetries determines the number of connection
attempts before the on-call DBA is paged. This prevents the DBA or supervisor
from being paged during the night if database connectivity is restored within a
preset number of reconnection attempts. This is useful for situations that dis-
rupt database connectivity for a few minutes without causing a true problem—
for example, evening reboots that occur on a standard schedule. Email and event
logging still take place.

Impressing your system administrators
OK, this is hardly built into the system, but it does tend to happen anyway.
When one of your database servers decides to head for the land of dreams,
you’re naturally going to get paged when the connectivity monitor cannot con-
nect to the database server. If you configure dbup.pl to connect to each database
every five minutes, it won’t be long before you’re aware that the database server

Monitoring the Databases | 343

itself is down. Sysadmins are always somewhat amazed to find out that you
know about a server outage before they do. We’ve found this goes a long way
towards maintaining cordial relations with our own systadmins.

Installing Additional Modules

In order to properly manipulate dates in our dbup.pl monitoring script, we’ve chosen
to use Sullivan Beck’s Date::Manip module, an incredibly flexible pure Perl module
used for parsing and comparing dates. It allows you to specify a date in literally hun-
dreds of formats, recognizing them automagically and parsing them into its own
internal operational format.” This module allows dbup.pl to handle the time intervals
you specify.

Because the Data::Manip module is not part of the regular Perl distribution, you will
need to install it before continuing with the configuration of dbup.pl.

Installing Date::Manip on Unix
Download the latest version of Date::Manip from a CPAN site near you:
http://www.cpan.org/authors/id/SBECK

Follow the usual drill to unpack its tarball and install it, or alternatively use the
CPAN shell as follows:

$ perl -MCPAN -e "shell"
cpan> install Date::Manip
cpan> quit

Installing Date::Manip on Win32

Connect to the Internet and perform the usual ActivePer] maneuver:

C:> ppm

PPM> install Date::Manip

PPM> quit
Up until now, most of the Win32 Perl modules we’ve installed via PPM have been
fairly simple to install. Date::Manip is a bit more complex. We don’t have to compile
anything, but we do need to do some editing, as we’ll describe in the next section.

TZ—Time Zones

The Date::Manip module needs to be able to get time zone information from the
machine it’s running on. This is not a problem on Unix platforms, which give up
time zone data quite readily. However, obtaining this information on Win32 is a

* Appendix D, The Essential Guide to Perl Data Munging, also describes Date::Calc, a more rapid, less diverse,
C-based date-manipulation module.

344 | Chapter11: Monitoring the Database with the PDBA Toolkit

little more involved. The Date::Manip documentation describes a number of meth-
ods for setting the attributes of the time zone environment variable, TZ, but we’ve
found only one reliable way on Win32 platforms, and that’s to use the Date::Manip
configuration file, Manip.cnf. This file is not normally configured when you install
the Date::Manip module with PPM. Follow these steps to obtain and edit this file:

1. Copy a Date::Manip configuration file to PDBA_HOME. There are two ways to
obtain this file. The first and easiest way is to copy it from the PDBA Toolkit dis-
tribution as we’ve already included it for you there:

C:> copy C:\perl\site\lib\PDBA\conf\Manip.conf C:\pdba

2. The other way is to download the Date::Manip tarball from CPAN. The current
version of Date::Manip, as of this writing, was 5.40. If the version installed on
your system is different, you may wish to install the configuration file from the
latest version of Date::Manip, which can be found at http://www.cpan.org/
authors/id/SBECK. Open the archive file, locate the file Manip.cnf, and save it to
PDBA_HOME as shown in Figure 11-4.

-]_ PowerArchiver 2001 - DateManip-5_40.kar ;|g|5|
File Edit ‘Wiew Actions Tools Options Help
i -
3.0 & A X 2 %
¥ o 3 3 i =
Mew Open Favorites Add Extract Delete Wiew CheckOut

| Name | Modiied | Size| Ratio | Packed| Path |«
Q delta_romarian.t 44261999 B:31 AM 1581 00% 1.581 Datetdanip-5. 4044

a events.t 34372000 7:44 A 1.282 00% 1,282 Datetdanip-5. 4044

a getnestt 4/26/1999 9:59 AM 2436 003 2436 Datebanip-5 404

Q getpres.t A/2R41993 9-A0 Ak 43R NNE 2 43R Natetanin-G 4045

8] HISTORY B Extract P][4

a INSTALL Extract to: Folders/drives:

2 Makefile.PL = - = —
MENIFEST 2 B0 k1210 |

2 b anip. cnf I (20 My Music %

: 20 NTRESKIT

Q Man!p.pm * Selected files B3 0L Help
%TJZET s @ passkecp

(23 |pdba

README " Fles: B3 Per

Q recur_t -1 Program Filles

% :z:!;:s't ¥ Dvenarite Existing Files []g iELEEENW

8] settime. I™ Skip Older Files -1 SONYSYS —

9 testpl ¥ Use Folder Mame | e | Ll—l Mew Folder... |
TODO

unixdate.t 11A16/1938 10:29... 638 00% 638 Datebdanip-5. 404 =
[+ = Selected 1 file, 3 kB [Total 43 files, 427 kB [427 kB] @D |

Figure 11-4. Extracting Manip.cnf from the archive

3. Rename the file from Manip.cnf to Manip.conf. (This is simply to stay consistent
when naming configuration files and thus avoiding later confusion.) You can
rename the file by right-clicking on the file in Windows Explorer, and clicking
on Rename. Alternatively, do this from the command line:

C:> move C:\pdba\Manip.cnf C:\pdba\Manip.conf

Monitoring the Databases | 345

4. Next up sports fans, edit the file:
C:> vi C:\pdba\Manip.conf

There are two entries for TZ that you may need to edit: TZ and ConvTZ. The
following example shows where they’re usually located in the Manip.conf file. If
your time zone™ happens to be PST (Pacific Standard Time), you can save the file
the way it came out of the box (which is nice, if you live in Oregon, USA, but
less nice if you live in Oxfordshire, England). If you’re not sure of your exact
time zone, you can check the full documentation for yourself via perldoc Date::
Manip, on both Unix and Win32. Once you do have the time zone data set cor-
rectly, save the file and close the editor.

HHHHEHHHHHHEHHEHE A CONFIG VARTABLE SH#HHEHHEHHHHHHHHHHHHHHHHHHH
See Date::Manip man page for a description of all config variables.

EraseHolidays =
PersonalCnf = Manip.cnf
PersonalCnfPath = t:.
Language = English
DateFormat = US

TZ = PST
ConvTZ = PST
Internal =0
FirstDay =1
WorkWeekBeg =1
WorkWeekEnd =5

5. Date::Manip must be told where to find the configuration file. To do this, you’ll
need to edit the actual Manip.pm module file. Assuming that our Perl installa-
tion is under C:\Perl, this will be found as C:\PerlNib\Date\Manip.pm.

6. You won’t be able to edit this file with Notepad.exe because the file lines end
with an <LF> Unix-style line terminator instead of the expected MS-DOS <CR>
<LF> combination. Oh dear, you’ll have to use vi!

7. OK, we admit that you can use Wordpad.exe, as it’s more resilient, but vi is still
best. Wordpad.exe can be accessed from the Windows Start button via Start —
Run, Wordpad. Open the file with File - Open and navigate to the C:\Perl\Nib\
Date\ directory before opening Manip.pm.

8. We just need to edit the global configuration file location for Date::Manip. The
appropriate directive can be found near the top of the Manip.pm file by search-
ing for GlobalCnf. We've highlighted this line in the following example and set
the value to c:/pdba/Manip.conf. Your own value may differ.

S T T T TR T
CUSTOMIZATION
FHEEEHHHHE

* You can learn more about the time zones defined in Date::Manip by reading section 5 of RFC 822 on the
“Standard for ARPA Internet Text Messages” at http://www.faqgs.org/rfcs/rfc822.html

346 | Chapter11: Monitoring the Database with the PDBA Toolkit

#
See the following POD documentation section CUSTOMIZING DATE::MANIP
for a complete description of each of these variables.

Location of the global config file. Tilde (~) expansions are allowed.
This should be set in Date Init arguments.
$Cnf{"GlobalCnf"}="c:/pdba/Manip.conf";

$Cnf{"IgnoreGlobalCnf"}="";

9. We now need to save the file, and be sure to save it as a text file. Wordpad.exe
has the disconcerting habit of adding a .zxt file extension to any file when you do
this, but save it that way anyway.

10. We have to ensure that the file name is correct. The Manip.pm file has a read-
only attribute, so change this before renaming the file. Open a command win-
dow and adapt the following commands, depending on what your edited file is

called:

C:> attrib -r C:\perl\site\lib\Date\Manip.pm

C:> del C:\perl\site\lib\Date\Manip.pm

C:> move C:\perl\site\lib\Date\Manip.pm.txt C:\perl\site\lib\Date\Manip.pm

C:> perl -cw C:\perl\site\lib\Date\Manip.pm
Notice our use of the perl -cw switch. The -¢ switch causes Perl to check the syn-
tax of a script without actually executing it, and the -w switch enables warnings
that will catch many common errors. Using these switches ensures that the
changes we made to the file are syntactically correct. Checking regularly when
making changes to Perl files can save many headaches later down the road.

The Date::Manip Win32 configuration is now complete.

Using the PDBA::0PT and PDBA::PWC Modules

When we installed the PDBA Toolkit, it included a number of background modules,
all of which are described in Chapter 9. These modules provide code that is used to
support the operations of many of the Perl scripts in the toolkit. Two modules that
are particularly important to the connectivity monitoring discussed in the following
sections are the PDBA::OPT and PDBA::PWC modules. The purpose of the PDBA::
OPT module is to scan the command line for options that may be intended for the
password server; it then feeds the security information found on the command line
to the PDBA::PWC module, which retrieves a password.

In the following sections, we’ll delve into the guts of the toolkit in order to explain
why you need PDBA::OPT and PDBA::PWC and how they work. Most readers won’t
need to know this information. But if you are interested in how we’ve put the toolkit
together and may want to extend it some day, read on.

Monitoring the Databases | 347

The password server

You may recall that back in Chapter 9 we set up the password server and experi-
mented with the password client pwe.pl, which makes use of the PDBA::PWC mod-
ule. This script can be used on the command line to retrieve passwords from the
server, and the same interface is used in most of our toolkit scripts. Fortunately, the
pwe.conf configuration file allows us to make use of the password server while keep-
ing the number of command-line options to a minimum.” The password server is
required if you wish to use the dbup.pl connectivity monitor. It’s the PWD::OPT
module that works behind the scenes to allow us to eliminate a great deal of related
code. Here’s how it works:

1. Getopt::Long is a standard Perl module used for parsing command line argu-
ments. We need to configure the Getopt::Long module to allow extra command-
line options, which it doesn’t recognize by default. Here’s an excerpt from dbup.
pl with the new Getopt::Long configuration clearly shown:

use Getopt::Long;
our %optctl=();

passthrough allows additional command line options
to be passed to PDBA::0PT if needed
Getopt: :Long: : Configure(qw{pass_through});
GetOptions(\%optctl, "conf=s", "debug!",
"kill!", "maill",
"daemon!", "h|z|help");
The Getopt::Long::Configure(qw{pass_throughj) statement tells Getopt::Long to
ignore any extra command-line arguments it may soon see via @ARGYV. These
will be passed onto PDBA::OPT.

2. The dbup.pl script loops through a hash data structure, %dbup::uptime, which
lists the databases to which dbup.pl should attempt to connect. For each target
database, it calls the PDBA::OPT module. This module, in turn, uses pwc.conf to
help connect to the password server. Here’s a simplified example of the call to
PDBA::OPT:

for my $db (keys %dbup::uptime) {
my $password =
PDBA: :OPT->pwcOptions (INSTANCE => $db,
MACHINE => $dbup::uptime{$db}->{machine},
USERNAME => $dbup: :uptime{$db}->{username});
}
What isn’t apparent in this short example is the volume of hard work that
PDBA::OPT is doing in the background. It looks up the pwc.conf configuration
file, loads its entire contents, and then makes sure that any parameters input via

* The only options normally needed at the command line in order to use the password server are -machine,
-database, and -username, which we’ll cover soon.

348 | Chapter11: Monitoring the Database with the PDBA Toolkit

the command line take precedence over those just found in pwc.conf. With the
required information, PDBA::OPT then retrieves the necessary password from
the password server.

We've reproduced the working portion of PDBA::OPT in Example 11-3. Configura-
tion is unnecessary because it uses the password client setup we created in
Chapter 9. It’s important, though, to understand how PDBA::OPT makes use of
command-line parameters to override values found in the pwc.conf file. We’ll work
through the important code lines after Example 11-3.

Example 11-3. PDBA::OPT

1 package PDBA::OPT;
2

3 $VERSION = '1.00';
4

5 use strict;

6 no strict 'vars';
7

8 use Getopt::Long;
9 use PDBA::ConfigFile;
10 use Carp;

11 %optctl = ();

12

13 sub pwcOptions {
14

15 my $self = shift;
16 my %args = @_;

17

18 Getopt: :Long: :Configure(qu{pass_through});

19

20 use PDBA: :PWC;

20

2 $optctl{pwc_conf} = 'pwc.conf';

23

24 # specified directly on the command line

25 GetOptions(\%optctl,

26 "pwc_host=s", # remote password server host
27 "pwc_port=i", # port to connect to

28 "pwc_machine=s", # database server

29 "pwc_instance=s", # database instance

30 "pwc_username=s", # database username

31 "pwc_conf=s", # configuration file

32 "pwc_key=s", # encryption key

33 "pwc_my_username=s", # your password server username
34 "pwc_my_password=s", # your password server password
35 "pwc_debug!" # turn debug on

36)5

37

38 # overrides from the config file

39 if (exists($optctl{pwc_conf})) {

40 use PDBA::ConfigFile;

Monitoring the Databases | 349

Example 11-3. PDBA::OPT (continued)

4 unless (new PDBA::Configload(FILE => $optctl{pwc_conf})) {
4 croak "could not load config file $optctl{pwc_conf}\n";
43 }

4

45 for my $key (keys %pwc::optctl) {

46 $optctl{'pwc_' . $key} = $pwc::optctl{$key}

4 unless exists $optctl{'pwc_' . $key};

48 }

49 }

50

51 # overrides from args passed to pwcOptions

52 # just a bunch of ifs

53 if (defined($args{HOST})){ $optctl{pwc_host} = $args{HOST} }
54 if (defined($args{PORT})){ $optctl{pwc_port} = $args{PORT} }
55 if (defined($args{MACHINE}))

56 { $optctl{pwc_machine} = $args{MACHINE} }
57 if (defined($args{INSTANCE}))

58 { $optctl{pwc_instance} = $args{INSTANCE} }
59 if (defined($args{USERNAME}))

60 { $optctl{pwc_username} = $args{USERNAME} }

61 if (defined($args{CONF})){ $optctl{pwc_conf} = $args{CONF} }
62 if (defined($args{KEY})){ $optctl{pwc_key} = $args{KEY} }
63 if (defined($args{PWD_USERNAME}))

64 { $optctl{pwc_my_username} = $args{PWD_USERNAME} }
65 if (defined($args{PWD_PASSWORD}))
66 { $optctl{pwc_my_password} = $args{PWD_PASSWORD} }

67 if (defined($args{DEBUG})){ $optctl{pwc_debug} = $args{DEBUG} }

69 if (

70 I defined($optctl{pwc_host})

Ul || ! defined($optctl{pwc_port})

72 || ! defined($optctl{pwc_machine})

73 [| ! defined($optctl{pwc_instance})

74 || ! defined($optctl{pwc_username})

75 || ! defined($optctl{pwc_key})

76 [| ! defined($optctl{pwc_my username})
77 [| ! defined($optctl{pwc_my password})
)

79 croak qq/usage: $0 with PDBA::OPT

80 --pwc_host <password server>

81 --pwc_port <tcp port>

82 --pwc_machine <database server>

83 --pwc_instance <database instance>

84 --pwc_username <database username>

85 --pwc_conf <configuration file - optional but recommended >
86 --pwc_key <encryption key>

87 --pwC_my_username <password server username>
88 --pwc_my_password <password server password
89 /;

90 }

91

92 my $remote_host=$optctl{pwc_host};

350 | Chapter11: Monitoring the Database with the PDBA Toolkit

Download from Wow! eBook <www.wowebook.com>

Example 11-3. PDBA::OPT (continued)

93 my $remote_port=$optctl{pwc_port};

9% my $machine=$optctl{pwc_machine};

95 my $instance=$optctl{pwc_instance};

96 my $username=$optctl{pwc_username};

97 my $myusername=$optctl{pwc_my_username};
98 my $mypassword=$optctl{pwc_my_password};
99 my $key=$optctl{pwc_key};

100

101 $optctl{pwc_debug} =

102 exists $optctl{pwc_debug} ? $optctl{pwc_debug} : o;
103

104 my $client = new PDBA::PWC(
105 host => $remote_host,

106 port => $remote_port

107);

108

109 $client->authenticate(

110 username => $myusername,

m password => $mypassword,

112 key => $key,

113 debug => $optctl{pwc_debug}
114);

115

116 # get response

17 my $password = $client->getPassword(
18 machine => $machine,

19 instance => $instance,

120 username => $username,

m key => $key,

122 debug => $optctl{pwc_debug}
123);

124

125 return $password;

126 };

127 15

Configuring Getopt::Long for pass-through mode

Let’s look at the code and see what’s going on here. In the example, at line 18, you’ll
see Getopt::Long configured into pass-through mode. This prevents it from com-
plaining about unrecognized @ARGYV options. Line 25 is the GetOptions call used to
retrieve additional arguments from the command line, which may be used to over-
ride parameters in pwc.conf.

Let’s consider an example to see how this works. The script my_script.pl relies on
PDBA::PWC to retrieve passwords from the password server so a database connec-
tion can be made. A typical call to the script might look like this:

$ my_script.pl -machine sherlock -database ts01 -username scott

Monitoring the Databases | 351

The script relies on the password server on Unix server watson to retrieve the pass-
word for user scott on database ts01. The ts01 database is itself housed on Unix
server sherlock. The password server running on watson is normally transparent to
the user. This is because the nitty-gritty details are hidden away in the pwc.conf con-
figuration file, and PDBA::OPT is taking care of all of that for you.

What happens though, if the server watson is inaccessible for some reason? We still
need to run our script, but because the password server is unavailable, we’ll see an
error like the code snippet here:

Uncaught exception from user code:
Couldn't connect to watson:1579 : IO::Socket::INET: Timeout

PDBA: :OPT: :pwcOptions('PDBA::OPT", "INSTANCE', 'tso1', 'MACHINE',

"sherlock', 'USERNAME', 'scott') called at ./my script.pl line 39
Further investigation reveals that the server itself is down and won’t be up for
another two hours. But we do know that an identically configured password server is
also running on server mycroft as shown in Figure 11-5. Because PDBA::OPT allows
us to override the parameters in pwc.conf with those stipulated on the command line,
you rerun the command to execute my_script.pl, this time redirecting PDBA::OPT to
connect to the password server on mycroft:

$ my_script.pl -machine sherlock -database tso1
-username scott -pwc_host mycroft

This successfully outputs:
GLOBAL_NAME: TS01.JKS.COM

The script my_script.pl is a simple one; all it does is retrieve the GLOBAL_NAME of
the database from the system view GLOBAL_NAME. The important point, how-
ever, is that it succeeded in doing so.

Main password server Backup password server
Broken connection my_script.pl
to watson '
watson ao) mycroft
PDBA Toolkit
‘ client machine ‘
" Target Oracle database
ts01
database

Figure 11-5. Use of an alternative password server

352 | Chapter11: Monitoring the Database with the PDBA Toolkit

Loading the password client parameters

At line 41, in Example 11-3, the parameters from pwec.conf are loaded. These are
used to load the %optctl hash with keys that begin with pwc_, in lines 45-48. This
code will only set parameters that have not already been set with command line
parameters.

In lines 53—-67, the hash reference $args is checked for explicit overrides passed to
PDBA::OPT by the caller. If any values are found, they replace the corresponding
keys in the %optctl hash. For example, the following code fragment always directs
PDBA::OPT to try to connect via the password server on host moriarty, regardless of
what is contained in pwc.conf or directed to by the command-line option -pwc_host.
my $password = PDBA::OPT->pwcOptions (

INSTANCE => $db,

MACHINE => $dbup::uptime{$db}->{machine},

USERNAME => $dbup: :uptime{$db}->{username},

HOST => 'moriarty');
In lines 92—127 these final values are used to set up a session with the password
server and retrieve the requested password.

Although we’ve provided quite a bit of detail here, you’ll be relieved to hear that
most Oracle DBAs never need to worry about this level of detail. As we mentioned
earlier, we've exposed this implementation information for those who might want to
modify our scripts or create your own. (We'll say more about doing that in
Chapter 13.) Table 11-4 contains a listing of all command-line overrides available to
PDBA::OPT.

Table 11-4. Command-line overrides for PDBA::OPT

Option Description
-pwc_host Password server host
-pew_port TCP connection port

-pcw_machine
-pcw_instance
-pcw_username
-pew._conf
-pcw_key
-pcw._my_username
-pew_my_password
-pcw_debug

Database server

Database instance

Database username needing retrieved password
Password client configuration file

Password server encryption key

Password client username

Password client password

Turns on debug code

Configuring dbup.pl and dbup_NT.pl

After our skirmish with the black box forces of PDBA::OPT, let’s get back to the task
at hand. We need to periodically check our database connectivity and get notified

Monitoring the Databases | 353

immediately if there’s a problem. Fortunately, we have the technology. We’ll discuss
the Unix and Win32 configurations together because although the two scripts differ
internally, they are configured identically. However, there is a bit of preparation that
is platform-specific.

Win32 preparation
Before configuring dbup_NT.pl on Win32, you need to do the following:

1. First, place a copy of the supplied dbup.conf config file into PDBA_HOME:
C:> copy C:\perl\site\lib\PDBA\conf\dbup NT.conf C:\pdba
2. Now we have to install the dbup service. As luck would have it, you should find
a pre-supplied Perl script, dbup_service.pl, available for just this purpose. Navi-
gate to the directory where the PDBA utilities are living and run the install script:

C:> dbup_service.pl -install
Install

Successfully added.
Finished.

Unix preparation

Change to the directory where the PDBA Toolkit was installed. Make sure that the
configuration file exists in PDBA_HOME if you’ve changed Unix users and it’s not
already there:

$ cd /u01/build/PDBA-1.00
$ cp dbup2/dbup.conf $PDBA HOME

Configuration on both platforms

The only real difference between the two systems is that dbup_NT.conf has had each
line terminated with <CR><LF>, enabling us to edit this config file with Notepad.
exe. The first section of the file is displayed in Example 11-4.

Example 11-4. dbup.conf

this line is required
package dbup;
use PDBA;

use vars qu($dateFormat $ignoreFile
%parms %uptime %addresses
%onCalllist @supervisors);

format of date in ignoreFile
$dateFormat = "%Y/%m/%d-%H:%M:%S" ;
$ignoreFile = 'dbignore.conf';

354 | Chapter11: Monitoring the Database with the PDBA Toolkit

Here’s what’s happening in this code:

1. The first code line establishes the Perl package name as dbup.

2. The use vars statement prevents runtime warnings from occurring whenever a

variable is referenced only once.

3. $dateFormat and $ignoreFile are used later on to notify the monitor whenever
you wish to remove a specific database from these regular connectivity checks

until a specified date and time.

The rest of the module is then loaded. Example 11-5 shows some operational param-
eters that we may need to edit.

Example 11-5. Operational parameters—dbup.conf

%parms = (

)s

mailServer => 'mail.yourdomain.com',
fromAddress => 'oracle@yourdomain.com',

how often to check database connectivity

measured in seconds

low value used for testing

connectInterval => 30,

connectInterval => 300,

hours are 0 - 23

these are the hours to page immediately without

retrying the connection. outside of these hours,
retry a configurable number of times before paging

hoursToPageImmediate => [6..18],

use a limited range for testing during the day
#hoursToPageImmediate => [19..20],

don't page DBA during lunch. :)
#thoursToPageImmediate => [6..11, 13..18],

how many times to retry a connection when the time
is outside the range of hoursToPage
maxConnectRetries => 3,

everything is logged

will use PDBA_HOME

logfile => PDBA->pdbaHome() . q{/logs/dbup.log},

The following summarizes these parameters; some of them may be familiar from our
earlier discussion of alert monitoring:

mailServer
You need to change the default value of mail.yourdomain.com to your local mail
server. If your domain is acme.com, this might be mail.acme.com. Talk to your

friendly sysadmin about this if you’re unsure.

Monitoring the Databases | 355

fromAddress

Used in the sent from part of the mail header for all mail dispatched from dbup.
This needn’t necessarily be a real email address. Continuing with the domain of
acme.com, you could set this to oracle_dba@acme.com.

connectInterval

Determines how much time, in seconds, passes between database connection
attempts. The default of 300 allows five minutes between attempts, though on
Unix you may wish to alter this value. On Win32, we set it to a lower value,
such as 180, which is explained in the following note. Keep in mind that when a
database is down, we’ll be emailed, or paged whenever a connection attempt
fails. The lower the value for connectlnterval, the more often this will happen
until the situation is remedied.

Win32 services are stopped and started via the Service Manager. This
presents a problem with dbup_NT.pl if the connectInterval parameter
is set too high. The monitor runs in a loop, and at the end of each iter-
ation a sleep call is made, for a period of $dbup::parms::connectInterval
seconds. The dbup service fails to respond to the Service Manager’s
request for termination until the sleep call is completed. If
connectInterval is set to 600, the service will ignore termination
requests for 10 minutes. We therefore recommend a lower value, such
as 180.

The next two parameters work in concert, determining if the on-call DBA will be
paged immediately or if the page call will be deferred:

hoursToPagelmmediate

In Example 11-5, hoursToPagelmmediate is set to a value of [6..18]. These num-
bers refer to a 24-hour clock. From 6:00 AM, until 6:59 PM (18:59), the DBA is
paged immediately if a connection error occurs.

maxConnectRetries

If a connection error does occur outside of the hoursToPagelmmediate time
frame, dbup makes maxConnectRetries reconnect attempts before paging the
DBA. We particularly appreciate this feature when servers are rebooted in the
middle of the night after a minor hardware glitch, and paging is avoided because
the target server and all its databases are back up within a few minutes. All fail-
ures-to-connect are still recorded in the log, however, and an email is sent regard-
less of whether the on-call DBA was paged.

Let’s thank the two Larrys for small mercies. Because this is Perl, we’re allowed
enormous flexibility in defining the hoursToPagelmmediate hourly range. You
may have noticed a commented-out section in Example 11-5, where we’d previ-
ously specified the DBA paging hours as [6..11, 13..18]. If you feel that you
deserve a two-hour lunch window between 11:00 AM and 1:00 PM, when the
dbup secretary should place all calls on hold, the opportunity is there!

356

| Chapter11: Monitoring the Database with the PDBA Toolkit

logfile
Full path file name for the log of all dbup operations. The default displayed in
the example should work fine as is, unless you wish to place the log somewhere
else. Because the config files are executed as code in the PDBA::Configload
module, you can use the PDBA->pdbaHome method to place the file, as shown
in Example 11-5.

Examining uptime requirements

Let’s examine Example 11-6 to determine the database uptime requirements.

Example 11-6. Database uptime requirements—dbup.conf

%uptime = (

tso1 => {
machine => 'sherlock’,
upDays => [0..6],
upHours => [0..23],
username => 'system’,
alertLevel => 3 },

ts20 => {
machine => 'mycroft’',
upDays => [0..6],
upHours => [0..23],
username => 'system’,
alertLevel => 3 },

ts99 => {
machine => 'watson',
upDays => [1..5],
upHours => [6..18],
username => 'system’,
alertLevel => 2 },

)s

The %uptime hash specifies five parameters for each database needing testing:

machine
Name of the server hosting the database.

upDays
This value range specifies the weekdays that the database is in live production
mode. The values are 0..6, which means from Sunday through Saturday. Let’s
look at a few examples; see the following section for more details:

A value of [0..6] means that the database is required 7 days a week.

A value of [1..5] means that the database is required Monday through Fri-
day.

A value of [1..3, 5,6] tells dbup that this database needs to be up Monday
through Wednesday, and then Friday through Saturday.

Monitoring the Databases | 357

upHours
Just as you can specify weekday requirements, you can also set the daily hours of
required uptime. Let’s look at a few examples; see the following section for more
details:

A value of [0..23] indicates a database that’s required 24 hours a day.

A value of [8..17] means that the database is only required to be up from
8:00 AM until 6:00 PM; this sets the time of operation from 8:00 AM to 5:
59 PM (the granularity of this parameter is 1 hour, and at 6:00 PM the hour
becomes 18:00). In practice we’d set these parameters to [6..18] (see the
next section).

username
Database account used to attempt the database connection.

alertLevel
A strictly informational field. When the on-call DBA is paged, it includes a line
detailing alertLevel. For example, we use alert levels of 1 through 3, with 3 being
Ace-high. We'll see an email like this on our cell phones:
2002/12/29 - 03:45 DB Down: ts20
From: oracle@jks.com
To: dba@yourcompany.com
Failed to connect to database ts20 at 2002/12/29 - 03:45
Alert Level: 3
If we see this one, we know that we’d better stop hugging that pillow, get out of

bed, and take care of that database right away!

Looking at upDays and upHours parameters

Before moving on, let’s take a moment to discuss how DBA paging is impacted by
the upDays and upHours parameters. If dbup.pl or dbup_NT.pl is unable to connect
to a database outside of the time specified by these parameters, the on-call DBA
avoids being paged. This is useful for systems without 24x7 uptime requirements.

Let’s see what the best parameter settings would be for this type of system. Given a
database requiring uptime from Monday through Friday and from 8:00 AM until
6:00 PM each day, we’d set the upHours parameter to [6..18]. This specification has
the effect of notifying the on-call DBA of any problems at 6:00 AM, allowing time to
rectify those problems before 8:00 AM when users will typically expect the database
to be available. This also allows an extra hour after the 6:00 PM end of uptime. At
this point, the DBA can correct any errors that might have occurred during that dan-
gerous time of day when machine operators are ending their shifts (and possibly
rushing to go home and introducing errors in the process).

358 | Chapter11: Monitoring the Database with the PDBA Toolkit

Setting up pager and email addresses

Example 11-7 shows the section of the configuration file that is used to set up the
pager and email addresses for the DBA Manager, the Operations Manager, and the
DBAs themselves.

Example 11-7. Email addresses—dbup.conf

%addresses = (

)s

#
#
#
#
#
#
#
#
#
#

'dbamgr' => {
pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',
emailHome => 'athome@yourdomain.com' },

‘opsmgr' => {
pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',
emailHome => 'athome@yourdomain.com' },

"dba 1" => {
pager => '7775551212@mobile.att.net’,
emaillWork => 'atwork@yourdomain.com',
emailHome => 'athome@yourdomain.com' },
"dba_2' => {
pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',
emailHome => 'athome@yourdomain.com' }

these need to be the names of standard address
entries in the %addresses hash.
if these exist, supervisors will be paged at
all times a DBA is paged, and will be sent
all mail sent to the oncall DBA
if you don't want this feature to be enabled,
set it to an empty list.
e.g.

@supervisors=();
or just comment it out.

@supervisors = ('opsmgr','dbamgr');

Note the following guidelines:

* There should be a single entry for each of the dbamgr and opsmgr entries.
* The DBA entries may be repeated for as many DBAs as you want to include.

* If you don’t want the Operations or DBA Managers to be paged in the event of
database failure, just leave those entries as they are. We’ll demonstrate shortly
how to disable them.

Each entry has three parameters—one for a pager and two more for emails.

Monitoring the Databases | 359

pager
Email address for a pager or cell phone. This must be a valid email address—
simply using a phone number will not work, as all communications from dbup
are done via email. Many cellular phone companies offer an email address for
cellular phones, similar to those shown in Example 11-7.

emailWork
Valid email address for the nominated person’s workplace.

emailHome
Valid email address for the nominated person’s home email.

Be aware of the following rules:

* The pager parameter is strictly unnecessary. If you wish to disable it, just set the
value to an empty pair of quotes:

1

pager => '',
* The emailWork and emailHome parameters are required. Set them both to the
same email address if necessary.

The last entry in the %addresses section is the @supervisors array. This determines
which extra entries will be paged and emailed, in addition to the on-call DBA, in case
of database failure. You disable this feature by commenting out the line with a hash
character or by creating an empty list:

@supervisors=();

Who's on Third?

The last thing we need to do before putting our connectivity monitor into action is to
determine which DBA is on-call during any given week. Example 11-8 contains the
start and the end of the default entries you’ll find in the %onCallList hash, in the
dbup configuration file. These abbreviated entries cover the time period from Octo-
ber 3, 2001, through October 2, 2002; each date is a Wednesday. If your schedule
requires a different day as the switchover day of the on-call week, you need to edit
these dates. Be sure to retain the YYYYMMDD format as shown.

Example 11-8. DBA on-call schedule—dbup.conf

%onCalllist = (
'20011003" => 'dba_1',
'20011010" => 'dba_2',
'20011017" => ‘'dba_1',
'20011024" => 'dba_2',

'20020911' => 'dba_2',
'20020918' => 'dba 1',
'20020925" => 'dba_2',
'20021002" => ‘'dba_1',
'default’ => 'dba_1');

360 | Chapter11: Monitoring the Database with the PDBA Toolkit

Note the following about this example:

1. Simply change our dba_1 and dba_2 values to those corresponding to the DBAs
specified within the section shown in Example 11-7.

2. The final entry in the %onCallList hash is default. This is the DBA (or manager)
who is paged when dates fall outside the date range specified.

3. There is some latitude possible when setting the %onCallList hash. If you use a
single physical pager for the on-call DBA, and pass it around among those in the
DBA group, you can delete all of the dated entries and leave just the default
entry. This entry will thus always be the one paged in the case of a database fail-
ure. Even though only one DBA entry in the configuration file will now be
paged, email will still be sent to all entries in the %addresses hash. Example 11-9
is an example of just such a setup.

Example 11-9. Configuring for a single pager—dbup.conf

%addresses = (
"dbamgr' => { pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',

emailHome => 'athome@yourdomain.com' },
"dba_1' => { pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',

emailHome => 'athome@yourdomain.com' },

"dba_2' => { pager => '7775551212@mobile.att.net’,
emailWork => 'atwork@yourdomain.com',
emailHome => 'athome@yourdomain.com' },

'dbaPager' = > { pager => '7775551212@mobile.att.net’,
emailWork => 'oracle@yourdomain.com',
emailHome => 'oracle@yourdomain.com' }

)s
@supervisors = ('dbamgr');
%onCalllist = ('default' => 'dbaPager');

Now that we’re finished editing the dbup configuration file, we can check it for syn-
tax. On Unix, specify:

$ perl -cw $PDBA HOME/dbup.conf
On Win32 you’ll need to specity the full path to the file:
C:\> perl -cw c:\pdba\dbup NT.conf

If the syntax is valid, Perl responds with dbup.conf syntax OK (or a similar message).
If invalid, you need to correct the error in your configuration file before continuing.

Monitoring the Databases | 361

Running the Connectivity Monitor

We’re now ready to run the fully loaded dbup monitor. For Unix, simply enter the
following at the command line:

$ dbup.pl -daemon

For Win32, we’ll need to start the Windows Service Manager application and then
the Oracle_dbup_Monitor service, as shown earlier for chkalert_NT.pl.

Testing the monitor

Now we’ll actually run the dbup monitor under varying conditions and examine the
logfile output. The tests shown in this section were run under a Windows 2000 sys-
tem. The configuration file we’ll use is the one shown in Example 11-10. The only
changes made for testing purposes were the substitution of real phone numbers and
email addresses. Of the three databases to be checked, one of them, ts20, will be
unavailable. We’ll examine the log entries on a standard 24x7 schedule and then
modify the entry for 520 to ensure that the required uptime is Monday through Fri-
day. We'll then look again at the log entries.

Example 11-10. Test configuration—dbup.conf

package dbup;

use PDBA;

use vars quw($dateFormat $ignoreFile

%parms %uptime %addresses

%onCalllist @supervisors);
$dateFormat = "%Y/%m/%d-%H:%M:%S" ;
$ignoreFile = 'dbignore.conf';

%parms = (mailServer => 'watson.jks.com',
fromAddress => 'oracle@jks.com',
connectionTimeout => 10,
connectInterval => 120,
hoursToPageImmediate => [0..23],
maxConnectRetries => 3,
logfile => PDBA->pdbaHome() . q{/logs/dbup.log});

%uptime = (
tso1 => { machine => 'sherlock’,
upDays => [0..6],
upHours => [0..23],
username => 'system',
alertlevel => 3 },

ts20 => { machine => 'mycroft',
upDays => [0..6],
upHours => [0..23],
username => 'system',
alertlevel => 3 },

ts99 => { machine => 'watson',

362 | Chapter11: Monitoring the Database with the PDBA Toolkit

Example 11-10. Test configuration—dbup.conf (continued)

upDays => [0..6],
upHours => [0..23],
username => 'system’',
alertlevel => 2 },

)s

%addresses = (
"dbamgr' => { pager => '7775551212@mobile.att.net’,
emaillWork => 'myboss@thecompanycom',
emailHome => 'myboss@herhome.com' },

'jkstill' => { pager => '7775551213@mobile.att.net’,
emaillWork => 'jkstill@somewhere.com',
emailHome => 'jkstill@somewhere.com' },

'‘andyd' => { pager => '7775551214@mobile.att.net’,
emailWork => 'andyd@somewhere.com',
emailHome => 'andyd@somewhere.com' }

)s
#@supervisors = ('opsmgr','dbamgr');

%onCalllist = ('20011107"' => 'andyd',
'20011114" => 'jkstill',
'20011121' => ‘andyd’,
'20011128" => 'jkstill',
'20011205"' => ‘andyd’,
'20011212" => 'jkstill',
'20011219"' => ‘andyd’,
'20011226" => 'jkstill',
"default' => 'jkstill');

1;

We let the Oracle_dbup_Monitor service run for about five minutes before stopping
it. Example 11-11 displays the contents of the log file.

Example 11-11. dbup test #1

20011209163103:Service Starting - State is: 2
20011209163103:Service Started - State is: 4
20011209163103:Service running

20011209163103:Main Loop

20011209163104:Check database: tso1
20011209163105:Connection to ts01 successful
20011209163105:Check database: ts99
20011209163105:Connection to ts99 successful
20011209163105:Check database: ts20
20011209163106:Database ts20 down during required uptime
20011209163106:0n call DBA is: andyd

20011209163106:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209163106:Database ts20 is down - paging DBA: andyd
20011209163107:Sent page to 7775551214@mobile.att.net

Monitoring the Databases | 363

Example 11-11. dbup test #1 (continued)

20011209163307:Service running

20011209163307:Main Loop

20011209163308:Check database: ts01
20011209163308:Connection to ts01 successful
20011209163308:Check database: ts99
20011209163308:Connection to ts99 successful
20011209163308:Check database: ts20
20011209163309:Database ts20 down during required uptime
20011209163309:0n call DBA is: andyd

20011209163309:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209163309:Database ts20 is down - paging DBA: andyd
20011209163310:Sent page to 7775551214@mobile.att.net
20011209163510: Stopping Service

Let’s examine a few of the high points found in the logfile.

1. At 04:31:06 PM, on December 9, 2001, dbup found that ts20 was unavailable.

2. Because the dbup_NT.conf file determined that this database was on a 24x7
schedule, the on-call DBA was paged at 04:31:07 PM.

3. Two minutes later, the database was still unavailable, so the on-call DBA was
again paged at 04:33:10 PM.

4. At this point, the Oracle_dbup_Monitor service was stopped.

We then changed the following dbup_NT.conf file, indicating that we only required
the ts20 database to be up from Monday through Friday. The Oracle_dbup_Monitor
service was restarted, allowed to run for five minutes, and then stopped:

ts20 => { machine => 'mycroft',
upDays => [1..5],
upHours => [6..18],
username => 'system’',
alertlevel => 3 },

The results of this change are seen in Example 11-12.

Example 11-12. dbup test #2

20011209164456:Service Starting - State is: 220011209164456:Service Started - State is:
420011209164456:Service running20011209164456:Main Loop20011209164457:Check database:
£50120011209164458:Connection to ts01 successful

20011209164458:Check database: ts99

20011209164458:Connection to ts99 successful

20011209164458:Check database: ts20

20011209164459:Database ts20 down during off hours

20011209164459:0n call DBA is: andyd

20011209164500:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209164700:Service running

20011209164700:Main Loop

20011209164701:Check database: ts01

364 | Chapter11: Monitoring the Database with the PDBA Toolkit

Example 11-12. dbup test #2 (continued)

20011209164701:Connection to ts01 successful

20011209164701:Check database: ts99

20011209164701:Connection to ts99 successful

20011209164701:Check database: ts20

20011209164702:Database ts20 down during off hours

20011209164702:0n call DBA is: andyd

20011209164703:Sent email to andyd@somewhere.com, jkstill@somewhere.com
20011209164903: Stopping Service

Please note the following highlights from Example 11-12:
1. At 04:44:59 PM, and again at 04:47:02 PM, ts20 was unavailable.

2. Because this occurred outside of the required uptime for this database, the on-
call DBA was emailed, but not paged.

3. If ts20 remains unavailable after 06:00 AM on one day of required uptime, the
on-call DBA is paged.

We've found this utility to be very useful, and we hope you do too. The ability to
catch database connectivity problems before they have an effect on the users of the
live database goes a long way toward maintaining good customer relations.

Command-line options

Only a few command-line options are available for dbup.pl and dbup_NT.pl; they are
summarized in Table 11-5.

If you change an option for Win32, you must remove the Oracle_dbup_Monitor ser-
vice via dbup_service.pl, edit dbup_service.pl, and then re-install the service at the
command line to put the changes into effect. The reason for this is that the monitor
is started and stopped via the Win32 Service Manager, and any command-line argu-
ments to the dbup monitor are stored in the Win32 Registry. You may take comfort
in the fact that the defaults are probably fine for most systems.

Table 11-5. Command-line options—dbup.pl and dbup_NT.pl

Option Description

-conf Name of the configuration file. This defaults to dbup.conf. You do not need to specify a full path locator.

-daemon On Unix, causes dbup.pl to run in the background as a daemon. This option is not available for dbup_NT.pl on
Win32.

-debug On Unix, causes additional information to be placed in the logfile. If you are running in console mode, infor-

mational debug messages will be printed to the terminal. On Win32 systems, this option causes additional
information to be placed in the logfile only.

-mail Causes mail to be sent to the DBAs.
-nomail Prevents email from being sent to the DBAs. (The default between -mail and -nomail is -mail.)
-help Prints a help message on the terminal console.

Monitoring the Databases | 365

CHAPTER 12

Building a Database Repository
with the PDBA Toolkit

This chapter focuses on another important Oracle database administration require-
ment: the need to keep track of the many changes made to an Oracle database—
changes to tables, indexes, roles, schemas, and other database objects. As part of
building the Perl toolkit, we decided to create a repository, a central place in which to
store all kinds of database changes. By centralizing the storage of changes in this
way, we can easily perform such administrative tasks as tracking table changes over
time, restoring last week’s user passwords, recreating database roles as they appeared
last month, determining the effect of major index changes on SQL execution plans,
and comparing a schema against itself from a month ago. By providing a way to go
back in time to compare today’s database with last week’s or last month’s, we can
often determine why programs that ran efficiently last week are now crawling—we
can achieve something that looks a lot like time travel!

A s
\

Using the PDBA repository does impose some additional overhead on
your use of the toolkit. You will need to install it separately and per-
* % form some customization, as described in this chapter. If you don’t
" want to use the repository—at least at this point in time—you can
simply skip this chapter. (But we hope you’ll consider coming back to
it in the future: using the repository does provide Oracle DBAs with
very helpful information.)

The repository uses the Oracle data dictionary as the source of much of its informa-
tion, freezing certain dictionary images on a regular basis and storing them over time.
This chapter describes how to install the repository scripts and tables, load the repos-
itory with data, and use it to report on a variety of different kinds of database
changes. We’ll divide the discussion as follows:

Structure of the repository
We will introduce the tables required to hold database information in the
repository.

366

Download from Wow! eBook <www.wowebook.com>

Installing the repository
We’ll describe how to install the repository for both Unix and Win32 systems (in
both standard form and for Oracle’s locally managed tablespaces—LMTs).

Loading the repository with data
We’ll show how to collect the baseline data needed for the repository via the
baseline.pl script and run some tests on the archived dictionary data.

Reporting on database changes
We'll show a number of different reports illustrating how you can use the spdrvr.
pl script to detect changes in database parameters and objects such as indexes
and sequences over time.

Reporting on SQL execution plans
We'll also show reports illustrating how you figure out why database perfor-
mance problems are occurring by retrieving SQL from a previous period and
comparing the old execution plan against the latest version. We’ll describe the
sxp.pl, sxpecmp.pl, and sxprpt.pl scripts.

Repository Table Structure

The toolkit repository contains two sets of tables. The first is a set of tables contain-
ing information we copy from the Oracle data dictionary on a regular basis. We
don’t copy the entire dictionary, by any means, but we do copy the most interesting
and changeable data. The second set of tables is our own group of specialized tables
containing information that allows us to track SQL and generate explain plans.

Tables from the Oracle Data Dictionary

Table 12-1 lists the repository tables that mirror the contents of certain Oracle data
dictionary tables, and summarizes the types of database objects stored in those
tables. The names of the tables are derived from the names of the corresponding data
dictionary tables. For example, our PDBA_INDEXES table pulls data from the Ora-
cle’s DBA_INDEXES data dictionary view. In the later section, “Reporting on Data-
base Changes,” we’ll show how we use the data in these tables to analyze changes to
database objects.

The repository itself is compatible with the data dictionary provided in Oracle Ver-
sions 8.0 and later.

Table 12-1. Main PDBA repository tables

Table Contents

PDBA_INDEXES Index information, statistics, storage information, and a number of other parameters.
PDBA_IND_COLUMNS Index columns, statistics, storage information, and other related items.
PDBA_PARAMETERS VSPARAMETER initialization parameters.

Repository Table Structure | 367

Table 12-1. Main PDBA repository tables (continued)

Table Contents

PDBA_PROFILES DBA_PROFILES data.

PDBA_SNAP_DATES Database dictionary image and the date it was taken. The primary key of this table is used as a for-
eign key in most of the other tables in the repository; in this way, it ties information into the
proper databases.

PDBA_SYS_PRIVS System privileges, as granted to users and roles.

PDBA_TAB_PRIVS Object and stored procedure privileges.

PDBA_ROLE_PRIVS Role grants from DBA_ROLE_PRIVS.

PDBA_ROLES Role definitions from DBA_ROLES.

PDBA_SEQUENCES DBA_SEQUENCES sequence definitions.

PDBA_TABLES Tables, table statistics, table storage information, and related information.

PDBA_TAB_COLUMNS Table columns, column statistics, and related information.
PDBA_TABLESPACES DBA_TABLESPACES definitions.

PDBA_USERS Usernames, passwords, default tablespaces, temporary tablespaces, creation dates, and other
information from DBA_USERS.

Specialized Repository Tables

In addition to the tables described in the previous section that mirror the Oracle data
dictionary tables, the repository contains another set of more specialized tables. The
purpose of these tables is to track the SQL found in the VSSQLTEXT data dictio-
nary table and generate execution plans from that SQL. In these tables we’ll store
Oracle SQL and EXPLAIN PLAN information so we can perform comparisons on it
at a later date. We’ll describe the scripts that perform these comparisons in the later
section, “Reporting on SQL Execution Plans.”

Use of the data in these tables will help to answer a common complaint from users—
that their SQL, which worked perfectly last week, has slowed down significantly.
This isn’t necessarily a figment of our users’ imaginations! It’s often obvious to all,
including the troubleshooting DBA, that something has changed in the database
since last week. It just isn’t always clear what has changed:

Was an index dropped?

Was a new index created?

Were statistics available on this table last week?
What did the execution plan look like last week?

All of these things can have a major impact on SQL execution and overall database
performance.

Having read Stephen Hawking’s Universe in a Nutshell (Bantam Press, 2001), we
know that travelling backwards in time is impossible (unless you’re Mr. Spock), so
the last two questions in the list are usually quite difficult to answer. We’ve often

368 | Chapter12: Building a Database Repository with the PDBA Toolkit

thought, though, that if we could answer them, it would be very interesting. At last,
such a thing is possible. All we need is the SXP (Sql eXplain Plan) repository tables,
which track the objects listed in Table 12-2.

Table 12-2. SQL explain plan repository tables

Table Contents

PDBA_SXP_DATES Database dates for SQL statements.
PDBA_SXP_EXP Execution plans for SQL statements.
PDBA_SXP_SQL Actual SQL statements.

Installing the Repository

Before installing the repository, we need to create two tablespaces. We’ve included
templates of the necessary scripts for both Oracle 8.0 and 8.1 (and higher). The only
difference between them is that version 8.1 uses Oracle’s locally managed tablespaces
(LMTs).

N

LMTs provide several advantages—in particular, the removal of object

extent management from the Oracle data dictionary and the elimina-

% tion of wasted space due to fragmentation. If you don’t need these fea-
" tures or if they seem overkill for your site, however, use the 8.0 script.

aqs
N
N

The location of the scripts depends on your operating system:
Unix
Unix users will find the scripts by doing a chdir to the directory where the PDBA
archive was installed, and then doing a chdir to the pdbarep directory. Ours was
installed in /u01/build:
$ cd /u01/build/PDBA-1.00/pdbarep
Win32
Win32 users will find the scripts in the c:\perl\site\lib\PDBA\sql directory.
& w
All of the repository scripts run identically on both Win32 and Unix.
There is no need for separate versions.

It is very likely that you won’t be able to use the repository creation scripts on your
own system without first editing them. Your filesystem layout is probably different
from ours, so you’ll need to edit the datafile paths. For example, let’s take the pdba_
ths8i.sql script and modify it for Oracle8i use on Win32. Example 12-1 shows what
the file looks like initially.

Installing the Repository | 369

Example 12-1. Unix version—pdba_tbs81.sql

-- pdba_tbs8i.sql

-- create tablespaces for PDBA repository

-- as Locally Managed Tablespaces

create tablespace pdba_data

datafile '/u01/oradata/tso1/pdba_data_o01.dbf' size 20m
extent management local uniform size 128k

/

create tablespace pdba_idx

datafile '/u01/oradata/tso1/pdba_idx_01.dbf' size 20m
extent management local uniform size 128k

/

These datafile names won’t work on Win32, so we need to change them to some-
thing more appropriate, as shown in Example 12-2.

Example 12-2. Win32 version—pdba_tbs81.sql

-- pdba_tbs8i.sql

-- create tablespaces for PDBA repository

-- as Locally Managed Tablespaces

create tablespace pdba_data

datafile 'E:\oradata\tsoi\pdba_data_o01.dbf' size 20m
extent management local uniform size 128k

/

create tablespace pdba_idx

datafile 'F:\oradata\tsoi\pdba_idx_01.dbf' size 20m
extent management local uniform size 128k

Storing all of the SQL from Oracle’s SQL cache can consume a fair
amount of disk storage on databases with a large SQL cache. It’s good
practice to be generous with the amount of space allotted to the PDBA
repository if your database caches a large number of SQL statements.
We’ve used up to 100 megabytes of storage storing all the SQL from a
database that had approximately 65,000 cached SQL statements in
memory, athough this may be an extreme example.

Now we’re ready to install the repository:

1. The first step is to actually create the PDBA tablespaces. If your repository is to
be installed on Oracle8i or later, use the pdba_tbs8i.sql script; on Oracle 8.0,
choose pdba_tbs.sql. (We’ll install our repository with version 8.0.)

2. To create the tablespaces, log in to the database as a DBA user. (Although sys
should rarely be used and is unnecessary for creating tablespaces, we do recom-
mend it here; we’ll explain why in step 5.)

3. Once logged into the sys account, you can start installing the repository. The fol-
lowing shows our successful tablespace creation on the 8.0.5 database, ts99. You
should see similar results when creating your own tablespaces:

370 | Chapter12: Building a Database Repository with the PDBA Toolkit

SQL> set echo on
SOL> @pdba_tbs
SQL> -- pdba_tbs.sql
SQL> -- create tablespaces for PDBA repository
SoL>
SOL> create tablespace pdba_data
datafile '/u05/oradata/ts99/pdba_data_01.dbf' size 2
default storage (initial 128k next 128k
pctincrease 0 maxextents unlimited)
/
Tablespace created.
SOL> create tablespace pdba idx
datafile '/u06/oradata/ts99/pdba_idx_01.dbf' size 20m
default storage (initial 128k next 128k
pctincrease 0 maxextents unlimited)
/
Tablespace created.
4. After tablespace creation is complete, it’s time to create the PDBAREP reposi-
tory owner. Run the pdbarep_user.sql script as follows:
SQL> set echo on
SOL> @pdbarep_user
SQL> create user pdbarep identified by pdbarep
default tablespace pdba data
temporary tablespace temp

/
User created.

SQL> alter user pdbarep quota unlimited on pdba_data;
User altered.
SOL> alter user pdbarep quota unlimited on pdba_idx;

User altered.
Now run pdbarep_grants.sql to give PDBAREP permission to create objects and
gain other vital database permissions:
SOL> @pdbarep_grants
5. This is where we have to be the sys user. To function properly, PDBAREP must
have SELECT privileges on a pair of data dictionary views that are normally
invisible to users. These are V_$PARAMETER and V_$INSTANCE, more com-
monly known via synonyms as VSPARAMETER and V$INSTANCE. Only sys
can grant the necessary permissions.
6. We simply execute the script to grant the proper privileges, and then exit
SQL*Plus. (A lot of output will be generated.)

SQL> connect sys/change on_install
SOL> @pdbarep_grants

Installing the Repository | 371

7. Now log back into the database as PDBAREP. The password is set to PDBAREP;
this password must be changed as soon as the installation completes.

8. To ensure that the direct grants to see the data dictionary views succeeded, try to
view them with the DESCRIBE command.

If you see results similar to those in Example 12-3, you’re ready to create the

repository tables and indexes.

Example 12-3. Access to VSPARAMETER and VSINSTANCE

pdbarep@ts99 SQL> desc v$parameter
Name Null?

NAME

TYPE

VALUE

ISDEFAULT
ISSES_MODIFIABLE
ISSYS _MODIFIABLE
ISMODIFIED
ISADJUSTED
DESCRIPTION

pdbarep@ts99 SOL> desc v$instance
Name Null?

INSTANCE_NUMBER
INSTANCE_NAME
HOST_NAME
VERSION
STARTUP_TIME
STATUS

PARALLEL
THREAD#
ARCHIVER
LOG_SWITCH_WAIT
LOGINS
SHUTDOWN_PENDING

pdbarep@ts99 SOL>

NUMBER
VARCHAR2 (64)
NUMBER

VARCHAR2 (512)
VARCHAR2(9)
VARCHAR2(5)
VARCHAR2(9)
VARCHAR2(10)
VARCHAR2(5)
VARCHAR2 (64)

NUMBER
VARCHAR2(16)
VARCHAR2 (64)
VARCHAR2(17)
DATE
VARCHAR2(7)
VARCHAR2(3)
NUMBER
VARCHAR2(7)
VARCHAR2(11)
VARCHAR2(10)
VARCHAR2(3)

9. While still logged in as PDBAREP, run the script pdbarep_create.sql. This is the
final step in the creation of the PDBA repository.

SOL> @pdbarep_create

There’s a lot of output here. As long as there are no errors, the output will con-
sist of a series of lines of text such as Table created, Index created, Sequence

created, and Trigger created.

372 |

Chapter 12: Building a Database Repository with the PDBA Toolkit

10.

11.

12.

If you encounter errors, these will be recorded in the pdbarep_create.log file.
Once the script completes, you should examine this file for any errors. Should
you need to correct any problems, and rerun the creation script, you may wish to
run pdbarep_drop.sql first to drop objects successfully created. This makes it eas-
ier to examine pdbarep_create.log later for errors:

SOL> @pdbarep_drop

SOL> @pdbarep create
If you don’t drop existing objects before rerunning the creation script, the log file
will be cluttered with errors such as ORA-955: name is already used by an
existing object. This clutter makes it difficult to find the important errors that we
really need to be concerned about.

The final step is to copy the configuration file pdbarepq.conf to PDBA_HOME.
You may need to make a minor edit to this file, but only if you wish to change
the date format shown in the repository reports from YYYY/MM/DD HH24:MI:
SS. We'll show you how to change this default shortly.

On Unix, navigate to the PDBA installation directory, and copy the file:

$ cd /u01/build/PDBA-1.00
$ cd pdbarep
$ cp pdbarepq.conf $PDBA HOME

On Win32, do the equivalent:

C:> cd c:\perl\site\1ib\PDBA\conf
C:> copy pdbarepq.conf c:\pdba

If you wish to change the date format that will be used in the repository reports,
you’ll need to edit pdbarepq.conf and find the following lines near the top of the
file:

uncomment the appropriate line for your preferred date format

#

$calendar = 'International’; # YYYY/MM/DD HH24:MI:SS
#$calendar = 'American’; # MM/DD/YYYY HH24:MI:SS
#$calendar = 'European’; # DD/MM/YYYY HH24:MI:SS

If you want to change the default date format to either European or American,
comment out the International line and uncomment appropriately, as for
European here:

uncomment the appropriate line for your preferred date format

#

#$calendar = 'International'; # YYYY/MM/DD HH24:MI:SS
#$calendar = 'American’; # MM/DD/YYYY HH24:MI:SS
$calendar = 'European’; # DD/MM/YYYY HH24:MI:SS

Installing the Repository | 373

If you’re running the DBD::Oracle module on Win32 (as discussed in
Chapter 2, Installing Perl), you will need to make sure that you have a
o3¢ version installed that was compiled with Oracle libraries of Version 8
" or higher. The repository relies on certain features that were intro-
duced in Oracle8, such as the CLOB (character large object) datatype.
ActiveState is often several versions behind the latest Unix release of
DBD::Oracle. However, if you visit Ilya Sterin’s PPD site (also
described in Chapter 2), you’ll usually find the very latest DBD-Oracle
PPDs and binary downloads.

Loading the Repository with Data

It won’t be long until we see the fruits of our labors. Once you install the repository
and build the tables, you’ll be all set to track database changes. The next time some-
one changes a column or an index outside of your established change control proce-
dures, you’ll know what the database looked like before inside the original Oracle
data dictionary.

In this section we’ll demonstrate how to load baseline data dictionary data into the
PDBA repository using the baseline.pl script, and we’ll run some tests on that data.
As changes are made to the database objects and new baseline data is collected from
the data dictionary, we’ll show the effects of running several reports comparing cur-
rent objects with the previous incarnations of those objects. We'll pay special atten-
tion to the repository reporting script spdrvr.pl (a unique hybrid of Perl and Oracle’s
SQL*Plus).

Collecting Baseline Data

To kick things off, we need to collect our first baseline set of data. We’ll collect it
from the data dictionary in database ts99 on server watson using the baseline.pl
script, and we’ll place it in our repository. The command-line options for baseline.pl
are listed in Table 12-3.

Table 12-3. Command-line options—baseline.pl

Option Description

-machine Target database server

-database Target database

-username DBA account user name

-password DBA’s password (optional if password server in use)
-rep_machine Repository database server

-rep_database Repository database

374 | Chapter12: Building a Database Repository with the PDBA Toolkit

Table 12-3. Command-line options—baseline.pl (continued)

Option
-rep_username
-rep_password

Description
Repository owner
Repository owner’s password (optional if Password server in use)

Invoke the baseline.pl script as follows:

$ baseline.pl -machine watson -database ts99 -username system \
-rep_machine sherlock -rep_database tso1

Notice the absence of passwords in this example. Here we’re making use of the pass-
word server to fill in the blanks for us. Otherwise, we would have needed the
-password and -rep_password options, with the appropriate passwords. When you
run baseline.pl, the output should be similar to that shown in Example 12-4.

We strongly encourage you to make use of the password server for use
with the repository. While this server is optional for collecting data
4+ dictionary information for insertion into the repository, it will be

required for scripts that parse and store SQL from the V$SQLTEXT

system view.

Example 12-4. Output from baseline.pl

%oramon>

baseline.pl -machine sherlock -database ts01 -username system \

-rep _machine sherlock -rep database ts01 -rep username pdbarep

Retrieving baseline
Working on Baseline
l;dorking on Baseline
I/'\!c;rking on Baseline
I;\lorking on Baseline

Working on Baseline

for Table:

for Table:

for Table:

data for database tso1
for Table:

PDBA_PROFILES
PDBA_ROLE_PRIVS
PDBA_ROLES

PDBA_PARAMETERS

: PDBA_TAB_COLUMNS

Working on Baseline

Working on Baseline

Baseline

Baseline
Baseline

Working on
Working on
Baseline
Working on Baseline
Working on Baseline

: PDBA TABLESPACES
: PDBA_SYS_PRIVS

: PDBA_TAB_PRIVS
: PDBA_USERS.
: PDBA_TABLES

: PDBA_INDEXES

: PDBA_SEQUENCES.
: PDBA_IND_COLUMNS

Loading the Repository with Data

375

Viewing Repository Data

We can now view some of our collected data via the spdrvr.pl” script. Enter the fol-
lowing command to produce a report showing the table information collected from
the data dictionary:

$ spdrvr.pl -machine sherlock -database tso1 -username pdbarep \
-rep report table rpt -rep_instance ts99% -rep shema scott

Notice the use of the SQL wildcard % for the -rep_instance argument. The argument
in this case refers to the database’s global name, so we used the wildcard character
instead of a full global name. Alternatively, if the database global name had been
TS99.OREILLY.COM, we could have specified this command instead:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report table rpt -rep_instance ts99.oreilly.com -rep shema scott

The spdrvr.pl script will take care of converting the name to the correct case. The
output should be similar to that shown in Example 12-5.

Example 12-5. Output from the initial table report

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report table rpt -rep database ts99% -rep schema scott

RPT: start pk 1000000

RPT: start date 2001/10/05 18:29:05

RPT: end pk 1000000

RPT: end date 2001/10/05 18:29:05

PDBAREP Table report for Page: 1
TS99.3KS.COM

NUMBER
OWNER TABLE NAME SNAPSHOT DATE BLOCKS OF ROWS
sorm BNUS 200/10/05 18:20i05
DEPT 2001/10/05 18:29:05
DUMMY 2001/10/05 18:29:05
EMP 2001/10/05 18:29:05

SALGRADE 2001/10/05 18:29:05

5 rows selected.

* The name spdrvr.pl is shorthand for SQL*Plus Driver.

376 | Chapter12: Building a Database Repository with the PDBA Toolkit

Reporting on Database Changes

The remaining sections in this chapter describe the various kinds of reports you can
produce once you have collected the necessary baseline database data. This section
focuses on database changes resulting from changes to database objects and parame-
ters. The next section focuses on changes to the SQL execution plan.

After collecting our first set of baseline data, we made some changes to the database,
collected additional baseline data, made some more changes, and then collected even
more baseline data. We did this for several weeks.

Database Changes

The details and times of the changes made to the database are summarized in
Table 12-4.

Table 12-4. Baseline changes made to the test database

Date Changes made since previous baseline

50ct Initial baseline data collected for database ts99

13 0ct Added a few hundred rows to SCOTT.EMP
Analyzed tables for SCOTT

Changed values for database initialization parameters: SHARED_POOL_SIZE, DB_BLOCK_BUFFERS, and JOB_
QUEUE_PROCESSES

19 0ct Added a few hundred rows to SCOTT.EMP
Added an EMAIL column to SCOTT.EMP
Updated the value in the EMP table
Dropped the column LOSAL from SALGRADE
Analyzed tables for SCOTT
(reated a new user, PDBAREP, and granted it several privileges
Granted SELECT on V_SINSTANCE, to SCOTT
28 0ct Added a few hundred rows to SCOTT.EMP
Created an index on SCOTT.EMP
Analyzed tables for SCOTT
Gave SCOTT UNLIMITED quota on USERS tablespace
Dropped index IDXTEST_3_1_IDX
8 Nov Added a few hundred rows to SCOTT.EMP
Analyzed tables for SCOTT
Revoked SELECT privileges on JKSTILL.LCL_1 from SCOTT
Granted SELECT, INSERT on JKSTILL.PRIMES table to SCOTT

Reporting on Database Changes | 377

Reporting on Parameter Changes with spdrvr.pl

Now let’s see how we can use the repository to engage in a form of time travel.
Although less exciting than as H.G. Wells envisioned it, you’ll effectively be able to
go back in time to find elusive missing columns and corner privilege revocations. Pre-
tend for a moment that the date is October 15. We've just become aware that the
initialization file for one of our databases was recently modified and that, coinciden-
tally, the server is now a little low on memory. We know that everything was correct
a week ago, on October 8, but how do we determine what the settings were back
then?

Without our repository, there would be no easy way to determine the correct values,
except by restoring a tape backup of the file as it appeared last week. This would
probably be neither practical nor desirable.

N
S Of course, if you are using a version control system, you’ll be able to
.‘s\ . detect every authorized database change to your database and there-
~* ‘ake fore be able to track official changes. However, experience teaches us,

in vivid Technicolor, that such a system is of little use if people bypass
it, ignore it, and then deny they’ve done anything when things go
awry. “What? Me? That index? I was fishing. Honest.”

But with the repository, you can find these values as they appeared prior to the
change. Because you know that the values from October 8 are correct, let’s see which
parameters have been changed since then. Let’s produce a report detailing the differ-
ence. We can do that with the -rep_report parameter_diff_rpt command:
$ spdrvr.pl -machine sherlock -database tso01 -username pdbarep \

-rep_report parameter_diff_rpt -rep instance ts99.7jks.com \

-rep_start_date '10/08/2001' -rep_end_date '10/15/2001'
Even though the first baseline was actually run on October 5, the spdrvr.pl script
determines which baseline to use by searching for the most recent baseline date that
is less than or equal to the date specified. The same type of operation takes place
with the end date specified in the example by the following switch:

-rep_end_date

When using this switch, and its complement -rep_start_date, be sure to use a date
format matching the setting in the pdbarepq.conf configuration file. If the parameter_
diff_report were run with the International date format, the command line would

look like this:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report parameter diff rpt -rep_instance ts99.jks.com \
-rep_start_date '2001/10/08' -rep end date '2001/10/15'
The output from the parameter_diff_report report appears in Example 12-6. Note
that data appears only when there are differences within values associated with the

378 | Chapter12: Building a Database Repository with the PDBA Toolkit

database parameters, as stored in PDBA_ PARAMETERS. If, for example, there have
been no changes to the Oracle initialization parameters between October 5 and
October 13, there will be nothing to report. A parameter comparison on these two
dates will reveal that nothing has changed.

Example 12-6. Output from the parameter_diff_rpt report

PDBAREP Parameter Differences report Page: 1
as of 2001/10/13 03:09:37 compared to 2001/10/05 18:29:05
TS99.JKS.COM 2002/05/19 21:55:40

D MA
E 0D
PARAMETER DESCRIPTION VALUE F DJ
db_block buffers Number of database b 1000 NNNNN
locks cached in memo
Ty
job_queue_processes number of job queue 2 YNINN

processes to start
shared pool size size in bytes of sha 3145728 NNNNN
red pool

3 rows selected.
PDBAREP Parameter Differences report Page: 1

as of 2001/10/05 18:29:05 compared to 2001/10/13 03:09:37
TS99.JKS.COM 2002/05/19 21:55:40

D
E 0D
PARAMETER DESCRIPTION VALUE F D]
db_block buffers Number of database b 500 NNNNN
locks cached in memo
Ty
job_queue processes number of job queue 0 YNINN
processes to start
shared pool size size in bytes of sha 2097152 NNNNN
red pool

3 rows selected.

On the other hand, suppose that sometime between October 5 and October 13 you
changed the database initialization parameters DB_BLOCK_BUFFERS, JOB_
QUEUE_PROCESSES, and SHARED_POOL_SIZE. When you run the parameter_
diff_rpt report, it would show the values of these parameters as they appeared on

Reporting on Database Changes | 379

October 13, followed by the values as they appeared on October 5. Looking again at
Example 12-6, you’ll see that the report appears in two parts:

* The first part shows the parameters on October 13.

* The second part shows that the parameters were indeed different on October 5
and October 13. The values of the parameters were all increased after October 5.

We now know what the correct settings were eight days ago, and we can change
them back to the former values if necessary.

The pdbarepq.conf configuration file contains templates of the SQL for each of the
available repository reports. The command-line options of spdrvr.pl are used with
these templates to generate the actual SQL used. Typical PDBA-generated SQL used
to create this kind of report is shown in Example 12-7.

Example 12-7. Sample query for spdrvr.pl

select
s.global_name cinstance
p.name parm name
p.description parm_description
p.value parm value
decode (
nvl(p.isdefault, 'FALSE"),
"FALSE','N',
"TRUE','Y",
substr(nvl(p.isdefault,'F"'),1,1)
isdefault
decode (
nvl(p.isses _modifiable,'FALSE"),
"FALSE','N',
"TRUE','Y",
substr(nvl(p.isses_modifiable,'F'),1,1)
isses modifiable
decode (
nvl(p.issys modifiable,'FALSE"),
"FALSE','N',
"TRUE','Y",
substr(nvl(p.issys modifiable,'F'),1,1)
issys modifiable
decode (
nvl(p.ismodified, 'FALSE"),
"FALSE','N',
"TRUE','Y",
substr(nvl(p.ismodified,'F"),1,1)
ismodified
decode (
nvl(p.isadjusted, 'FALSE"),
"FALSE','N',
"TRUE','Y",
substr(nvl(p.isadjusted,'F'),1,1)
isadjusted

. v v

~

-

~

-

~

-

~

-

~

380 | Chapter12: Building a Database Repository with the PDBA Toolkit

Example 12-7. Sample query for spdrvr.pl (continued)

from pdba_parameters p, pdba snap dates s
where s.global name like 'TS99.JKS.COM'
and s.pk = 1000000
and s.pk = p.snap_date pk
minus
select
s.global_name cinstance
, p.name parm_name
, p.description parm description
, p.value parm value
, decode(
nvl(p.isdefault, 'FALSE"),
"FALSE','N',
"TRUE','Y',
substr(nvl(p.isdefault,'F'),1,1)
isdefault
decode(
nvl(p.isses modifiable,'FALSE"),
"FALSE','N',
"TRUE','Y',
substr(nvl(p.isses modifiable,'F'),1,1)
isses modifiable
decode(
nvl(p.issys modifiable,'FALSE"),
"FALSE','N',
"TRUE','Y',
substr(nvl(p.issys modifiable,'F'),1,1)
issys modifiable
decode(
nvl(p.ismodified, 'FALSE"),
"FALSE','N',
"TRUE','Y',
substr(nvl(p.ismodified,'F'),1,1)
ismodified
decode(
nvl(p.isadjusted, 'FALSE'),
"FALSE','N',
"TRUE','Y',
substr(nvl(p.isadjusted,'F"),1,1)
) isadjusted
from pdba_parameters p, pdba snap dates s
where s.global name like 'TS99.JKS.COM'
and s.pk = 1001570
and s.pk = p.snap_date pk
order by 1,2;

~

-

~

-

~

-

~

-

More Report Examples

On October 25, we decided to run some additional reports to see what might have
changed in the ts99 database since the time that we started capturing repository

Reporting on Database Changes | 381

metadata.” Example 12-8 shows different variants on the commands you can specity
in order to view the data in different ways.

Example 12-8. Reports on database changes as of October 19

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report table_rpt -rep instance ts99% -rep schema scott \
-rep_end_date '10/25/2001'

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report column_diff rpt -rep instance ts99% -rep_schema scott \
-rep_end date '10/25/2001'

$ spdrvr.pl -machine sherlock -database tso01 -username pdbarep \
-rep_report table_privs_diff_rpt -rep instance ts99% \
-rep_grantee scott -rep end date '10/25/2001'

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report user_rpt -rep instance ts99%

The reports table_rpt, column_diff_rpt, and table_privs_diff_rpt produce the outputs
summarized here:

R
s

Tables and indexes need to be periodically analyzed via the ANA-
LYZE command to provide statistics for Oracle’s cost-based optimizer
% (CBO). The CBO is the part of the database engine that determines
" how best to join indexes and tables when querying the database.

table_rpt
In Example 12-9 we see that the number of employees in the EMP table has dra-
matically increased since the time when the repository was first populated. By
implication, we can also tell that EMP was unanalyzed (not processed with the
ANALYZE command) when its first baseline was taken, because BLOCKS and
NUMBER OF ROWS have no values for October 5.

Example 12-9. The table_rpt report, as of October 19

%oramon> spdrvr.pl -machine sherlock -database tso1 -username pdbarep \
-rep_report table rpt -rep database ts99% -rep schema scott

PDBAREP Table report for Page: 1
TS99.3KS.COM

NUMBER
OWNER TABLE NAME SNAPSHOT DATE BLOCKS OF ROWS

* Metadata is data about data. An example of metadata is the statistics stored in the Oracle data dictionary
when the ANALYZE TABLE command is use. It is data about the data in the specified table.

382 | Chapter12: Building a Database Repository with the PDBA Toolkit

Example 12-9. The table_rpt report, as of October 19 (continued)

SCOTT BONUS 2001/10/05 18:29:05
2001/10/13 03:09:37 0 0
2001/10/19 04:11:23 0 0

DEPT 2001/10/05 18:29:05
2001/10/13 03:09:37 1 4
2001/10/19 04:11:23 1 4

DUMMY 2001/10/05 18:29:05
2001/10/13 03:09:37 1 1
2001/10/19 04:11:23 1 1

EMP 2001/10/05 18:29:05
2001/10/13 03:09:37 3 224
2001/10/19 04:11:23 29 1,792

SALGRADE ~ 2001/10/05 18:29:05
2001/10/13 03:09:37 1 5
2001/10/19 04:11:23 1 5

15 rows selected.

column_diff_rpt
In Example 12-10, the Column Differences report, we find that two column
changes have been made between October 5 and October 19. The EMAIL col-
umn has been added to the EMP table during this time, and the column LOSAL
no longer appears in SALGRADE.

Example 12-10. The column_diff_rpt report as of October 19

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report column_diff rpt -rep database ts99% -rep_schema scott \
-rep _end date '2001/10/19'

PDBAREP Table Column Differences report Page: 1
as of 2001/10/19 04:11:23 compared to 2001/10/05 18:29:05

TS99.3KS.COM 2002/05/19 22:19:51

coL DATA DATA DATA
OWNER TABLE NAME COLUMN ID DATA_TYPE LENGTH PRECISION SCALE NULL

SCOTT EMP EMAIL 9 VARCHAR2 40 Y
1 row selected.

PDBAREP Table Column Differences report Page: 1
as of 2001/10/05 18:29:05 compared to 2001/10/19 04:11:23
T599.JKS.COM 2002/05/19 22:19:51

coL DATA DATA DATA
OWNER TABLE NAME COLUMN ID DATA TYPE LENGTH PRECISION SCALE NULL

Reporting on Database Changes | 383

Download from Wow! eBook <www.wowebook.com>

Example 12-10. The column_diff_rpt report as of October 19 (continued)
SCOTT SALGRADE LOSAL 2 NUMBER 22 Y

1 row selected.

table_privs_diff_rpt
In Example 12-11 we’re surprised to see that scott has been granted SELECT
privilege on V_$INSTANCE. Although this view contains non-sensitive informa-
tion, we believe in granting direct privileges on dictionary objects only for DBAs.
Maybe in another life we’ll reconsider our conservative views! Based on this
report, you decide to chat with scott, to find out how he stumbled upon this
privilege.

Example 12-11. The table_privs_diff_rpt as of October19

%oramon> spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report table_privs_diff rpt -rep_database ts99% \
-rep_grantee scott -rep end date '2001/10/19'

PDBAREP Table Privileges Differences report Page: 1
as of 2001/10/13 03:09:37 compared to 2001/10/05 18:29:05
TS99.JKS.COM 2002/05/19 22:46:27

GRANTEE TABLE NAME PRIVILEGE OWNER GRANTOR GRANTABLE

SCOTT V_$INSTANCE SELECT SYS SYS NO
1 row selected.

no rows selected

spdrvr.pl Implementation

Before we look further at the kinds of reports you can produce with the spdrvr.pl
script, let’s dig down and take a quick look at its implementation and see why,
despite our abiding love for Perl, we’ve also used SQL*Plus in our implementation.

Have you ever had a household tool you love so much that you find yourself explor-
ing the house from attic to basement, looking for ways to make use of it? That’s the
way we feel about Perl. However, as Clint Eastwood said once of a man’s belief in
himself, we’ve got to recognize its limitations. A screwdriver may sometimes get
called up for reserve duty as a chisel, but that usage will impact its longevity as a
screwdriver. And if you trim the hedges around your home with a circular power-
saw, people are going to talk.

We’ve come to realize, somewhat sadly, that Perl does indeed have its limits. The
most glaring one we’ve noticed emerges when we’re writing ad hoc SQL reports. Perl
is a good choice when writing reports that demand lots of computation, but it fails to

384 | Chapter12: Building a Database Repository with the PDBA Toolkit

do things easily that long-time users of SQL*Plus take for granted. Here are a few
examples:

Column breaks and report breaks
The SQL*Plus BREAK command formats reports to make them easier to inter-
pret:

break on username skip 1 page on table name skip 1

Column and report totals
SQL*Plus calculates totals with simplicity:
break on custid skip 1 on invoice id skip 1 on report
compute sum of invoice amt on custid
compute sum of invoice_item_amt on invoice_id
compute sum of invoice amt on custid
Report headers and footers
The SQL*Plus ttitle and btitle commands can create report headers and footers:

ttitle 'PDBAREP Parameter Differences report ' RIGHT 'Page: ' SOL.PNO -

skip 'as of <<END_DATE>> compared to <<START DATE>>' -

right uinstance ' ' usysdate skip 2
All of the above features can be duplicated in Perl, but it takes a while. And being the
virtuously lazy programmers we are, we can’t really justify writing all the necessary
code when SQL*Plus already handles these features so well.” What we’ve done, there-
fore, is to create a Perl/SQL*Plus hybrid that uses the best features from each tool to
accomplish our goal. In this case, the goal is to produce nice reports with a mini-
mum amount of effort. Before we begin, let’s take a look at some of the pros and
cons of both tools:

* With SQL*Plus we get nicely formatted reports that are easy to produce.

* With Perl we can make up for some of the serious cross-platform liabilities of
SQL*Plus, take advantage of Perl’s strong command-line processing, use Perl’s
many modules, and easily redirect output. Perl also possesses a command-line
interface that is infinitely flexible.

Predefined spdrvr.pl Reports

The spdrvr.pl repository script allows you to invoke a number of predefined data-
base reports simply by specifying the appropriate command-line options. Several
reports are predefined for you.

* You might want to take a look at the Senora tool described in Chapter 3, Perl GUI Extensions; this tool,
which is based on DDL::Oracle (also described in Chapter 3), provides a SQL*Plus clone written entirely
in Perl, along with several other interactive Perl DBI tools such as dbish.

Reporting on Database Changes | 385

column_diff_rpt
Report on differences in table columns in the repository. This report may be
delimited by a date range. If dates are not supplied, the oldest and newest dates
from the repository will be used.

column_rpt
Report on table columns in repository.

index_column_diff_rpt
Report on differences in index columns in the repository. This report may be
delimited by a date range. If dates are not supplied, the oldest and newest dates
from the repository will be used.

index_column_rpt
Report on indexed columns in the repository.
index_rpt
Report on indexes in the repository.
master_priv_rpt
Report on database privilege grants in the repository.
parameter_diff_rpt
Report on database initialization parameter differences in the repository. This
report may be delimited by a date range. If dates are not supplied, the oldest and
newest dates from the repository will be used.
parameter_rpt
Report on database initialization parameters in the repository.
profile_rpt
Report on profiles in the repository.
role_privs_diff_rpt
Report on differences in role privileges in the repository.
role_privs_rpt
Report on role privileges in the repository.
role_rpt
Report on database roles in the repository.
sequence_rpt
Report on sequences in the repository.
sys_privs_diff_rpt
Report on differences in system privileges in the repository.
sys_privs_rpt
Report on system privileges in the repository.
table_privs_diff_rpt

Report on differences in table privileges in the repository.

386 | Chapter12: Building a Database Repository with the PDBA Toolkit

table_privs_rpt
Report on table privileges in the repository.

table_rpt
Report on tables in the repository.

tablespace_rpt
Report on tablespaces in the repository.

user_rpt
Report on users in the repository.

Command-line Options for spdrvr.pl

You can request the reports listed in the previous section by including the appropri-
ate command-line options when you invoke the spdrvr.pl repository script. Tables
12-5 and 12-6 summarize these options.

Common command-line options

You will need to include most of the options in Table 12-5 regardless of what report
you want to produce. You can obtain a list of available reports and their required
command-line options by typing:

$ spdrvr.pl -report list

We’ll show the output from this command a little later in this section.

Table 12-5. Common command-line options—spdrvr.pl

Option Description

-machine Server where the repository database resides.
-database Database where the PDBAREP user is installed.
-username Repository schema owner.

~file Optional parameter that specifies output to a file.
-verbose Optional parameter that prints the SQL as it is executed.
-report_list Outputs a list of available reports to the console
-rep_report Specifies which report to run.

-rep_database Specifies which database (global_name) to report on.

The arguments for -machine, -database, -username, and -rep_report are always
required. The argument for -rep_database is optional but recommended. The use
of -rep_database really depends on the nature of the report. If you want to find out
what changes have been made to a table on a specific database between two dates,
you’ll need to specify which database the report should be querying on. If you omit
this option, any tables from other databases with the same name will be included in
the output. (This is probably not what you want.)

Reporting on Database Changes | 387

Let’s suppose you want to run the report table_rpt for the database ts99.jks.com and
that the repository owned by pdbarep is in database ts01 on server sherlock. The min-
imal command line needed to run this report would be:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

-rep_instance 'ts99%' -rep report table rpt

To include only tables with “PSAP” as the first four characters of their name, within
accounts that begin with “SAP,” the command line would look like this:

$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \

-rep_instance 'ts99%' -rep_report table_rpt \
-rep_schema 'sap%' -rep table name 'psap%’

Report-specific command-line options

Table 12-6 lists the report-specific command-line options. For example, you might
use the -rep_privilege option if you are requesting the table_privs_rpt report, but that
option would have no effect on the parameter_rpt that lists database initialization
parameters.

Table 12-6. Report-specific command-line options—spdrvr.pl

Report Specific parameters

-rep_end_date End date for report (unnecessary for some reports).

-rep_grantee Grantee of privileges. Use this option to report on the privileges granted to a particular user or

role.
-rep_grantor Grantor of privileges. This will limit the report to privileges granted by this user.

-rep_granted_role Roles granted. This will limit the report to a role or roles that have been granted.

-rep_index_name
-rep_object_owner
-rep_object_name
-rep_pagesize
-rep_parm_name
-rep_parm_value
-rep_privilege
-rep_profile
-rep_resource_type
-rep_resource_name
-rep_role
-rep_schema
-rep_sequence_name
-rep_start_date
-rep_table_name

Index to report on.

Owner of database object to report on.

Name of database object to report on.

Controls the SQL*Plus pagesize.

Name of database parameter to report on.
Value of database parameter value to report on.
Database privileges granted.

Database profile name to report on.

Profile resource type to report on.

Profile resource name to report on.

Role to report on.

Schema to report on.

Name of sequence to report on.

Start date for report (unnecessary for some reports).
Table to report on.

388 | Chapter12: Building a Database Repository with the PDBA Toolkit

Table 12-6. Report-specific command-line options—spdrvr.pl (continued)

Report Specific parameters
-rep_table_owner Table owner to report on.
-rep_tablespace_name Tablespace to report on.

-rep_username Username to report on.

No single report makes use of all of these switches, although some are used in sev-
eral reports.

Using the -report_list option

The first time you run the spdrvr.pl script, you should use the -report_list option,
which prints out a list of currently configured reports along with the report-specific
command-line options that may be used with it:

$ sprdrvr.pl -report_list

Go ahead and try it. The output should be similar to that displayed in Example 12-12
(although we’ve cut down the actual output, as it can run to several pages).

Example 12-12. Partial output from “spdrvr.pl -report_list”

column_diff rpt :
report on differences in table columns in repository
may be delimited by a date range.
if dates not supplied, the oldest and newest dates
from the repository will be used
may be limited by the following tags:
<<GLOBAL_NAME>> -rep_instance
<<OWNER>> -rep_schema
<<TABLE_NAME>> -rep_table_name
<<START_DATE_PK>> -rep_start_date
<<END_DATE_PK>> -rep_end_date

master_priv_rpt :
report on privileges granted in repository
may be limited by the following tags:

<<GLOBAL_NAME>> -rep_instance
<<GRANTEE>> -rep_grantee
<<PRIVILEGE>> -rep_privilege
<<OBJECT OWNER>> -rep_object owner
<<OBJECT_NAME>> -rep_object name
<<GRANTED_ROLE>> -rep_granted_role

parameter diff rpt :
report on database parameter differences in repository
may be delimited by a date range.
if dates not supplied, the oldest and newest dates
from the repository will be used

Reporting on Database Changes | 389

Example 12-12. Partial output from “spdrvr.pl -report_list” (continued)
may be limited by the following tags:

<<GLOBAL_NAME>> -rep_instance
<<START_DATE_PK>> -rep_start_date
<<END_DATE_PK>> -rep_end date

sys_privs diff rpt :
report on differences in system privileges in repository
may be limited by the following tags:

<<GLOBAL_NAME>> -rep_instance
<<GRANTEE>> -rep_grantee
<<PRIVILEGE>> -rep_privilege
<<START _DATE PK>> -rep start date
<<END_DATE_PK>> -rep_end_date

table rpt :
report on tables in repository
may be limited by the following tags:

<<GLOBAL_NAME>> -rep_instance
<<OWNER>> -rep_schema
<<TABLE_NAME>> -rep_table name

Options and Tags

Each command-line option shown in Example 12-12 is associated with a tag
enclosed in a double set of angle brackets: <<TAG>>. The column_diff_rpt report
has these tags associated with the following command-line options:

<<GLOBAL_NAME>> -rep_instance

<<OWNER>> -rep_schema

<<TABLE_NAME>> -rep table name

<<START_DATE_PK>> -rep_start_date

<<END_DATE_PK>> -rep_end_date
These tags are used internally within spdrvr.pl to replace values in a SQL script, val-
ues that will later get sent to SQL*Plus. The tags are divided into two types, date and
text, as discussed in the following sections.

Date options

The -rep_start_date and -rep_end_date command-line options are the only date-style
options. The tags usually associated with these options are <<START_DATE_PK>>
and <<END DATE_PK>>.

-rep_start_date
Used to specify a particular date on the command line; however, this is used
internally by spdrvr.pl to look up the primary key of the row in PDBA_SNAP_

390 | Chapter12: Building a Database Repository with the PDBA Toolkit

DATES, the one corresponding to the requested date. The value of that primary
key is used to replace the value of <<START_DATE_PK>> in the actual query.

If -rep_start_date date is missing from the repository, the most recent date, up to
the date specified, is used. Using the following dates, the first date in PDBA_
SNAP_DATES is October 5, the second is October 13, and the third is October
19. If you specified the report to start from October 15, the spdrvrl.pl script
would find no data collected for that date, and would then choose the closest
date that’s less than October 15, which is October 13. (We promise that this will
make more sense when you run the actual reports.):

GLOBAL_NAME SNAP_DATE

7599.JKS.COM 2001/10/05 18:29:05

7599.JKS.COM 2001/10/13 03:09:37

7599.JKS.COM 2001/10/19 04:11:23

T599.JKS.COM 2001/10/28 23:13:25

T599.JKS.COM 2001/11/08 12:18:36
If you specified a date less than any in the repository, the first available date in
the repository will be used, which is October 5. This will also be used if -rep_
start_date is not specified.

-rep_end_date
Works in similar fashion. If you specify an end date of October 25, the actual
end date used will be October 19, as this is the latest one that’s less than the date
specified. If the specified date is greater than the latest one in the repository, or if
the -rep_end_date switch remains unused, the latest repository date will be used
in reports; that is, November 8.

This logic may seem rather convoluted, but trust us, it does make reports easier to
run. Let’s look at an example. Suppose that midway through November you sus-
pect that changes have been made to the HELP_DESK schema. You know that last
month everything worked fine—but now there’s a problem. To figure out what’s
going on, you won’t need to check every date in the repository. You can simply enter
the approximate range and let spdrvr.pl determine the actual dates. The following
reports all changes:
$ spdrvr.pl -machine sherlock -database ts01 -username pdbarep \
-rep_report column_diff_rpt -rep_instance ts99% \
-rep_schema help desk \

-rep_start_date '2001/10/01' \
-rep_end_date '2001/11/12'

The actual report dates used would be October 5 and November 8.

Text options

Most of the command-line options on the spdrvr.pl script are text options. These
include all the database objects—users, tables, tablespaces, indexes, and so on. We
can be somewhat inexact in specifying these text strings. Most of the SQL queries

Reporting on Database Changes | 391

found in pdbarepq.conf use the LIKE operator, rather than the = equality operator.
This allows the use of the % wildcard for text-based columns, used in WHERE
clauses.

The following command requests a report on which roles have been granted to which
users, where the grantee’s name begins with an S:
spdrvr.pl -machine sherlock -database tso1i \

-username pdbarep -rep database ts99% \
-rep _report role privs rpt -rep_grantee s%

If you wish to see the actual SQL generating the report, add the -verbose option to
the command line. In our example, the SQL looks like this:
select
s.global name cinstance
, p.grantee
, p.granted_role
, p.admin_option
, p.default role
, S.snap_date
from pdba_role privs p, pdba _snap dates s
where s.global_name like 'TS99%'
and p.grantee like 'S%’
and s.pk between 1000000 and 1006331
and s.pk = p.snap_date pk
order by global_name, grantee, granted role, snap_date;

Notice how the switches -rep_database ts99% and -rep_grantee s% uppercase their
corresponding values in the SQL statement. (The % wildcard may be used in any of
the non-date command-line arguments.)

Reporting on SQL Execution Plans

If you've been a DBA for more than 15 nanoseconds, you've no doubt received an
urgent phone call that goes something like this:

“I have a critical SQL statement that’s running very slowly! You need to fix the data-
base!”

The next sentence is almost always: “It worked fine, last week!”

As you try desperately to determine why this critical piece of SQL is suddenly run-
ning slower than a three-toed sloth taking a nap, you may think to yourself:

“It would be nice if I could see the execution plan for this SQL from when it was work-

ing properly.”
We've had that exact same thought any number of times ourselves. And so the SXP
portion of the PDBA repository was born.

392 | Chapter12: Building a Database Repository with the PDBA Toolkit

SXP (SQL EXecution Plan) Scripts and Tables

The scripts and tables that make up SXP come in threes—we’ve designed a triumvi-
rate of tables described earlier in this chapter in Table 12-2 (and shown graphically in
Figure 12-1) used to store SQL and its corresponding execution plans, and we've
designed a triumvirate of Perl scripts that populate these tables and report on the
results. The scripts are:

sxp.pl
Collects SQL statements from the V_$SQLTEXT data dictionary view and stores
them unformatted within the PDBA_SXP_SQL table. The script logs in as the
user who originally parsed the SQL, and generates an execution plan for the
statement with the EXPLAIN PLAN SQL statement. The resulting execution
plan is then stored in the PDBA_SXP_EXP repository table.

sxprpt.pl
Generates reports on the stored SQL and execution plans.

sxpcmp.pl
Examines the current SQL statements, as contained in V_$SQLTEXT, generat-
ing execution plans for each statement. When a matching SQL statement is
found in the repository, the execution plans are compared. If the plans differ, the
SQL statement and its varying execution plans are included in the report.

PDBA sxp exp PDBA sxp sql PDBA sxp date

#PK #PK #PK

- CHKSUM S X(HKSUM B> *SNAP_DATE

« EXPLAIN_ERROR * USERNAME * GLOBAL_NAME « Items are required
* EXPTEXT * SQUTEXT * [tems are optional

Figure 12-1. The SPX table system

SXP Limitations

Helpful as the SXP scripts are, they do have a few limitations:

Type of SQL
Only SELECT, INSERT, DELETE, and UPDATE statements are retrieved from
the SQL cache. PL/SQL anonymous blocks, packages, procedures, and func-
tions are ignored.

Formatting of SQL
The only interface to the cached SQL statements is through either the V_$SQL-
TEXT or V_$SQLTEXT_WITH_NEWLINES system views. The SQL in these
Oracle views is broken into 64-character chunks, often with breaks appearing
right in the middle of words. We’ve chosen to store the SQL as a single line of

Reporting on SQL Execution Plans | 393

text, as that’s the way it appears after joining the various 64-character chunks
together.

As it appears in these views, the SQL is often non-executable, because of com-
ments included in them. Including an embedded comment in a single line of
SQL often renders the rest of the statement as a comment too.

To generate an execution plan for the SQL, it must first be preformatted. We do
this via the PDBA->formatSql method. The goal of this method is to format the
SQL and get it into an executable form that’s suitable for use with SQL’s
EXPLAIN PLAN statement. Most of the time it succeeds, but sometimes it fails,
for reasons we’ll explain shortly. When that happens, the error is reported and
skipped over by the SXP scripts.

Limit on users
As with many EXPLAIN PLAN tools, the SQL generated by the SYS user is
ignored.

Passwords
To generate an execution plan for a SQL statement, it’s necessary to log in as the
same user who parsed the SQL. In addition, the password for that user must be
set up in the password server. If the password is unavailable, the SXP scripts
report an error and continue on to the next user. If the wrong password is sup-
plied, the scripts terminate.

An alternative approach you might already be familiar with is to store the
encrypted form of the user’s password, as found in DBA_USERS, then tempo-
rarily change the user’s password and log in to the account to run EXPLAIN
PLAN. The stored and encrypted form of the original password would then be
used to restore it back to its previous value.

Even though this method will work,” using it is probably a security violation in
many organizations. It’s also inconvenient for the actual user: if the user tries to
log on to his own account, he may find himself locked out because of a tempo-
rarily changed password. If at all possible, we’d rather avoid the extra work
involved in dealing with the complaints that we’re likely to hear if this kind of
thing occurs!

Collecting SQL with sxp.pl

With those caveats out of the way, let’s go about the business of actually using this
utility. You’ll use the sxp.pl script to collect SQL from the database and store it in the
repository.

* We sometimes use this method to log in to a user’s account for administrative reasons. This is usually in an
emergency, however, and is therefore outside the scope of our automated tool.

394 | Chapter12: Building a Database Repository with the PDBA Toolkit

We suggest that you restrict your initial excursions into the Oracle
s SQL cache, using only test or development databases until you’re
tio: familiar with the process. Querying the V_$SYSTEM view can be a
" resource-intensive task, and doing so multiple times, while you learn
to use these tools on a production database, may lead to unfriendly
relations with regular users.

On our test database, this script runs in less than a minute. We also employ this tool
on several production databases where it can take several minutes’ to complete.

You can enter the following command to collect SQL from database ts01 on server
sherlock. (Coincidentally, this is the same database on which the repository resides.)
Table 12-7 lists the command-line options for this script.

$ sxp.pl -machine sherlock -database ts01 -username system \

-rep_machine sherlock -rep_database tso1 \
-rep_username pdbarep

Table 12-7. Command-line options—sxp.pl

Option Description

-machine Server where the target database resides
-database Target database

-username DBA account

-password Password for the DBA account (optional)
-rep_machine Server where the repository database resides
-rep_database Database the PDBA repository is in
-rep_username Repository schema owner

-rep_password Repository owner password (optional)

Unique constraint error

Example 12-13 contains the actual output from sxp.pl, as it was run on one of our
test databases. You'll notice that there is an Oracle error:

ORA-00001: unique constraint (PDBAREP.PDBA SXP_UK IDX) violated

This error occurred about halfway through processing. This happens occasionally
when there are syntactically identical SQL statements in the database cache that have
been formatted somewhat differently. When sxp.pl encounters these paired state-
ments, they’re reformatted identically for our EXPLAIN PLAN statement. That

* One of these databases had a very large SQL cache and resulted in 122,829 new entries in the PDBA_SXP_
SQL table, requiring 98 MB of storage and taking more than 20 minutes to complete. We’ve hit the old quan-
tum mechanics limit again. It’s impossible to measure an event without causing an effect within the area
under test. Who shall guard the guards? (We avoid running sxp.pl on that database too often!)

Reporting on SQL Execution Plans | 395

results in sxp.pl trying to save the same SQL statement twice during the same ses-
sion. This was a design decision on our part. Rather than search the PDBA_SXP_
SQL table looking for duplicates each time we save SQL to the repository, we simply
let the database catch it with a unique constraint. The sxp.pl script traps this error,
reports it, and continues onto the next SQL statement.

Example 12-13. Output from sxp.pl

%oramon> sxp.pl -machine sherlock -database tso01 -username system \
-rep machine sherlock -rep database ts01 -rep username pdbarep
........ DBD::Oracle::st execute failed: ORA-00001: unique constraint
(PDBAREP.PDBA SXP_SQL UK IDX) violated (DBD ERROR: OCIStmtExecute) at
/usr/local/bin/sxp.pl line 283.

...no password available from PWD for ORADES

.... %oramon>

Password and privilege messages

You’ll note another message in the sxp.pl output, but this one is simply informa-
tional:

no password available from PWD for ORADES

This means that there are SQL statements within the cache for the user ORADES,
but that their password was not available from the password server, and thus pro-
cessing moved onto the next user.

Another error that may appear is:

ORA-01039: insufficient privileges on underlying objects of the view

We encounter this error when attempts are made to generate execution plans for a
SELECT statement on a view. Although the user may have SELECT privileges on the
view, Oracle requires that we also have SELECT privileges on the view’s underlying
tables in order to generate an execution plan. There is nothing we can do about that,
so we report the error and move onto the next SQL statement.

Reporting Execution Plans

The sxprpt.pl script reports on the SQL and execution plans now stored within the
PDBA repository. Table 12-8 lists the command-line options for this script.

Table 12-8. Command-line options—sxprpt.pl

Option Description

-machine Server where the target database resides

-database Target database

-username DBA account

-password Password for the DBA account (optional)

-verbose Prints parameters and the SQL used to query the repository

396 | Chapter12: Building a Database Repository with the PDBA Toolkit

Table 12-8. Command-line options—sxprpt.pl (continued)

Option Description

-rpt_machine Server where the repository database resides
-Ipt_start_date Optional date on which to begin reporting
-Ipt_end_date Optional date on which to end reporting

Now that we have some data loaded into the repository, let’s get a report of what’s in
there. Because our test database already contains a number of data collections, we’ll
limit the report by specifying a date range constraint in the following command:

$ sxprpt.pl -machine sherlock -database tso1 \

-username pdbarep -rpt_database 'tso1%' \
-rpt_start date '11/25/2001' -rpt end date '11/27/2001'

The resulting report will contain the following:

* The username of the account that parsed the SQL originally
* A checksum for the SQL text

* A reformatted version of the SQL

* The execution plan for the SQL

If all goes well, there will be:

* A copy of the execution plan

* The checksum for the execution plan

In the event that an error occurs while generating the execution plan, the error will
be displayed instead of the execution plan.

Checksums

This might be a good time to explain the way checksums work within our scripts.
Whenever a SQL statement or execution plan is stored in the repository, the Perl
security module Digest::MDS5 is drafted into action to generate a unique 32-character
“message digest” of the data. Because this digest will be unique for each SQL state-
ment and execution plan, it serves as a unique key that we can use to search for iden-
tical SQL statements and compare execution plans. Using a checksum results in
better performance—much smaller indexes and faster search times.

Example SPX Report

For your edification and delight, we’ve reproduced a portion of an SPX report from
one of our test databases. In Example 12-14 you’ll note that the first SQL statement
failed to parse because of Oracle error ORA-00936. This error was the result of the
SQL formatting problem mentioned earlier. (This is not a very common error, but
worth being aware of.)

Reporting on SQL Execution Plans | 397

The second SQL statement in Example 12-14 also failed during the generation of the
execution plan. This was because the user had insufficient privileges on a view’s
underlying objects. In this case, the PDBAREP user has the SELECT privilege granted
on the system view ALL_TABLES, but lacks privileges on the data dictionary tables
used in that particular view.

The third and fourth SQL statements shown in Example 12-14 were both success-
fully submitted to the Oracle parser for the generation of execution plans via the
EXPLAIN PLAN statement.

Example 12-14. Example report—sxprpt.pl

Instance: TS01.JKS.COM
sqlUsername: PDBAREP

SOL Check Sum: 3413C8988F25F181D463272348F404D4
SnapShot Date: 11/27/2001 12:57:01
SOL Text:
SELECT TO_CHAR(SYSDATE
, 'MM/DD/YY') TODAY
» TO_CHAR(SYSDATE
, 'HH:MI AM') TIME

)
--DATABASE | |' Database' DATABASE

)

--rtrim(database) passout name||' Database' DATABASE
B lower(rtrim(name)) passout

FROM v$database

Explain Check Sum:
Explain Plan:

Explain Error: ORA-00936: missing expression (DBD ERROR: OCIStmtExecute)
at ./sxp.pl line 345. eval {...} called at

Instance: TS01.JKS.COM
sqlUsername: PDBAREP

SOL Check Sum: 3A0D45COE2E730555B413F17A7E41E95
SnapShot Date: 11/25/2001 12:56:24

SOL Text:

SELECT Table_ Name

FROM ALL_TABLES

WHERE OWNER = :f1

ORDER BY Table Name

Explain Check Sum:
Explain Plan:

Explain Error: ORA-01039: insufficient privileges on underlying objects
of the view (DBD ERROR: OCIStmtExecute) at

398 | Chapter12: Building a Database Repository with the PDBA Toolkit

Example 12-14. Example report—sxprpt.pl (continued)

Instance: TS01.JKS.COM
sqlUsername: PDBAREP

SQL Check Sum: 07BF585D872E136C7341FF573CAD8FCD
SnapShot Date: 11/27/2001 12:57:01
SOL Text:
select s.global_name cinstance
.owner
.table_name
.column_name
.column_id
.data_type
.data_length
.data_precision
.data_scale

, t.nullable
from pdba_snap_dates s

, pdba_tab_columns t
where s.global name like '%'
and t.table name like '%'
-- here is how to get a range of dates
and s.pk = 1009436
and s.pk = t.snap_date pk
minus
select

-
+ &+ &+ &+ &+ + + &+

and t.owner like '%'

s.global_name cinstance
.owner
.table_name
.column_name
.column_id
.data_type
.data_length
.data_precision
.data_scale

, t.nullable

from pdba_snap_dates s
, pdba_tab_columns t
where s.global name like '%'
and t.table name like '%'
-- here is how to get a range of dates
and s.pk = 1000000
and s.pk = t.snap_date pk
order by 1,2,3,4

-
+ &+ &+ &+ &+ + + &+

and t.owner like '%'

Explain Check Sum: 3D9734F45B31736AB7DF5B69FB8DA713

Explain Plan: TOTAL
POS OPERATION OBJECT_NAME COST ROWS
29 SELECT STATEMENT 29 5K
1 MERGE JOIN 29 5K
1 TABLE ACCESS FULL PDBA_SNAP_DATES 1 7
2 SORT JOIN 28 793
1 TABLE ACCESS FULL PDBA_TAB_COLUMNS 4 793

BYTES OPTIMIZER
294203 CHOOSE
294203

84 ANALYZED

32513

32513 ANALYZED

Reporting on SQL Execution Plans

399

Download from Wow! eBook <www.wowebook.com>

Example 12-14. Example report—sxprpt.pl (continued)

Explain Error:

Instance: TS01.JKS.COM
sqlUsername: PDBAREP

SQL Check Sum: 3BE4FE5486D11246DA2A358A27A0CE92

SnapShot Date: 11/27/2001 12:57:01

SOL Text:

select *

from PDBA_SNAP_DATES

where snap_date < trunc(to_date('01/01/1700"
,'mm/dd/yyyy"')+1)

order by snap_date

Explain Check Sum: 2C7545806582F6D3EC95AA2F48212C6D

Explain Plan: TOTAL

POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER
2 SELECT STATEMENT 2 1 24 CHOOSE
1 TABLE ACCESS ROWID PDBA_SNAP_DATES 2 1 24 ANALYZED

1 INDEX RANGE SCAN PDBA_SNAP_DATES_UK_IDX 1 1 0 ANALYZED
Explain Error:

Comparing execution plans

Now let’s take a look at the sxpcmp.pl script. This script scans the SQL bulffer via the
V_$SQLTEXT view and prepares execution plans and SQL checksums in the buffer.
Next, it searches the PDBA repository for a SQL statement with a matching check-
sum. If more than one match is found in the repository, the most recent one is used.
This behavior may be modified with the -rep_report_date option. (See Table 12-9 for
all of the command-line options.) If a matching SQL statement is found, the script
compares the checksums for the current execution plan and the stored execution
plan. If these match, nothing is reported and the next SQL statement is checked. If
the checksums for the execution plans don’t match, this indicates that some data-
base change has taken place, thus altering the way the SQL executes. The SQL and
both execution plans are reported.

Table 12-9. Command-line options—sxpcmp.pl

Option Description

-machine Server where the target database resides
-database Target database

-username DBA account

-password Password for the DBA account (optional)
-rep_machine Server where the target repository resides
-rep_database Repository database

-rep_username DBA account password

400 | Chapter12: Building a Database Repository with the PDBA Toolkit

Table 12-9. Command-line options—sxpcmp.pl (continued)

Option Description

-rep_password Password for the DBA account (optional)

-rep_report_date Date of SQL data to which to compare current SQL. Defaults to the most recent copy of an identical
SQL statement.

Example 12-15 contains a sample report generated from sxpcmp.pl. The command
used to generate this report looks like this:
$ sxpcmp.pl -machine sherlock -database tso1 \
-username system -rep_machine sherlock \

-rep_database tso1 -rep username pdbarep \
-rep_report_date '12/15/2001' > sxpcmp.txt

Looking at the output

It’s a good idea to redirect the output of sxpcmp.pl to a file, as we’ve done via this
command, because a fair number of pop-up warnings may end up cluttering the
screen on a run through a complex database. Typically, all of the warnings are sent
to STDERR, so redirecting STDOUT to a file will often provide a cleaner report.

Example 12-15. Output from sxpcmp.pl

Active SQL From Data Dictionary Matching SQL In Repository Page: 1
But With Different Execution Paths

Database: TS01.JKS.COM Date: 12/16/2001
14:49:56

SQL Username: SCOTT

SOL Check Sum: 75125F4AD88511A11D3C12AF83BE8F4C
SnapShot Date: 12/15/2001 14:27:57

SOL Text:

select /*+ index(e emp_deptno) */ *
from dept d

, emp e

where d.deptno = e.deptno

Current Explain Plan:

TOTAL
POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER
4 SELECT STATEMENT 4 14 700 CHOOSE
1 HASH JOIN 4 14 700
1 TABLE ACCESS BY INDEX EMP 2 14 448 ANALYZED
1 INDEX FULL SCAN EMP_DEPTNO 1 14 0 ANALYZED
2 TABLE ACCESS FULL DEPT 1 4 72 ANALYZED

Stored Explain Plan:
TOTAL
POS OPERATION OBJECT_NAME COST ROWS BYTES OPTIMIZER

Reporting on SQL Execution Plans | 401

Example 12-15. Output from sxpcmp.pl (continued)

3 SELECT STATEMENT 3 14 700 CHOOSE
1 HASH JOIN 3 14 700

1 TABLE ACCESS FULL DEPT 1 4 72 ANALYZED
2 TABLE ACCESS FULL EMP 1 14 448 ANALYZED

Note the following about this output:

1. You can see that the report was run on December 16. One SQL statement had a
different execution plan on the day of the report than it did on the previous day,
December 15.

2. The execution plan for December 15 demonstrates that the SQL statement join-
ing the EMP and DEPT tables, called by user SCOTT, was employing a full table
scan (TABLE ACCESS FULL) on each table.

3. The execution plan for December 16 shows a different execution plan for the
same SQL. Rather than scanning the full EMP table, the script uses the index
EMP_DEPTNO to identify the rows to include within the join.

4. We deduce that the execution plan change occurred because of the addition of
the EMP_DEPTNO index to the EMP table on December 16. Creating this index

allowed the Oracle SQL engine to use the index hint in the SQL statement
(TABLE ACCESS BY INDEX).

402 | Chapter12: Building a Database Repository with the PDBA Toolkit

CHAPTER 13
Extending the PDBA Toolkit

In the preceding chapters we’ve introduced the Perl DBA Toolkit and tried to
impress you with all the wonderful ways it can help make Oracle database adminis-
tration more effective and efficient. But every site, and every DBA, is different. You
will undoubtedly find that some of the scripts and supporting modules in the toolkit
don’t operate quite as you would like them to. You may also find that some of the
scripts give you good ideas for other scripts you wish we had included.” Here are a
few examples of PDBA Toolkit behavior that you may decide you want to modify:

Formatting
You may want to change the way that data is displayed in the dba_jobsm.pl
script, which reports on the DBA_JOBS view from multiple databases.

Logging
You may want to change the PDBA::LogFile module to create a unique file name
at each invocation.

Data retrieval
You may want to change the default return type in PDBA::GQ from a hash refer-
ence to an array reference

Configuration files
You may want to modify the PDBA::ConfigFile module to alter the paths where
it searches for configuration files.

Security
You may want to use a different form of cryptography in the PDBA::PWD mod-
ule (it currently uses Crypt::RC4).

* Following Vilfredo Pareto’s 80-20 rule, most people end up being happy with 80% of a code library written
by someone else but discover that the other 20% could stand improvement. The code might fail to fit the
way we work, or we might just succumb to a moonlight programming urge and find tweaking irresistible.
Tweaking is fine, but the particular way you tweak is quite important. A little forethought and planning can
save you a lot of time later on. That’s what this chapter is all about.

403

In writing the software in the toolkit, and in describing the scripts and modules in
this book, we’ve tried to “expose the code”—show you as clearly as possible how
we've implemented the logic. One of our goals in developing this toolkit was to pro-
vide a ready-to-run set of DBA scripts, of course. But another goal was to supply a
framework for you to improve our scripts and to write your own. In this chapter,
we’ll go a step further with the toolkit. We’ll work through two extended examples,
showing you some existing scripts and modules and demonstrating how you can
change them to suit your specific needs.

The script example
In this example, we’ll look at the problem of checking on scheduled jobs in an
Oracle database and providing an easy way to report on those jobs. We’ll work
through the dba_jobsm.pl script in detail, showing our solution, and we’ll sug-
gest ways for you to change the script until it suits you.

The module example
In this example, we’ll look at two different modules, PDBA and PDBA::GQ. For
PDBA, we’ll show how you can add a method. For PDBA::GQ, we’ll show how
you can write code that deals with NULL values returned by Oracle. Both modi-
fications help make processing more efficient.

Modifying a Script in the Toolkit

Let’s look at a typical task you’ll often perform as part of your Oracle database
administration duties: checking on the jobs scheduled via Oracle’s built-in schedul-
ing package, DBMS_JOBS. First, we’ll see how DBAs typically check on these jobs
by examining the DBA_JOBS data dictionary view. Then we’ll take a look at a script
we've developed to make your checking easier and more efficient. And finally we’ll
make a few modifications to that script and its supporting files in order to demon-
strate how easy it can be to customize and extend the scripts in our toolkit.

The Standard Approach

The Oracle job scheduler is easy to use. You submit a PL/SQL job and Oracle runs it
at specified intervals. Here’s a short example that illustrates how it works:

1. The ANALYZE_SCOTT procedure will analyze all of SCOTT’s objects at 3:00
AM each morning. We create it like this:

create or replace procedure analyze scott

is

begin
dbms_utility.analyze_schema('SCOTT','COMPUTE");

end;

/

show errors procedure analyze scott

404 | Chapter13: Extending the PDBA Toolkit

2. Then we submit the job:
declare
jobno integer;
begin
dbms_job. submit(
job => jobno
, what => 'analyze scott;'
, next _date => (sysdate + (1/1440)) /* Start in 1 min */
, interval => '(trunc(sysdate) + 1) + (3/24)' /* Then at 3AM */
)5
commit;
end;
/

3. The following SQL on the DBA_JOBS view tells you which jobs are scheduled:

select schema_user, job, last_date, next_date, broken,
interval, failures, what
from dba_jobs
order by schema_user, next_date;

4. Our newly created procedure appears like this:
USER JOB LAST DATE NEXT DATE B INTERVAL FAILURES WHAT

SCOTT 42 mar-17 15:50 mar-18 03:00 N (trunc(sys 0 analyze scott;
date) + 1)
+ (3/24)
1 row selected.
That’s pretty easy. And if you’re checking on only a handful of jobs in one or two
databases, this approach works just fine. It becomes unwieldy, however, if you need
to check a large number of databases on a regular basis.

Checking on Scheduled Jobs with the dba_jobsm.pl Script

We’ve provided a script in our toolkit that makes checking on scheduled jobs a lot
more flexible and efficient. Using the dba_jobsm.pl script, you can check on several
databases in succession and combine the output into a single report. The script can
also email this report to us so we can easily scan it for BROKEN jobs. (A Y in DBA_
JOBS’s BROKEN column indicates that a job has failed 16 times or has been manu-
ally disabled via DBMS_JOB’s BROKEN procedure.)

Configuring dba_jobsm.pl

The dba_jobsm.pl script is installed automatically when you install the toolkit (see
Chapter 9, Installing the PDBA Toolkit). You’ll find it in Perl’s script installation
directory. On Unix systems, this is /ust/local/bin/ (or another location, depending on
your chosen install configuration). It will also be found in the PDBA installation
directory:

PDBA-1.00/routine_tasks/dba_jobsm.pl

Modifying a Scriptin the Toolkit | 405

On Win32, you’ll find the script as C:\Perl\bin\dba_jobsm.pl.

There is also a configuration file that stores the parameters for the dba_jobsm.pl
script (see Example 13-1). On Unix, the dba_jobs.conf configuration file is:

PDBA-1.00/routine_tasks/dba_jobs.conf
On Win32 itis:
C:\Perl\site\lib\PDBA\conf\dba_jobs.conf

Example 13-1. dba_jobs.conf

package dbajobs;
use vars qw{ $emailAddresses %databases };

$emailAddresses = [quw{yourname@yourdomain.com}];

%databases = (sherlock => { tso1 => 'system', },
watson => { ts98 => 'system', ts99 => 'system', });
1;

The configuration file is very straightforward. It contains two hashes: one for the
email address to which the final report will be sent, and one for the servers we wish
to check, broken down by machine and database.

An example of a final report generated by this script is displayed in Figure 13-1; this
particular example was generated with the -noemail option specified.

1 File Edit Settings Help
14:13—<sherlock:tedd; jkstill-8 > dba_jobsm,pl —noemail -logeolumns [

TBA Jobs Status
Database: ts99
Machine ; watson,jks,com
Tate + 2002/04/04 14113

SCHEHA TOTAL FAIL
USER JOB LAST TATE HEXT TATE TIME BROKEM INTERVAL URES LHAT
SCOTT 42 2002/04/04 03:00 2002704705 03:00 112 MO {truncisysdate) 0 analyze_scott:

+ 1) + (3/24)

IBA Jobs Status
Database: ts0l
Hachine ; sherlock

Date & 2002/04/04 14:13
SCHEHA TOTAL FAIL
LISER JOB LAST TATE NEXT TRTE TIME BROKEN INTERWAL URES LHAT
JKSTILL 24 2002/04/04 00301 2002/04704 15:30 348 NO trunc(sysdate) 0 dunmys
+ (15 %
(BOKED) + (
GO430)) % (
1/{EOREO%24))
JRSTILL 23 2002404704 02105 2002404704 21:50 243 MO trunc{sysdate) O during:
+ (021 %
(GOKEO) + (
E0#50)] * (
1/{GOME0%24)))

[/homed jkstill]

]

14:13-sher locksts01: jkstill-8 >]

Figure 13-1. Output from dba_jobsm.pl

406 | Chapter13: Extending the PDBA Toolkit

dba_jobsm.pl: A walkthrough of the main script

The following may look daunting, but we thought we’d walk through at least one
complete PDBA Toolkit script in this book, just to show you its low-level wiring. We
expect that some readers will find sufficient inspiration in these pages (or frustration
with our code) to decide to customize our scripts or create their own. When creating
your own scripts, you can treat ours as something of an artist’s palette from which
you can cut and paste the elements you require.

With that rationalization out of the way, let’s plunge into a no-holds-barred familiar-
ization exercise before you embark on your own missions into no-man’s-land. We’ll
focus on one group of lines at a time.

01: #!/usr/bin/perl

02:

03: =head1 dba_jobsm.pl

04:

05: like dba_jobs.pl, but connects to multiple servers
06: as specified in the configuration file
07:

08: =cut

09:

10: use warnings;

11: use strict;

12: use PDBA;

13: use PDBA::(CM;

14: use PDBA::(GQ;

15: use PDBA::0PT;

16: use PDBA::ConfigFile;

17: use PDBA::LogFile;

18: use Getopt::Long;

Line 1
Informs the command shell that this script runs with the /usr/bin/perl binary pro-
gram. The #! shebang is recognized by Unix command shells as an identifier
indicating which executable to run the script with. This magic cookie, as it’s
sometimes known, must be on line 1. On Win32 the #! line is simply treated as
just another comment.

Lines 3 to 8
Inline documentation. (The perldoc FULL_PATH/dba_jobsm.pl command dis-
plays all of the documentation.)”

Lines 10 to 18
Specify the modules needed for this script:

* (The perldoc -f function_name utility provides online documentation for all of Perl’s hundreds of built-in
functions.)

Modifying a Scriptin the Toolkit | 407

use warnings
Makes Perl detect and flag program warnings as well as errors. Alterna-
tively, use the -w flag switch on line 1. (We’ll show an example a bit later.)

use strict
Enforces coding discipline. For instance, you must name package variables
explicitly. (See Appendix A, The Essential Guide to Perl, for information
about variable scoping.)

The next few lines load up the necessary PDBA Toolkit modules; these include the
PDBA mother-ship module, the Connection Manager, the Generic Query module,
the Options password retriever, the Config File loader, and the Log File creator. (See
Chapter 9 for a discussion of all these modules.)

Line 20
Sets the date format for retrieving date columns from Oracle. (We’ll say more
about configuring this in a later section.)

Line 22
Declares our intended use of the %optctl hash.

Line 26
Sets the pass-through option for Getopt::Long. We can then specify extra options
via the command line to pass through to PDBA::OPT. Example 13-2 demon-
strates why we need this.

Example 13-2. passthrough.pl
#!/usr/bin/perl -w

use Getopt::Long;
my %optctl=();

Getopt::Long: :Configure(qw{pass_through});
GetOptions(\%optctl, "database=s", "username=s",);
print join(":", @ARGV);

The following script call processes the command line options created by GetOptions,
including database and username, and leaves the -pwc_conf option and its argument
in the @ARGYV program parameters array printed by passthrough.pl:
$ passthrough.pl -database orcl -username system -pwc_conf test.conf
-pwc_conf:test.conf
If you remove the pass_through directive, GetOptions raises an error, because the -
pwc_conf flag is unspecified, unlike database and username.
$ passthrough.pl -database orcl -username system -pwc_conf test.conf

Unknown option: pwc_conf
test.conf

408 | Chapter13: Extending the PDBA Toolkit

Let’s continue with the next group of lines in dba_jobsm.pl:

28: GetOptions(\%optctl,
29: "help!",

30: "conf=s",

31: "confpath=s",

32: "logfile=s",

33: "logcolumns!",
34: "emaill",
35: "verbose!",
36: "debug!",
37:);

Lines 28 to 37

Calls the GetOptions function from the Getopt::Long module, passing the
expected command line option names and processing them as they appear on
the command line. Those specified with =s, such as conf=s, require an argu-
ment. The following command makes Getopt::Long assign the string -logfile as
the argument to -conf. This is because -conf explicitly requires an argument:

$ dba_jobsm.pl -conf -logfile test.log

Unknown exception from user code:

Could not load config file -logfile

A configured exclamation point following a GetOptions parameter, such as
email!, tells Getopt::Long the option is a Boolean switch (1 or 0). These options
switch to false with a no prefix, as in dba_jobs.pl -conf dbatest.conf -noemail. (For
much more on Getopt::Long, try perldoc Getopt::Long.)

39: if ($optctl{help}) { usage(1) }
Line 39
Employs the usage subroutine. We’ll discuss this in lines 212-229.

Let’s move on to the next group of lines:

41: # config is required
42: my $configFile = $optctl{conf}
43: ? $optctl{conf}
44: : 'dba_jobs.conf';

Lines 42 to 44
Determine which configuration file to use. If the expression before ?is true, the
expression following ?is returned. If the expression before ?is false, the expres-
sion following : is returned. Therefore, if the -conf option value fills $optctl{conf},
line 43 assigns this value to $configFile. Otherwise, line 44 assigns it to a default
of dba_jobs.conf.

46: # load the configuration file

47: unless (

48: new PDBA::Configload(

49: FILE => $configFile,

50: DEBUG => $optctl{debug},
51: PATH => $optctl{confpath},
52:)

Modifying a Scriptin the Toolkit | 409

53:) {
54: die "could not load config file $configFile\n";

55: }

Lines 46 to 55
Load the configuration file. Lines 48 to 52 invoke PDBA::Configload’s new
method, passing values for FILE, DEBUG, and PATH. The PDBA::ConfiglLoad
module ignores PATH if it is undefined or if it is an empty string. If the configu-
ration file fails to load, the program exits on line 54 with a die command.
57: # setup and open the log file
58: my $logFile = $optctl{logfile}
59: ? $optctl{logfile}

60: : PDBA->pdbaHome . q{/logs/dba_jobsm.log};

61:

62: my $logFh = new PDBA::LogFile($logFile);
Lines 57 to 60

Determine the name and location of the logfile. As with the configuration file,
the name is supplied by the -logfile option. The default dba_jobsm.log file is
placed in PDBA_HOME/logs directory. (Note that the forward slash is accept-
able to Win32, which uses it internally anyway.)

Line 62
Creates a new PDBA::LogFile object, $logFh, and the program writes to this
object handle when sending audit messages to the logfile.
64: if ($optctl{debug}) {

65:
66: foreach my $machine (keys %dbajobs::databases) {
67: print "machine: $machine\n";
68: foreach my $database (keys %{$dbajobs::databases{$machine}}) {
69: print "\tdb: $database\n";
70: print
"\t\tusername: $dbajobs::databases{$machine}->{$database}\n";
71: }
72: }
73: exit;
74: }

Lines 64 to 74
Execute only if the -debug program option is specified. Line 66 sets up a loop
which iterates through each $machine in the %dbajobs::databases hash. This is
loaded from the configuration file, with each machine, database, and username
being printed to the screen.
76: my $instanceName = undef;
77: my $machineName = undef;
78: my $systemDate = undef;
79: my $row = {};
80: my $tmpFile;
Lines 76 to 80
Simply declare some variables for later use.

410 | Chapter13: Extending the PDBA Toolkit

82: if ($optctl{email}) {

83:

84: use POSIX;

85:

86: if ('unix' eq PDBA->osname) {

87: $tmpFile = POSIX::tmpnam();

88: } else {

89: $tmpFile = 'C:\TEMP' . POSIX::tmpnam() . "tmp';
90: }

91:

92: print "TMPFILE: $tmpFile\n" if $optctl{verbose};
93:

94: open(FILE,"> $tmpFile") || die "cannot create $tmpFile\n";
95: select(FILE);
96:
97: # reset the format and format top names, as using select(FILE)
98: # will cause Perl to look for FILE and FILE TOP
99: $~ = 'STDOUT';
100: $~ = 'STDOUT_TOP';
101:
102: }
Line 82

Gatekeeper for the next code body. It only runs if the -email flag was set.

Line 84
Loads the POSIX module because we need a temporary file for email formatting
purposes later on.

Lines 86 to 90
Name this temporary file via the POSIX:tmpnam function. On Unix, this
defaults to something like /tmp/fileiZZd123. On Win32, POSIX:tmpname
returns a \random_value. string. We want all of our temporary files stored in the
same location on Win32, and we ensure this on line 89. If POSIX::tmpnam
returns a filename of \wpo., this is converted into CATEMP\wpo.tmp.

Line 94
Creates and opens the temporary file.

Line 95
Uses Perl’s main select operator and sets the default output filehandle to be the
temporary file. All write and print statements without specific filehandle parame-
ters will now go to the temporary file.

Lines 99 to 100
Set the print format names for the write operator. The $* built-in Perl variable
sets the name for the header format. The $~ variable sets the equivalent for the
body format.

Modifying a Scriptin the Toolkit | 411

You can avoid using built-in Perl variable names like $~ and $* if you
use the English module. This makes all such variables readable to

English speakers:
use English;
Use English names so your code won't
look like an obscure Klingon dialect! :-)
$FORMAT_TOP_NAME = 'STDOUT TOP'; # $~
$FORMAT_TOP = 'STDOUT'; # $°

For more information about such variables, invoke perldoc perlvar.

The default names for these are STDOUT and STDOUT_TOP, which
is what our code uses too. The default usually works fine for console
output, but when we changed our default filehandle to FILE the
default formats changed too, into FILE and FILE_TOP. Because we
still want to use STDOUT and STDOUT_TOP, we need to explicitly
reset them both back again.

104: foreach my $machine (keys %dbajobs::databases) {

105:

106: foreach my $database (keys %{$dbajobs::databases{$machine}}) {
107:

108: my $username = $dbajobs::databases{$machine}->{$database};
109:
110: # retrieve the password from the password server
111: my $password = PDBA::OPT->pwcOptions (
112: INSTANCE => $database,
113: MACHINE => $machine,
114: USERNAME => $username
115:);
Line 104

Begins the loop where the real work begins. As with line 66, this line begins
looping through the machines defined in the configuration file.

Line 106

Iterates through each database as defined for each machine.

Line 108

Retrieves the current loop iteration’s DBA username.

Lines 111 to 115

Retrieve the password for the username from the password server. (You could
modify the dba_jobsm.pl script to avoid using the password server, but this
would require a fair amount of work and would also necessitate giving up all the
security and ease-of-use the server delivers. However, we will demonstrate how
this is possible in a later section.)

117: # create a database connection
118: my $dbh = new PDBA: :CM(
119: DATABASE => $database,
120: USERNAME => $username,
121: PASSWORD => $password,

412

| Chapter13: Extending the PDBA Toolkit

122:);
123:
124: $dbh->do(qq{alter session set nls date format = '$nlsDateFormat'});

Lines 117 to 122
Create the database connection via PDBA::CM’s Connection Manager. One of
the advantages of using PDBA::CM, rather than DBI, is the use of the c¢m.conf
configuration file. This contains a default ORACLE_HOME value that sets the
$ENV{ORACLE_HOME] environment variable, making it unnecessary to set the
Oracle environment before running a script.

Line 124
Sets NLS_DATE_FORMAT for your current database session.
126: # get the host and instance name
127: my $gn = new PDBA::GQ($dbh, 'v$instance');
128: my $gnHash = $gn->next;
129: $instanceName = $gnHash->{INSTANCE NAME};
130: $machineName = $gnHash->{HOST NAME};
131: undef $gn;
132: undef $gnHash;
133:
134: print "Instance Name: $instanceName\n" if $optctl{verbose};
135: print "Host Name: $machineName\n" if $optctl{verbose};
136:
137: # get the system date
138: $systemDate = PDBA->sysdate($dbh, NLS DATE FORMAT => $nlsDateFormat);
139: print "System Date: $systemDate\n" if $optctl{verbose};
Line 127

Uses PDBA::GQ to execute a SQL statement of select * from v$instance. The
PDBA::GQ module also prepares the SQL statement. Because we failed to spec-
ify any columns, it assumes we want all of them. To select specific columns you
can use PDBA::GQ like this:

my $gn = new PDBA::GQ($dbh, 'vinstance’,

{ COLUMNS => [qw(host_name instance_name)] });
Line 128

Retrieves the first row from query object $gn via PDBA::GQ’s next method. Its
default return value is a hash reference. On lines 129 and 130 we assign
SinstanceName and $machineName. The sharp-eyed among you may be wonder-
ing why we haven’t followed line 128 with the following:

$gn->finish;
All open cursors must be finished before database disconnection. Fortunately
VS$INSTANCE only holds one row, so the $gn cursor finished automatically.

Lines 131 to 132
Undefine $gn and $gnHash, as we’re done with them in this particular loop itera-
tion and we should clear them out before the next one.

Modifying a Scriptin the Toolkit | 413

Line 138
Sets $systemDate to the current database SYSDATE value.

141: my $gq = new PDBA::GQ ($dbh, 'dba_jobs',
142: {
143: COLUMNS => [
144: qw(schema_user job last date next_date
interval failures what),

145: q{round(total time,2) total time},
146: q{decode(broken, 'N',"'NO", "Y', 'YES", "UNKNOWN") broken},
147: 1
148: ORDER_BY => qg{schema_user, next date}
149: }
150:)s

Line 141

Begins a complex instantiation of a database query via PDBA::GQ.

Line 143
Begins specifying the columns to include in the query.

N w

o There is a difference between the gq{} and gqq{} operators. They’re iden-
.“.“ tical in use to either single quotes () or double quotes (“”) in Perl.
T Q8 Variables only interpolate within the qq{} braces. For instance, let’s

run the following code:

my $str = 'this is Earth calling';
print qq{$str\n};
print g{$str\n};

The second printed line remains uninterpolated:

this is Earth calling
$str\n

The use of these and other quoting functions such as qw{} makes Perl
code formatting much plainer to the eye. Check out perldoc perlop for
much more detail.

Lines 145 to 146
Perform column manipulation. We use Oracle’s ROUND function to format
TOTAL_TIME, and its DECODE function to return YES or NO from the BRO-
KEN column, rather than Y or N (see Figure 13-1).

Line 148
Supplies the ORDER BY clause to the SQL query.
152: # print the column names in the log
153: my $colHash = $gq->getColumns;
154: $1logFh->printflush(
155: join('~", (
156: $machine, $database,
157: map {$ } sort keys %{$colHash}
158:
159:) . "\n") if $optctl{logcolumns};

414 | Chapter13: Extending the PDBA Toolkit

Line 153
Uses PDBA::GQ’s getColumns method to return the SQL query’s column names
into the hash reference, $colHash, in this kind of form:
$colHash = { 'BROKEN' => 8,

"LAST DATE' => 2,

"FAILURES' => 5,

"TOTAL TIME' => 7,

"WHAT' => 6,

'JOB' => 1,

"INTERVAL' => 4,

'NEXT _DATE' => 3,

"SCHEMA_USER' => 0 };

Lines 154 to 159
We need to consider these lines together. Line 159 allows the printing of col-
umns only if the -logcolumns option was included on the command line. We
want these column names printed in the database specified order. That’s what
line 157 does with the map function. The columns retrieved into $colHash have
no particular order, because hashes lack any guarantee as to the order in which
keys are stored (see Appendix A). To get them in the $gq query order, we employ
a little Perl magic. We sort the keys into alphabetical order, we then map them to
an array, and then join all of these elements together with the machine and the
database strings to form a ~ delimited superstring. To read about these func-
tions, try the following:
$ perldoc -f map

$ perldoc -f sort
$ perldoc -f join

161: while ($row = $gg->next({})) {
162: $logFh->printflush(
163: join("~", (
164: $machine ,
165: $database ,
166: # the map function is used to place all values from the
167: # $row hash ref into an array. The ternary ?: operator
168: # is used with 'defined()' to avoid warnings on undefined
169: # values. These occur when a NULL is returned from a
170: # SQL statement
171: map { defined($row->{$_}) ? $row->{$ } : "' }
sort keys %$row
172:)
173:) . "\n"
174:);
175: write;
176: }

Lines 161 to 185
Retrieve the data from our query object. Line 161 retrieves a row at a time into
the hash reference, $row.

Modifying a Scriptin the Toolkit | 415

Lines 162 to 174

Begin the process of retrieving the query data. The column values in the $row
hash reference are printed to the logfile. Notice the use of Perl’s defined opera-
tor, which traps potential NULLs.

Line 175

Line 182

Consists of a write statement. We’ll come back to this at line 231.

178:
179:
180:
181:
182:
183:
184:
185:

Line 178

$dbh->disconnect;

set number of lines on page left to 0
forcing a form feed
$- = 0;

}
}

Terminates the connection to this database before the next loop.

Issues a form feed via the $- built-in Perl variable. This is known as $FORMAT _
LINES_LEFT, if you use English.pm, and it’s the number of lines left on a page
of the currently selected output channel.

187:
188:
189:
190:
191:
192:
193:

194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:

207:
208:
209:
: ## end of main

210

if ($optctl{email}) {

#email here
close FILE;
select(STDOUT);

open(FILE, "$tmpFile") ||
die "cannot open $tmpFile for read - $!\n";
my @msg = <FILE>;
close FILE;
my $msg = join('',@msg);

my $subject = qq{DBA Jobs Report For All Servers};

unless (PDBA->email($dbajobs::emailAddresses,$msg,$subject)) {
warn "Error Sending Email\n";

}

unlink $tmpFile;

$logFh->printflush(("report mailed to ",
@$dbajobs: :emailAddresses, "\n"));

416

Chapter 13: Extending the PDBA Toolkit

Download from Wow! eBook <www.wowebook.com>

Line 187
Follows the main loop exit. If -email was set, we execute the following code
body.

Lines 190 to 191
Close the FILE opened earlier and reset STDOUT to be the default output file-
handle.

Line 193
Opens the temporary email file, which has been filled by the write function on
line 175 (we’ll discuss write formats later at line 231).

Lines 194 to 196
Read the entire contents of this temporary file into the @msg array before clos-
ing the file. Line 196 then creates the scalar $msg, from @msg, by joining all of
its elements together, including their embedded newlines.

Line 198
Creates the email $subject header.

Lines 200 to 202
Mail the recipients designated in the dba_jobs.conf configuration file via the
PDBA module’s mail method.

Lines 204 to 206
Remove the temporary file and write one last audit message, with line 210 mark-
ing the end of the main program section.

dba_jobsm.pl: A walkthrough of functions and formats

We’ve finished looking at the main logic of the script. Now we’ve reached the
script’s functions and print formats. Just for orientation, you might like to revisit line
39 in the main program to check its context before looking at the usage subroutine:

39: if ($optctl{help}) { usage(1) }

The usage routine is called when the -help command option is flagged. It accepts one
argument, $exitVal, read in at line 213. The usage subroutine outputs a help mes-
sage, then exits Perl with $exitVal returned to the command shell as the error code:

212: sub usage {

213: my $exitval = shift;

214: use File::Basename;

215: my $basename = basename($0);
216: print qq/

217: usage: $basename

218:
219: -help show help and exit
220: -conf configuration file (needed for email)

221: -confpath path to configuration file (optional)
222: -logfile logfile - may include path (optional)
223: -logcolumns include column names in logfile

224: -email send email to users in config file

Modifying a Scriptin the Toolkit | 417

225:

-verbose verbosity on

226:

227:
228:
229:

/5
exit $exitVal;

|5

Lines 214 to 215
Determine the name of the current script with File::Basename. Even if the script’s
name changes, $basename remains correct.

Lines 216 to 227
Use Perl’s qq// operator to print the help information. The use of gg// is much
neater than a series of print statements and much easier to edit.

Line 228
Exits the program.

231:

232

no warnings;
: format STDOUT TOP =

233:

234:
235:
236:
237:
238:
239:
240:

DBA Jobs Status
Database: @<<<<<<L<<LLLLLK
$instanceName
Machine : @<<<<<<<<LLLLLKK
$machineName
Date T BCLLLLLLLLLLLLLLLKLKK
$systemDate

241:

242:

243:

244:

SCHEMA TOTAL

FAIL

USER JOB LAST DATE NEXT DATE TIME BROKEN
INTERVAL URES WHAT

245:
246: .
247:
248:

249:
250:

251:

252:

format STDOUT =

@<L @HIHHE @<L B @ @<<<<<
NLLLLLLLLLLLLLL @ @<L

$row->{SCHEMA USER}, $row->{JOB}, $row->{LAST DATE},

$row->{NEXT _DATE}, $row->{TOTAL TIME}, $row->{BROKEN},
$row->{INTERVAL}, $row->{FAILURES}, $row->{WHAT}

NLLLLLLLLLLLKKK

253:

$row->{INTERVAL}

254: .
Line 231
Begins the print formatting section for the earlier write command:

175: write;

58 |

Chapter 13: Extending the PDBA Toolkit

A no warnings call is made at line 231 to prevent Perl from overreacting to
acceptable difficulties such as NULL values returning from Oracle.

Lines 232 to 246
Create the STDOUT_TOP header format, which appears at the top of each
page. Perl formats use literal text, variables, and field holders to determine how
data will be printed (with much of the original layout borrowed from FOR-
TRAN and the nroff program). You can learn more about Perl formats by invok-
ing:

$ perldoc perlform

Line 235
Contains the literal text of ‘Database: ° followed by a field holder of
@<<<<<<<<<<. This tells Perl that the print data should be left justified.

Lines 242 to 244

Print the literal text of the column names.
Line 246

Terminates the STDOUT_TOP format with a period.
Lines 249 to 253

Define the STDOUT body of the report.

Line 254
Terminates the STDOUT format and brings us to the end of the script.

Modifying the dba_jobsm.pl Script

By now you should have a good understanding of the structure and logic of the exist-
ing version of the dba_jobsm.pl script and its dba_jobs.conf configuration file. Now
let’s talk about how you might want to modify the script and file to provide some
code flexibility. In addition to showing specific modifications for this particular case,
the following sections should give you the background necessary to be able to exam-
ine and modify additional scripts to suit your own requirements.

Configuring parameters

The first change we’ll make involves Oracle’s NLS_DATE_FORMAT, a setting used
within the database to set the default format in which date column data will be
returned. This format is currently hard-coded into the script at line 20:

20: my $nlsDateFormat = q{yyyy/mm/dd hh24:mi};

If we ever want to change this value, we’ll have to edit the script each time. It’s much
better to specify this value as a configurable item in the dba_jobs.conf configuration
file. So let’s comment out line 20 of the script with a # hash character as follows:

20: #my $nlsDateFormat = q{yyyy/mm/dd hh24:mi};

Modifying a Scriptin the Toolkit | 419

Now find lines 124 and 138. They look like the following:

124:$dbh->do(qq{alter session set nls_date_format = '$nlsDateFormat' });

138: $systemDate = PDBA->sysdate($dbh, NLS DATE FORMAT => $nlsDateFormat);
You need to change these lines to this:

124: $dbh->do(qq{alter session set nls date format = '$dbajobs::nlsDateFormat' });

138: $systemDate = PDBA->sysdate($dbh, NLS DATE FORMAT => $dbajobs::nlsDateFormat);

Save the dba_jobsm.pl file and open dba_jobs.conf. Now we’ll add an entry for NLS_
DATE_FORMAT. We've displayed the relevant code snippet that adds the
$nlsDateFormat variable. Notice that this variable name has also been added to the
use vars statement. Doing so prevents use warnings from raising a message about the
single use of a variable.

package dbajobs;

use vars qw{ $emailAddresses $nlsDateFormat %databases };
$nlsDateFormat = q{yyyy/mm/dd hh24:mi};
$emailAddresses = [quw{yourname@yourdomain.com}];

Now simply run dba_jobsm.pl to test it. Be sure to change the value of the
$nlsDateFormat variable so you can verify the results.

Adding passwords to the configuration file

Although we encourage you to use the password server, we’ll show you how to work
around it just in case you're unable to use it for some reason. While putting pass-
words in configuration files is workable, it is both a security risk and more work to
maintain. However, given those caveats, let’s begin with the configuration file by cre-
ating data constructs that can hold DBA passwords as well as usernames:

package dbajobs;

use vars quw{ $emailAddresses $nlsDateFormat %databases };

$nlsDateFormat = q{yyyy/mm/dd hh24:mi};
$emailAddresses = [quw{yourname@yourdomain.com}];

%databases = (sherlock => { tso1 => [qw{system manager}], },
watson => { ts98 => [quw{system manager}],
ts99 => [quw{system manager}], });
1;

The DBA user and its password are placed inside array references. The user is ele-
ment O of each array reference, and the password is element 1.

Now it’s time to change the script. Open dba_jobsm.pl and locate the following lines:

15: use PDBA::0PT;

70: print

420 | Chapter13: Extending the PDBA Toolkit

"\t\tusername: $dbajobs::databases{$machine}->{$database}\n";

108: my $username = $dbajobs::databases{$machine}->{$database};
111: my $password = PDBA::OPT->pwcOptions (

112: INSTANCE => $database,

113: MACHINE => $machine,

114: USERNAME => $username

115:);

Change these lines so they appear like those in Example 13-3:

Example 13-3. Results of changes to dba_jobsm.pl for password usage.

15: #use PDBA::0PT; --- Commented out, array references used below! :-)

70: print
"\t\tusername: $dbajobs::databases{$machine}->{$database}[0]\n";

108: my $username = $dbajobs::databases{$machine}->{$database}[0];
111: my $password = $dbajobs::databases{$machine}->{$database}[1];
112: H#INSTANCE => $database,

113: #MACHINE => $machine,

114: HUSERNAME => $username

115: #);

Once again, run the script to validate the changes.

Modifying a Module in the Toolkit

In Chapter 9 we introduced the supporting modules included in the Perl DBA Tool-
kit and described briefly what they do. Just as you might wish to modify or extend
the toolkit’s scripts, as we described earlier in this chapter, you might also find a
good reason to modify the modules. In an effort to anticipate the kinds of changes
you might want to make to these modules, in the following sections we’ll provide a
quick guide on how to modify the modules in the toolkit. We’ll show two examples
here and hope you can extrapolate to many more:

Adding a method
We'll add a usage method to the PDBA module. This will allow us to define a
scalar variable containing help screen information, which can then be passed
into the usage method. This will save us from having to code individual usage
subroutines in each separate script.

Dealing with NULL columns returned by Oracle
We'll deal with NULLs returned by Oracle when printing output. This is a use-
ful thing to do because NULL values raise undefined value errors when included
in certain Perl statements.

Modifying a Module in the Toolkit | 421

Modifying the PDBA Module to Add a Method

In this section we’ll essentially modify the PDBA module in order to add a method
that will help us in doing our work. In reality, though, rather than modifying the
existing code, we’re going to create our own parallel, modified module. We’ll explain
why we’ve taken this approach as we work through the example.

We've created a separate downloadable module, called PDBAx, for “PDBA Exten-
sions,” that contains the code we describe in this section. If you want to do so, you
can download and install this code in the same manner as you would the ordinary
PDBA module. There’s no absolute need to download and install PDBAx, but you
may wish to do so to help follow the rest of this chapter or simply for your own
experimentation. You can download PDBAx-1.00.tar.gz, or its latest derivative, from
our book’s page on the O’Reilly site:

http://www.oreilly.com/catalog/oracleperl/pdbatoolkit

Installation is straightforward, as we describe in the following sections.

Installing PDBAX on Unix
Run the following to install PDBAx on Unix systems:

$ gunzip -c PDBAx-1.00.tar.gz | tar xvf -
$ cd PDBAX-1.00

$ perl Makefile.PL

$ make install

There are no tests to run for this module.

Installing PDBAx on Win32

Download the PDBAx.ppd PPM file from the web site and save it in a location such
as CA\TEMP. You probably know the rest of the drill:

DOS> ppm
PPM> install --location c:\temp PDBAx

Adding a Usage Method

Most of the scripts included in our toolkit employ a usage subroutine that is called
for various reasons. Perhaps the -help option was included on the command line, or
perhaps required options were missing. The usage routine generally looks something

like this:

sub usage {
my $exitVal = shift;
use File::Basename;
my $basename = basename($0);
print qq/
$basename

422 | Chapter13: Extending the PDBA Toolkit

usage: $basename
-machine database_server
-database database instance
-username account

/3
exit $exitVal;
1
A common PDBA.pm method would eliminate the need for this subroutine in other
scripts. Writing such a method is one approach to solving your problem. Some sug-
gested code for such a method is shown in Example 13-4.

Example 13-4. The PDBA usage method

sub usage {
my ($exitval,$helpStrRef) = @ ;
use File::Basename;
my $basename = basename($0);
print qq{

usage: $basename
${$helpStrRef}
};

b

exit $exitVal;

Here’s how you might use it in a script:

use PDBA;

my $help = g{
-database database to connect to
-username database account
-password password for the account

|5

1-F($optctl{help}) { PDBA::usage(1,\$help) }

So now you place your new usage method in the PDBA.pm file and try it out in a few
scripts. And it works great. However, there’s one small problem. What happens if
you install a newer version of the PDBA Toolkit module library? That’s right—your
carefully crafted usage method will no longer be in the PDBA module, and all of your
scripts calling PDBA::usage will break. Ouch!

Rather than modifying the PDBA module, why not create your own subclassed mod-
ule? Doing so will allow you to extend the PDBA module without fear of breaking
scripts that use it in its current incarnation. Creating your own module also elimi-
nates the problems that would occur if you download a new version of the PDBA
module and it overwrites your carefully crafted extensions.

Modifying a Module in the Toolkit | 423

Perl lets you do this with relative ease, and we’ll show you how.” Let’s call our new
subclassed module PDBAx. This module will take the place of PDBA in your scripts.
The full code for PDBAx appears in Example 13-5.

Example 13-5. The entire PDBAx module
package PDBAXx;

our $VERSION=1.00;

use PDBA;

our @ISA = qw{PDBA};

sub usage {
my ($exitval,$helpStrRef) = @_;
use File::Basename;
my $basename = basename($0);
print qq{

usage: $basename

${$helpStrRef}
b
b

1;

exit $exitval;

You may be surprised at how little code there is in Example 13-5. Yet all the features
of the PDBA module are available through PDBAx. That’s because of the magic of
the @ISA array. The methods and attributes of modules placed in @ISA are inher-
ited by calling modules—in this case, PDBAx. Try running the code shown in
Example 13-6. The PDBAx osname method is inherited directly from the PDBA
module.

Example 13-6. Testing PDBAx
#!/usr/bin/perl -w

use warnings;
use strict;

use PDBAXx;
print "$PDBA::VERSION\n";

print PDBAx->osname, "\n";
my $help = g{

-database database to connect to
-username user to connect as

* We're using the simplest features of Perl’s object orientation, as described in Appendix A. For a more defin-
itive description, refer to Object Oriented Perl, by Damian Conway (Manning 2000).

424 | Chapter13: Extending the PDBA Toolkit

Example 13-6. Testing PDBAx (continued)

-password password for user
15
PDBAX: :usage(1,\$help);
The benefit of extending PDBA in this way is that when your intrepid authors release
the latest version of the PDBA Toolkit, your usage method will be safely encapsu-
lated within its own PDBAx module. Even if we come up with similarly named meth-
ods, yours will override them. It’s a kind of magic.

Modifying the PDBA::GQ Module to Deal with NULL Columns

In the following sections we’ll describe how you can modify the PDBA::GQ module
to deal with Oracle NULL values. First, though, let’s take a look at the problems
involved in using NULLs.

Oracle and NULL values

When you first start using the Oracle database, NULL values may take a little get-
ting used to. A NULL is never equivalent to any other value, including another
NULL. The truth table in Table 13-1 sums up the results of comparing NULL to
NULL, with various SQL operators. Note that only one True is returned with the
special IS NULL comparison.

Table 13-1. Null truth table

Option Description
NULL = NULL False
NULL <> NULL False
NULL < NULL False
NULL > NULL False
NULL IS NOT NULL False
NULL BETWEEN NULL AND NULL False
NULL = " False
NULL IS NULL True

One problem you discover when dealing with NULLs in an Oracle database is that
Oracle treats empty strings and NULL values the same way. This is different from
other databases, and is readily apparent when you use NULLs with Perl. We'll see
this in the next section.

Testing the use of NULLs

The null_test.pl script in Example 13-7 builds a table, NULL_TEST, and populates it
with two rows of data.

Modifying a Module in the Toolkit | 425

Example 13-7. null_test.pl

01: #!/usr/bin/perl

02:

03: use warnings;

04: use strict;

05: use PDBA::CM;

06: use PDBA::GQ;

07: use PDBA::DBA;

08:

09: my ($database, $username, $password) = qw{tsOl scott tiger};
10:

11: my $dbh = new PDBA::CM(

12: DATABASE => $database,

13: USERNAME => $username,

14: PASSWORD => $password

15:);

16:

17: eval {

18: local $dbh->{PrintError} = 0;

19: $dbh->do(q{drop table null test});

20: };

21:

22: $dbh->do(q{create table null test

23:

24: first name varchar2(20) not null,

25: middle initial varchar2(1) null,

26: last_name varchar2(20) not null

270)

28: 1);

29:

30: my $insHandle = $dbh->prepare(q{insert into null test values(?,?,?)});
31:

32: $insHandle->execute('Alfred','E", 'Neuman');
33: $insHandle->execute('Peter',undef, 'Parker');
34: $insHandle->execute('Clark','", 'Kent");

35: $dbh->commit;

36:

37: my $gq = new PDBA::GQ ($dbh, 'null test');
38:

39: while (my $row = $gg->next) {

40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST NAME},

42: $row->{FIRST NAME},
43: $row->{MIDDLE INITIAL}
a4:);

45: }

46: $dbh->disconnect;

Note the following about this example:

Lines 22 to 28
The CREATE TABLE statement defines two columns, FIRST_NAME and
LAST_NAME, which are both required, while the MIDDLE_INITIAL column is
nullable.

426 | Chapter13: Extending the PDBA Toolkit

Line 32
The first row insert places values in all three columns.
Line 33
Only the FIRST_NAME and LAST_NAME columns are populated. The value
for the MIDDLE_INITIAL column is defined as undef. This causes the
MIDDLE_INITIAL value to be NULL.
Line 35
Inserts another row, but this time the MIDDLE_INITIAL column is populated
with an empty string.
Using the following SQL, we can now prove that Oracle treats both the empty string
and undef as NULL values:

SOL> select * from null test where middle_initial is null;

FIRST_NAME M LAST_NAME
Peter Parker
Clark Kent

2 rows selected.

This problem becomes apparent in Perl when a NULL column is retrieved from a
database and an attempt is made to reference the value in a statement. You can see
this in lines 40 to 44 of Example 13-7, which we reproduce here:

40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST NAME},
42: $row->{FIRST NAME},
43: $row->{MIDDLE_INITIAL}
44:);

Line 40 to 44

Line 40 is the first line of a multi-line printf statement. Line 41 references the
LAST_NAME, line 42 the FIRST_NAME, and line 43 the MIDDLE_INITIAL.
Printing the first row presents no problem, because all three columns are popu-
lated. That changes with the second row when the script is executed, as seen
here:

Last: Neuman First: Alfred MI: E

Use of uninitialized value in printf at ./null test.pl line 40 (#1)

(W uninitialized) An undefined value was used as if it were already

defined. It was interpreted as a "" or a 0, but maybe it was a mistake.
To suppress this warning assign a defined value to your variables.

Last: Parker First: Peter MI:

Whoa! The second row returned a NULL for MIDDLE_INITIAL, which is treated by
Perl as an undef. This threw out a warning because of the use warnings pragma at the
top of the script.

Modifying a Module in the Toolkit | 427

Considering changes to the script

The warning output we saw in the previous section could be eliminated by turning
off the warning mechanism temporarily as follows:

38: no warnings;
39: while (my $row = $gg->next) {
40: printf("Last: %-20s First: %-20s MI: %1s\n",

41: $row->{LAST NAME},

42: $row->{FIRST NAME},
43: $row->{MIDDLE INITIAL}
a4:);

45: }

46: use warnings

However, this sweeps potentially difficult problems under the rug, which will almost
always re-surface to bite us later. A better solution would ensure that all of the row
elements get a guaranteed value before they get pumped into printf:

39: while (my $row = $gq->next) {

foreach my $key (keys %$row)

{ $row->{$key} = '' unless defined $row->{$key} }
40: printf("Last: %-20s First: %-20s MI: %1s\n",
41: $row->{LAST_NAME},
42: $row->{FIRST NAME},
43: $row->{MIDDLE INITIAL}
44:);
45: }

The foreach loop added between lines 39 and 40 assigns empty strings to any unde-
fined values in the $row hash reference, thereby preventing warnings.

Modifying the PDBA::GQ module

An even better solution would extend the PDBA::GQ (Generic Query) module so
your scripts would automatically deal with NULL column data. However, as we
learned earlier, modifying a module presents its own problems. What we need is a
modified version of the PDBA::GQ module. More specifically, we should modify the
PDBA::GQ->next method. Example 13-8 shows one way to do this.

Example 13-8. PDBAx::GQ

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

package PDBAx::GOQ;
our $VERSION=1.0;
use Carp;

use warnings;

use strict;

use PDBA::GQ;
our @ISA = qw{PDBA::GQ};

428

| Chapter13: Extending the PDBA Toolkit

Example 13-8. PDBAx::GQ (continued)

11:

12: sub next {

13: my $self = shift;
14: my ($ref) =@_;
15: $ref ||= [1;

16:

17: my $refType = ref $ref;

18:

19: my $data;

20:

21: $data = $self->SUPER::next($ref);

22: return unless $data;

23:

24: # transform NULL columns to a defined value
25: # to avoid problems with undefined values
26: if ('ARRAY' eq $refType) {

27: foreach(@$data){ $ = "' unless defined }
28: } elsif ('HASH' eq $refType) {

29: foreach my $key (keys %$data)

30: { $data->{$key} = "' unless defined $data->{$key} }
31: } else {

32: croak "invalid ref type of $refType "
33: "used to call PDBAx::GQ->next\n"
34: }

35: return $data;

36: }

37: 1;

Lines 1 to 10
Set up the new module as a subclass of the original PDBA::GQ module.

Line 13
Picks up the object’s reference in the $self variable.

Lines 14 to 17
Here we set up our subclassed next method to use an array reference as its
default datatype. Line 14 assigns the next argument (if it exists) to the $ref vari-
able. Line 15 assigns an empty array to $ref if the assignment failed in line 14.
(We've also changed this default to an ordinary array reference in this extension,
rather than a hash array reference, as with the older PDBA::GQ.) Line 17 sets the
$refType scalar to the type of reference in use. This will be used later when
assigning a value to NULL columns. (See Appendix A for more information
about references and the related ref operator.)

Line 21
Calls the next method in the parent class via the SUPER pseudoclass. This
accesses methods in parent classes and lets you modify the behavior of the base
class without rewriting all of its code.

Modifying a Module in the Toolkit | 429

Line 22
Returns if no data was found.

Lines 26 to 31
Here the contents of the returned data are checked for NULL values. We first
need to determine if the data is in a hash reference or an array reference. This is
done via the $refType variable created earlier. If the data is in an array reference,
each element is checked to see if it is defined. If it is undefined, an empty string
is assigned. This is done in line 27. The same is done for data returned as a hash
reference. Lines 29 and 30 assign empty strings to keys with undefined values.
Because an empty string is a valid defined value in Perl, we have eliminated our
warnings.

We need to change just two of the lines in the null_test.pl script we first encountered
in Example 13-8:

06: use PDBAx::(CQ;

37: my $gq = new PDBAx::GQ ($dbh, 'null test');

All of the functionality of the PDBA::GQ module is still available, but your modifica-
tions allow you to stop thinking about referencing NULL values.

Taking one more step

The PDBAx::GQ extension still has a shortcoming. It assigns an empty string to
numeric columns that are NULL, and this may be unsuitable for some purposes.
Financial reporting may require that these NULL columns be assigned a numeric
zero. While this can be done, the complexity of the code required to do it increases
significantly, as we’ll see in the code supplied via the downloaded PDBAx::GQ mod-
ule in Example 13-9.

Example 13-9. Assigning zero to NULL numeric columns in PDBAx::GQ

01: package PDBAx::GQ;
02:

03: our $VERSION=1.00;
04:

05: use Carp;

06: use warnings;

07: use strict;

08:

09: use PDBA::GQ;

10: our @ISA = qw{PDBA::GOQ};
11:

12: my @columnTypes;
13: my %columnTypes;
14:

15: sub new {

430 | Chapter13: Extending the PDBA Toolkit

Example 13-9. Assigning zero to NULL numeric columns in PDBAx::GQ (continued)

16: my $self = shift;
17: my ($dbh) = $ [0];
18: my $qobj = $self->SUPER: :new(@_);
19:
20: # get column types for array refs
21: @columnTypes =

map {scalar $dbh->type_info($_)->{TYPE_NAME}} @{$qobj->{TYPE}};
22:
23: # get column types for hash refs
24
25: # get an array of data type numbers
26: my @types = @{$qobj->{TYPE}};
27:
28: # get a hash ref of column names and position
29: my $nameHash = $qobj->{NAME uc_hash};
30:
31: # create a reverse hash with the column number as the key and
32: # the column name as the value
33: my %colnumHash = map { $nameHash->{$_} => $_ } keys %$nameHash;
34:
35: # create an array of the type names (VARCHAR2, DATE, etc) from the
36: # type info method
37: my @columnTypeNames =

map { scalar $dbh->type info($)->{TYPE_NAME} } @types;
38:
39: # create a hash with column name as the key and

data type as the value
40: %columnTypes =

map { $colnumHash{$ } =>

$columnTypeNames[$] } 0..$#columnTypeNames;

41:
42: $qobj->{private_PDBA_DATA_TYPES_ARRAY} = \@columnTypes;
43: $qobj->{private_PDBA_DATA_TYPES_HASH} = \%columnTypes;
44: return $qobj;
45: }
46:
47: sub next {
48: my $self = shift;
49: my ($ref) =@ ;
50: s$ref [|= [];

51:

52: my $refType = ref $ref;
53:

54: my $data;

55:

56: $data = $self->SUPER::next($ref);

57: return unless $data;

58:

59: # transform NULL columns to a defined value
60: # to avoid problems with undefined values
61: if ('ARRAY' eq $refType) {

62: foreach my $el (0..$#{$data}) {

Modifying a Module in the Toolkit

431

Example 13-9. Assigning zero to NULL numeric columns in PDBAx::GQ (continued)

63:
64:
65:
66:

67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

77:
78:
79:
80:
81:

82:
83:
84:
85:
86:

unless (defined $data->[$el]) {
if ($self->{private PDBA DATA TYPES ARRAY}[$el] =~ /CHAR/) {
$data->[$el] = '';
} elsif ($self->{private PDBA DATA TYPES ARRAY}[$el] =~
/DOUBLE |[NUMBER/) {
$data->[$el] = 0;
} else { $data->[$el] = "' }
}
}
} elsif ('HASH' eq $refType) {
foreach my $key (keys %$data) {
unless (defined $data->{$key}) {
if ($self->{private PDBA DATA TYPES HASH}{$key} =~ /CHAR/) {
$data->{skey} = '';
} elsif ($self->{private PDBA DATA TYPES HASH}{$key} ="~
/DOUBLE |NUMBER/) {
$data->{$key} = 0;
} else { $data->{$key} = "' }
}
}
} else {
croak
"invalid ref type of $refType used to call PDBAx::GQ->next\n"}

return $data;

}

1;

In this example we subclass the new method of PDBA::GQ. We do this so we can
determine the datatypes for each column selected in a query.

Line 21

Uses DBI’s type_info method to retrieve query column datatypes.

Lines 26 to 40

Store the datatypes for each column in both an array and a hash, so we’re pre-
pared for whatever the next method throws at us.

Lines 42 to 43

Take advantage of a seldom-used Perl DBI feature, the private_ attributes that
may be assigned to a database handle. The DBI documentation states that we’re
allowed to assign new attributes to a statement handle as long as they begin with
the private_ prefix. These private attributes are used in the PDBAx::GQ->next
method to determine if the value returned for a column is undefined. If so, it
determines the datatype of each of those columns. Once known, a zero is
assigned to returned columns with a numeric type, and an empty string to all
other undefined columns. This is admittedly more complex than the situation
we had before, because of our new requirement to assign zeroes to unassigned

432

| Chapter13: Extending the PDBA Toolkit

numeric columns. However, the added effort is worth it for the convenience of
remaining unconcerned about the side effects of NULL columns.

The script in Example 13-10 uses the all-new PDBAx::GQ module. Both numeric
and character columns are inserted into a test table with NULL values, and then later
printed out without any need to check to see if they’re undefined. The script is stored
in the PDBAx distribution as pdba_ext2.pl.

Example 13-10. Using the PDBAx:GQ module with numeric and character values
#!/usr/bin/perl

use warnings;

use strict;

use PDBA::CM;

use PDBAx::GQ;
use PDBA::0PT;
use Getopt::Long;
use PDBAXx;

my %optctl=();

my $help=qg{
-machine database server
-database database SID
-username account name
-password password for account

b

passthrough allows additional command line options
to be passed to PDBA::0OPT if needed
Getopt::Long: :Configure(qw{pass_through});

GetOptions(\%optctl, "help!", "machine=s",
"database=s", "username=s",
"password=s",);

if ($optctl{help}) { PDBAx::usage(1,\$help) }

lookup the password if not on the command line
my $password = '';
if (defined($optctl{password})) {

$password = $optctl{password};

} else {

defined($optctl{machine})

| | defined($optctl{database})
|| ! defined($optctl{username})

) { PDBAx::usage(1,\$help) }

if (
|
\

$password = PDBA::OPT->pwcOptions (
INSTANCE => $optctl{database},

Modifying a Module in the Toolkit | 433

Download from Wow! eBook <www.wowebook.com>

Example 13-10. Using the PDBAx:GQ module with numeric and character values (continued)

MACHINE => $optctl{machine},
USERNAME => $optctl{username}

)5
}

my $dbh = new PDBA::CM(DATABASE => $optctl{database},
USERNAME => $optctl{username},
PASSWORD => $password,);

drop test table

eval { $dbh->do(q{drop table star trek}); };

$dbh->do(g{create table star trek(title varchar2(50)
, year_released varchar2(4)
, viewings number(4))});

my $insHandle = $dbh->prepare(q{ insert into star trek values(?,?,?) });

$insHandle->execute('Star Trek - The Motion Picture','1979',1);
$insHandle->execute('Star Trek II - The Wrath of Khan','1982',4);
$insHandle->execute('Star Trek III - The Search for Spock','1984',undef);
$insHandle->execute('Star Trek IV - The Voyage Home','1986',8);
$insHandle->execute('Star Trek V - The Final Frontier','1989',1);
$insHandle->execute('Star Trek VI - The Undiscovered Country','1991',3);
$insHandle->execute('Star Trek Generations','1994',1);
$insHandle->execute('Star Trek - First Contact','1996',4);
$insHandle->execute('Star Trek - Insurrection','1998',2);
$insHandle->execute('Star Trek: Nemesis',undef,undef);

$dbh->commit;
my $gq = new PDBAx::GQ($dbh, 'star_trek', {ORDER_BY=>'year released'});
my $colHash = $gq->getColumns;

while (my $row = $gg->next) {
print "TITLE: $row->[$colHash->{TITLE}]\n";
print "\tYEAR: $row->[$colHash->{YEAR_RELEASED}]\n";
print "\tVIEWINGS: $row->[$colHash->{VIEWINGS}]\n";

$dbh->disconnect;

Previously, printing values returned from NULL columns would have required
checking the return values within each script; now, we can safely ignore them:

$ pdba_ext2.pl -machine sherlock -database tsol -username jkstill

TITLE: Star Trek - The Motion Picture

YEAR: 1979

VIEWINGS: 1

TITLE: Star Trek II - The Wrath of Khan
YEAR: 1982

VIEWINGS: 4

TITLE: Star Trek III - The Search for Spock

434 | Chapter13: Extending the PDBA Toolkit

YEAR: 1984

VIEWINGS: 0

TITLE: Star Trek IV - The Voyage Home
YEAR: 1986

VIEWINGS: 8

TITLE: Star Trek V - The Final Frontier
YEAR: 1989

VIEWINGS: 1

TITLE: Star Trek VI - The Undiscovered Country
YEAR: 1991

VIEWINGS: 3

TITLE: Star Trek Generations

YEAR: 1994

VIEWINGS: 1

TITLE: Star Trek - First Contact
YEAR: 1996

VIEWINGS: 4

TITLE: Star Trek - Insurrection

YEAR: 1998

VIEWINGS: 2

TITLE: Star Trek: Nemesis

YEAR:

VIEWINGS: 0

Notice that one of the entries has a blank year of release, and two of them have zero
viewings. These values are actually stored as NULL in the database, but now,
because of our implementation of PDBAx::GQ, they may be referenced with impu-
nity—without invoking the wrath of Perl and use warnings. Revenge is a dish best
eaten without undefined values!

Modifying a Module in the Toolkit | 435

PART IV
Appendixes

This fourth part of the book provides quick references to various aspects of the Perl
language. It is designed to supply additional background information for those new
to Perl. It consists of the following appendixes:

Appendix A, The Essential Guide to Perl, summarizes basic Perl syntax,
including object-oriented features.

Appendix B, The Essential Guide to Perl DBI, presents the main Per] DBI
application programming interface (API) functions.

Appendix C, The Essential Guide to Regular Expressions, describes the basics
of regular expressions (regexes), patterns of literals and meta-characters used
extensively by Perl for pattern matching.

Appendix D, The Essential Guide to Perl Data Munging, summarizes the Perl
data-munging modules that are helpful in formatting and transforming data
for data warehouses and other such Oracle applications; it includes sections
on numeric, date, conversion, and XML modules.

437

APPENDIX A
The Essential Guide to Perl

In Chapter 1, Perl Meets Oracle, we briefly explored the history and culture of Perl
without examining the language itself in any detail. In this appendix we’ll describe
just enough of the language to allow you to understand how Perl DBI works and how
you can take advantage of the Oracle applications described in this book. We’ll focus
on the following:

* Getting information about Perl

* Running Perl scripts

* Variable types

* Program context

* Program and subroutine parameters

* References

* Object orientation

We'll also briefly describe how to get information about Perl and how to invoke it.
This will be a roller coaster ride, so hang onto your bitmaps!

Of course, there is much more to learn about Perl. Consult the online and offline ref-
erences listed in Chapter 1 for additional and much more complete resources.

Obtaining Online Information

Perl is one the most heavily documented languages in the known Universe! This
appendix only scratches the surface. Fortunately, there exists a wealth of online
information that comes automatically with Perl. To get going, type the following
command:

$ perldoc perl

This will provide you with a complete list of the many available Perl manpages. The
most important of these, besides perldoc perl itself, are listed in Table A-1.

439

Table A-1. The main Perl manpage documents

Manpage

perltoc

perlsyn

perldata

perlop

perlrequick, perlretut, perlre
perlvar

perlsub

perlfunc

perlreftut, periref
perlmod, perlobj
perlipc

perlrun

perldebug, perldiag
perlsec

perlstyle

perltrap

Description

Table of contents for the manpages
Perl syntax

Data structures

Operators and precedence

Regular expressions; see Appendix C
Predefined variables

Subroutines

Built-in functions

Perl references

Modules and objects

Inter-process communication

Perl execution and options
Debugging and diagnostics

Perl security

The Perl style guide

Traps for the unwary

There used to be only a single perlfaq page, listing all the Frequently Asked Ques-
tions for Perl, but although this page still exists, its original information has been
greatly expanded into the nine FAQs detailed in Table A-2. Again, access these with

the perldoc perlfaq syntax.

Table A-2. The Perl FAQ documents

Manpage Description

perlfaq An FAQ overview

perlfagl General questions about Perl
perlfag2 Obtaining and learning about Perl
perlfag3 Programming tools

perlfag4 Data manipulation

perlfag5 Files and formats

perlfagé Regular expressions; see Appendix C
perlfag7 Perl language issues

perlfag8 System interaction

perlfag9 Networking

440 | AppendixA: The Essential Guide to Perl

There are also various notes for different operating systems. The main platforms cov-
ered are listed in Table A-3.

Table A-3. Operating system documentation

Manpage Description
perlaix Notes for AIX
perlsolaris Notes for Solaris
perlhpux Notes for HP-UX
perlcygwin Notes for Cygwin
perlvms Notes for VMS
perldos Notes for DOS
perlwin32 Notes for Windows
perlos2 Notes for 05/2
perlos390 Notes for 05/390

Virtually every CPAN module author also provides his or her own self-installing
perldoc notes for the manpage library. As an example, let’s look at the first few rows
of the documentation provided for DBD::Oracle:

$ perldoc DBD::Oracle

NAME
DBD::0Oracle - Oracle database driver for the DBI module

SYNOPSIS
use DBI;

$dbh = DBI->connect("dbi:Oracle:$dbname", $user, $passwd);

Finally, if there’s a particular built-in function you’re interested in, you can run
perldoc with the -f function switch, to interrogate it:

$ perldoc -f printf

printf FILEHANDLE FORMAT, LIST

printf FORMAT, LIST
Equivalent to "print FILEHANDLE sprintf(FORMAT, LIST)", except
that "$\" (the output record separator) is not appended. The
first argument of the list will be interpreted as the "printf"
format. If "use locale" is in effect, the character used for the
decimal point in formatted real numbers is affected by the
LC_NUMERIC locale. See the perllocale manpage.

Don't fall into the trap of using a "printf" when a simple
"print" would do. The "print" is more efficient and less error
prone.

Obtaining Online Information | 441

For more online information, try http://www.perl.com or http://www.cpan.org.

Of course, there are also many excellent printed books describing the Perl language
for both beginners and advanced developers. See Chapter 1 for some suggestions.

Running Perl Scripts

You can run your Perl scripts in several ways on Unix. For example, you can invoke
the perl program directly on the command line as follows:

$ perl my unix_perl_script.pl

Alternatively, make your script executable and then install a full path call to your
chosen version of Perl on the first line of your script. This is done using the shebang
#! syntax familiar to shell programmers:

#!/usr/local/bin/perl

use warnings;
use strict;

Rest of my script
You can now run the program directly:

$ chmod +x my unix_perl script.pl

$./my_unix_perl script.pl
On most Win32 systems, the .pl suffix is usually associated with the Perl interpreter;
it should work correctly if you double-click on your script or if you call it directly.
Alternatively just call perl directly again and specify the script name:

C:\> perl my win32_perl script.pl

Perl Variable Types: Scalars, Arrays, and
Hashes

There are three basic variable types in Perl, the last two of which are merely collec-
tions of the first arranged in specific patterns. These three variable types are illus-
trated in Figure A-1; note that we’ve substituted a Perl camel for any kind of scalar
element, such as a string, an integer, or a float.

Scalars

Scalars are single-valued entities—numbers (floats, decimals, hexadecimals, etc.),
strings, or references. (We’'ll describe references later in this appendix.) Scalars,
which are prefixed with the dollar sign ($), are the basic building blocks of Perl, the
indivisible atom from classical Greek science. Everything in Perl reduces to scalars,
which bear names up to 251 characters in length. Because Perl is a weakly typed

442 | AppendixA: The Essential Guide to Perl

Scalar
Asingle value [
(number, string, or reference)

Hash
A collection of scalar values
(indexed by string)

Array
Alist of scalar values
(indexed by number)

®
=S

Figure A-1. Perl’s three main variable types

language,” scalar types also change “automagically” between strings and numbers as
you use them:

$harpo = "1"; # A previously unmentioned $harpo is
set to a string value of "1"

$harpo++; # Perl recognizes that you wish to turn "1" into 1, and
then add one on, to get to 2

$harpo = "Groucho"; # The $harpo variable turns dynamically
back into a string, from a numeric 2

Arrays

Arrays (or list arrays) are simply lists of scalars indexed by number, starting from
zero (the second element is one away from the beginning). A typical array can be set
up in the following way:
@video collection =
("Day at the Races", "Duck Soup", "A Night at the Opera");
The @video_collection array has three string elements. However, an array can con-
sist of any mixture of atomic scalar types:

@casablanca_items = ("Rick's", 2, 4000.00, "A Beautiful Friendship");

You can think of an array as being like an ice hockey team wearing shirt numbers,
but no names. Each player is still an individual, but he or she is accessible within the
team (or array) by number. To access an individual array element, we precede the

* A weakly typed language is one in which variables do not have to have their datatypes strictly defined (as
integers, floats, strings, and so on). On the other hand, a strongly typed language is one in which all variables
must be predeclared with their datatypes.

Perl Variable Types: Scalars, Arrays, and Hashes | 443

array name with a scalar § symbol, and follow it with the numeric position of the
scalar within the array. This position, or shirt number, is held within square brack-
ets.

A

\
- Whenever you see [] square brackets in Perl, outside of regular expres-
.‘s\ sions, you should think immediately in terms of arrays, array slices,
~* ‘tk*> anonymous arrays, or lists. There is almost certainly something array-

like going on!

To demonstrate scalar notation of array elements, let’s introduce a simple foreach
loop in Perl to iterate through a list, from 0 to 3:

foreach $i (0..3) {
print $i, " "

}
This prints out:

, $casablanca_items[$i], "\n";

0 Rick's

12

2 4000

3 A Beautiful Friendship

Notice how 4000 printed out, rather than 4000.00. If it can, Perl reduces floats to
integers in memory, to save space. It turns them back again as necessary.

There are two ways of finding out the size of an array. The first way is to use the $#
notation in front of the array name. This provides the highest array index (the size of
the array minus one). The other is to assign an array to a scalar. Perl interprets this in
scalar context, and gives us the size of the array. The following code generates the
two different types of figures:

$highest index = $#casablanca_items; # Watch out for comment confusion!
$size_of array = @casablanca_items;

print "highest_index >", $highest index, "<\n";
print "size of array >", $size of array, "<\n";

This code produces the following:

highest index >3«
size of array >4«

Some people avoid using the $# syntax for the highest current array
index. Because # is also a Perl symbol that is used to begin a comment
(which extends to the end of the line), the various # symbols can
become confusing within complicated code blocks.

444 | AppendixA: The Essential Guide to Perl

Hashes

Hashes (or associative arrays) are collections of scalars indexed by string names
rather than integers. Think of the ice hockey team, in the second period, now wear-
ing shirts displaying only their names, without the numbers. In Figure A-1, the three
scalar values are represented by “Fred,” “Barney,” and “Wilma.” Although at first
the concept of hashes may seem a bit confusing, you’ll find that you’ll tend to use it
for most things in Perl once you’re used to it (especially with object orientation, as
we’ll see later). A hash can be constructed via the following flat list initialization
technique:
%middle_earth_leaders =
('Saruman', 'Orthanc', 'Sauron', 'Mordor',
'Bombadil', 'The 0ld Forest');
This pattern goes in a key=>value order. To make this visually clearer, we can add
some syntactic sugar, indent a little more, and rewrite:
%middle earth leaders =
(Saruman =» 'Orthanc',
Sauron => 'Mordor’,
Bombadil =» 'The 0ld Forest');
The => aliases as a comma, while making it clear that the left-hand values are key
strings, without the need for the now unnecessary quote marks.

The other main difference between ordinary arrays and hash arrays is that you can
always work out where the individual scalars are inside an array by knowing their
numeric position. Imagine our ice hockey team lining up in a numeric order before
the start of the game. Hashes are different. We can never be sure in what order the
key/value pairs will come out. This time, imagine the entire team mobbing the cru-
cial goal scorer just after the final whistle. There’s no predefined order. To access
each scalar, we generally iterate the unordered string index names, and then sort
them out, before re-accessing the hash:

foreach $key (sort keys %middle earth leaders) {

print $key, " => ", $middle_earth leaders{$key}, "\n";

}
Notice again that we use $ in front of the hash array name to get the scalar value.
However, we know we’re dealing with hashes because the clue is curly brackets ({ }),
which contain the index string name. The above code produces the following output:

Bombadil => The Old Forest

Saruman => Orthanc

Sauron => Mordor
Incidentally, this is where we can use our $_ pronoun for the first time, as a sort of
‘it.” Instead of using the $key variable explicitly, we could use the following code:

foreach (sort keys %middle earth leaders) {

print $_, " => ", $middle earth leaders{$_}, "\n";
}

Perl Variable Types: Scalars, Arrays, and Hashes | 445

Notice that there is no scalar variable following the foreach, in the first line of code,
as earlier. However, $_ is being used in the same position of $key inside the loop.
What’s going on? Perl takes the preceding code and assumes that because foreach
has no associated scalar, we really meant to use the “it” pronoun, $_. Perl therefore
translates the above code into the following logical snippet before executing it.
Notice the assumed first appearance of $_:

for $_ (sort keys %middle earth leaders) {

print $_, " => ", $middle earth leaders{$_}, "\n";
}

Revenge of the Mnemonics

Here are some easy ways to remember our Perl definitions:

Scalars
To remember scalars, think of the $ dollar sign preceding the variable name—it
looks a bit like an “S” for “Scalar.”

Arrays
The simplest way to remember the @ array notation, is that @ has an “A” in the
middle, which stands for “Array.”

Hashes
To try to remember the hash symbol, think of the % character, with its slash and
two small opposed circular elements, as standing for key/value. Imagine that key
and value each represents one circle from the percentage division sign, with the
slash dividing them into the key/value pair. (OK, it’s not great, but this is the
“Revenge of the Mnemonics™!)

Array and Hash Array Slices

In case you’re having trouble imagining arrays and hashes in terms of hockey teams
accessed by number or name, try thinking of them in more traditional pie shapes.
This can make it easier to imagine array slices, which are discrete collections of sca-
lars. The two different pie types, and slice patterns, are displayed in Figure A-2.

Perl Contexts: Void, Scalar, List, and Boolean

There are three main lvalue (left-hand value) contexts in Perl; void context, scalar
context, and list context. They typically operate when subroutines are called or when
an lvalue assignment is made:

localtime(); # Step 1: Void context, nothing returned

$this time = localtime(); # Step 2: Scalar context, scalar returned
print "$this time \n";

446 | AppendixA: The Essential Guide to Perl

Array in pie format:
@sevenHeavenlyBodies =
("Sun’“Moon’, “Mars’, “Mercury’

6 0

E
@sevenHeavenlyBodies HHH“IHW\M @sevenHeavenlyBodies[1,3,6]

o 111

"“Jupiter’ “Venus, “Saturn”);

wvi

Hash array in pie format:
%day0fWeekFromName =>
("Sun"=>0,"Mon"=>1,"Tue"=>2, "Wed"=>3, "Thu"=>4, "Fri"=>5,"Sat"=>6);

“Sat” “Sun”

SLICE
9%day0fWeekFromName \HHHH\) @day0fWeekFromName{"Sun”, “Thu’, “Fri"}

Figure A-2. Array slices in Perl

@array time = localtime(); # Step 3: Array (or list) context, array
print "@array_time \n"; # returned.

This code produces:

Wed Mar 6 22:40:40 2002
40 40 22 6 2 102 3 64 0O

Let’s look at the three contexts illustrated here.

Void

In void context the localtime() function fails to return anything. Otherwise Perl uses
a built-in wantarray operator in the background to return whether the function is
supposed to return a scalar value or an array list.

Perl Contexts: Void, Scalar, List,and Boolean | 447

Scalar

When the lvalue is a scalar, as with $this_time, we know a scalar is required, so
localtime() supplies us with a single string of information:

Wed Mar 6 22:40:40 2002

List
In our last code line, wantarray tells us that an array is required in list context, so
localtime() gives us an array of different time-based variables supplying seconds,

minutes, hours, day of the month, month, number of years since 1900, the weekday,
the day of the year, and a daylight savings time flag:

40 40 22 6 2 102 3 64 0

Boolean

There is no boolean variable type in Perl, just Boolean context. In essence, if a scalar
is a string and it is either empty “”, or set to “0”, then it is interpreted as false. If it is
numeric and 0 or 0.0, it is interpreted as false. Absolutely everything else, except the
special undef value, is interpreted as true. (This can go against the grain for shell pro-
grammers, where 0 is true and everything else is false, but is natural for C program-
mers from the ol’ country.)

Program and Subroutine Parameters

The main part of any Perl script is sometimes known as package main, and just like
any Perl package it can have subroutines. Calling these routines is straightforward.
An example, displayed in Figure A-3, is broken down as follows:

1. You can deliver any number of parameters directly into a Perl script via the spe-
cial built-in @ARGYV array. The script’s own file name is stored in another spe-
cial scalar variable, $0. For instance, in Figure A-3, if the script was called
doctor_yes.pl and had three parameters, we could run it like this:

$ perl doctor_yes.pl '007' 'James' 'Bond’

In the background, Perl would set the following values for us before the rest of
the script was executed:
$0 = 'doctor_yes.pl';
@ARGY = ('007', 'James', 'Bond');
We're then free to use these values throughout the rest of the program, as if
we're accessing ordinary variables.
2. There is a kind of mini-@ARGYV for subroutines, and each subroutine gets its
own one. This is the @_ array, which dynamically expands depending on how
many parameters we decide to send in. When we call funcOneTakesTwoParams()

448 | AppendixA: The Essential Guide to Perl

in Figure A-3, with two parameters Laurel and Hardy, this fills the @_ array, ded-
icated to funcOneTakesTwoParams(), with the two appropriate strings.

3. In funcTwoTakesSixParams() the six parameters are sent in here to fill another
totally separate @_ array. This has absolutely nothing to do with the totally sep-
arate @_ array owned by funcOneTakesTwoParams().

#lperl -w 2 0
use strict; Bond

(1] |||||||||||||||y||» @ARGVY
funcOneTakesTwoParams("Laurel”, "Hardy"); @
funcTwoTakesSixParams("1","2","A","3","B","C");

1

sub funcOneTakesTwoParams{

2) @— 1| Hardy | Lauel Jo
)

sub funcTwoTakesSixParams{

134 —) @— ¢
)

Figure A-3. @ARGV and @_

Environmental Variable Access

A Perl script can also make use of environmental variables. These are stored within
the built-in %ENV hash:

$0ld oracle home = $ENV{ORACLE HOME}; # Store latest ORACLE_HOME
$ENV{ORACLE_HOME} = "C:\ORANT"; # Now set new ORACLE_HOME

Variable Types

Production Perl code generally starts off with the following line:
use strict;
This pragma disciplines the naming of Perl’s two main types of variable:

Package variables
These are your typical global variables. We’ve seen how the main Perl script is
known as package main. When we use other packages, we’ll see that each one
has an entirely different namespace; in this way, different package variables
avoid naming clashes. What use strict does is to ensure that we fully qualify these

Program and Subroutine Parameters | 449

Download from Wow! eBook <www.wowebook.com>

variable names, so $friendly_variable in a small script must be used as $main::
friendly_variable in a script employing the use strict pragma. You can localize
package variables, within a code block, by the local operator, but only tempo-
rarily until the code block ends.

Lexical variables
Prefixed by my, these variables only exist within an appropriate code block,
unless referred to from the outside. They disappear when the code block ends. In
the following code the $timeString only exists within the while loop:
while($flag == 1){
my $timeString = some_time function(); # $timeString my'ed
$flag = some validation function($timeString);
}
Think of package variables as being the major chess pieces, one set for the black
package and one set for the white, with $black::king being entirely different from
$white::king. Think of the lexical my variables as being more like pawns, useful to a
particular package but generally disposable. However, as we’ll see later in our discus-
sion of object orientation, even humble my variables can be vital for object orienta-
tion - in the same way that a lowly pawn can decide chess games by reaching the
opposite package’s back line and becoming a knight or a queen.

The our prefix, introduced in Perl 5.6, mimics the my syntax, but defines globals
rather than lexically scoped variables. It’s a way of disguising package variables from
the discipline of the use strict pragma, often to make your code look cleaner by
avoiding full package name qualification. Aside from instances like this, where it is
assumed that you know what you’re doing, the use strict pragma will insist that you
employ either fully qualified package variable names or lexically declared variables.
Think of our as being like a bishop disguised as a pawn. Because it takes other pieces
diagonally, a bishop is sometimes used to hold up pawn defenses, but is still a major
piece possessing lethal power.”

Taint Mode

As well as use strict, you can also run your program with extra warnings to detect
syntax ambiguities, unused variables, and that sort of thing. You can turn these
warnings on via either the -w flag, or (in Perl Version 5.6 onwards) the use warnings
pragma. For instance, the following code at the top of a program will turn on extra
warnings:

#!/usr/local/bin/perl -w
use strict;

* At least one of your authors has forgotten this more than once, and has suffered the consequences when the
big pawn thing has turned the game, with an unexpected backwards corner-to-corner diagonal move, to take
a queen.

450 | AppendixA: The Essential Guide to Perl

Alternatively, use the more modern form:

#!/usr/local/bin/perl

use warnings;

use strict;
To go beyond warnings in certain classes of programs, you must use taint mode. This
mode works on the simple principle that nothing derived from outside your program
should be allowed to change anything else held outside your program. All data is
checked in taint mode, and the tainted variety usually includes @ARGV program
parameters, %ENV environmental variables, and any file input. Anything else that
uses tainted data also becomes tainted. You turn taint mode on with the following -T
switch:

#!/usr/local/bin/perl -T

There are many mechanisms within Perl for laundering tainted data, but they all
work on the basic assumption that you know what you’re doing before you untaint
such data. All CGI scripts should use taint mode, as should any other program being
accessed remotely, especially via the Internet. You should also consider taint mode
for any kind of daemon, or indeed any other kind of program that deals with exter-
nal users or sensitive data.

Perl References

The big difference between Perl 4 and Perl 5 was the introduction of references,
which made object orientation possible. You can think of references as being a kind
of pointers, locators, or remote tracking devices. They are the glue spot trails stick-
ing Perl 5 data structures together. Think of ET pointing the way home, Indiana
Jones standing on the X marking the spot in Venice, or James Bond trailing Goldfin-
ger’s car with a remote tracking device. The bony finger, the X, or the beeper are all
references to remote information. So how does Perl point to its own vital informa-
tion? In structure, references are simple scalars holding two vital pieces of informa-
tion:

* What kind of thing am I pointing at?

* Where is the thing I'm pointing at located (in hexadecimal memory)?

These two pieces of information can be seen in Figure A-4, stored under each of our
three references. The first refers to a scalar, the second to an array, and the third to a
hash. Each reference holds the variable type it’s referring to and its memory address.
We can see this for ourselves if we create three similar references, and then print
them out:

$camel = "Asimov";

@camel = ("Foundation and Earth", "I, Robot", "Nightfall");

%camel = (Emperor => "Cleon",
CouncilMan => "Trevize",

Perl References | 451

Robot => "R. Daneel Olivaw");

$scalar ref = \$camel; # References created by backslashing
$array_ref = \@camel; # the original variable.
$hash_ref = \%camel;

print $scalar_ref,

$ L — ,$ $

, $array ref, " ", $hash_ref, "\n";

0xB23092 (Hash) (y
(Array) 0x(30D98 0
0xA12B30 _ _OxG30p98 __

0xA12B30

®

Figure A-4. The glue of Perl references

Notice that each original variable is named camel, but this causes absolutely no clash
in Perl because scalars, arrays, and hashes are all different variable types, in the same
way that Homer Simpson, Springfield philosopher, and Homer the Greek, Trojan
chronicler, are different types of people, despite possessing the same name. When
executed, the print statement shown above produced memory address traces like
these:

SCALAR(0x457c3f4) ARRAY(0x457f420) HASH(0x4571468)

We can now take these three references and go back along their arrows, to get the
original information back out again:

print "SCALAR: ${$scalar_ref} \n"; # Isolate reference with braces
then dereference with a $ symbol.

print "ARRAY: @{$array ref} \n"; # Isolate reference with braces,
then dereference with a @ symbol.

%copy camel = %{$hash_ref}; # Isolate reference with braces, and then
dereference with a % to create hash copy.

foreach $key (keys %copy camel) {
print "HASH VALUE: $copy camel{$key} \n"; # Get key, then value.
}

452 | AppendixA: The Essential Guide to Perl

This code produces:

SCALAR: Asimov

ARRAY: Foundation and Earth I, Robot Nightfall
HASH VALUE: Cleon

HASH VALUE: Trevize

HASH VALUE: R. Daneel Olivaw

Arrow Notation

If you work carefully through the above code you’ll see how the references are iso-
lated by curly braces. The variable symbols, $, @, and %, are then used to derefer-
ence the data to the appropriate variable type. If this notation looks a little clumsy,
relax, because you’re among friends. For hashes and arrays, the arrow operator may
ride to the rescue. Let’s rewrite that code for the two array types:

for $index (0..$#{$array ref}) { # Work out size of array

print "ARRAY $index: $array ref->[$index] \n"; # Drill down arrow
}

for $key (keys %{$hash_ref}) { # Work out original keys

print "HASH $key: $hash_ref->{$key} \n"; # Drill down arrow

}
The arrow operator can make life easier, because it makes the diagrammatic arrows
in Figure A-4 come alive directly within the code:

ARRAY 0: Foundation and Earth

ARRAY 1: I, Robot

ARRAY 2: Nightfall

HASH Emperor: Cleon

HASH CouncilMan: Trevize
HASH Robot: R. Daneel Olivaw

The ref Operator

References are simply ordinary scalars, meaning that they can be stored in both
arrays and hashes. We illustrate this in Figure A-5, where from a single $binary_tree_
root_ref scalar we spider through a binary tree, made up of anonymous hashes, to
quickly find ROWID information.

In dynamic coding like this, however, there is a problem. We’re often unaware of
what variable types our references are pointing to, which is information required for
accurate de-referencing. The solution is then to use the ref operator. This returns the
type of variable being pointed to. The main values returned by ref are detailed in
Table A-4.

Perl References | 453

Shinary_tree_root_ref I

X

index=> 50
rowid => AAA...8AAA

IeftNode:>IrightNode:>I

%

index=> 25 index=>75
rowid => AAA...8AAB rowid => AAA...8AAC
leftNode=>@ rightNode=> leftNode=>@ rightNode=>

index=> 12 index=> 37 index=> 63 index=> 87

rowid => AAA...8AAD = rowid => AAA...8AAE rowid => AAA...8AAF = rowid => AAA...8AAG
leftNode=> undef leftNode=> undef leftNode=> undef leftNode=> undef
rightNode=> undef rightNode=> undef rightNode=> undef rightNode=> undef

Figure A-5. Binary tree built from hashes

Table A-4. The main return values of ref

Return value Description

undef ref was supplied with a non-reference scalar
SCALAR Points to a scalar

ARRAY Points to an array

HASH Points to a hash

(ODE Points to a subroutine

REF Points to another scalar reference

We can now use ref to navigate our way around any data structure held together by
references, with blocks of code such as the following:

if ((ref($this_ref) eq "SCALAR") || (ref($this_ref) eq "REF")) {

This reference is either pointing to an ordinary scalar,
or a scalar reference. Deal with accordingly...

} elsif (ref($this_ref) eq "ARRAY") {
This reference is pointing to an array...
} elsif (ref($this_ref) eq "HASH") {

Pointing to a hash...

454 | AppendixA: The Essential Guide to Perl

} elsif (not ref $this_ref) {

$this ref is an ordinary scalar...

}

Anonymous Arrays and Hashes

In addition to generating named arrays and hashes, we can also generate anonymous
arrays and hashes in Perl. Think of an anonymous array as being like an amateur ice
hockey team being created spontaneously by a group of friends on a visit to a local
ice rink. There’s simply no need for a team name. This ability to create unnamed
arrays on the fly creates enormous dynamism within our code, and is especially good
for the creation of multidimensional arrays (think of a series of wooden Russian dolls
opening up to reveal more dolls inside).

Here are the basics of creating anonymous arrays:

1. To create a reference to a named array, we could use the following code:

@le carre = ('Tinker', 'Tailor', 'Soldier', 'Spy');
$array ref = \@le carre;

2. To refer to an anonymous array, we can just cut out the middleman:
$array ref = ['Tinker', 'Tailor', 'Soldier', 'Spy'l;
Think of the leading [square bracket as being a scalar array reference in dis-

guise, with everything up to the | square bracket being inside the anonymous
array.

3. We can now create multidimensional arrays, extending the basic idea to create
an outer array and two inner ones:
$chess ref = [["Black King", "Black Queen"],
["White Bishop", "White Knight", "White Rook"]
L
4. We now have a two-dimensional array accessible from the $chess_ref scalar ref-
erence. For instance, to access “White Rook” we’d use:
print $chess ref->[1]->[2]; # 2nd inner array, 3rd element.
(Remember that array indexes start from zero.)
5. To dig out “Black King”, we’d use the following:
print $chess ref->[0]->[0]; # 1st inner array, 1st element.
6. We can also use more than two dimensions. So if between Oracle projects you’re
a part-time professor of astrophysics, specializing in 11-dimensional M-theory,
Perl is the language for you.

You can create anonymous hashes in the same basic way:

1. This time we use curly braces:

$planets_ref = { Mercury =>
{ Temp => 'Ridiculously Hot', Position => 1 },

Perl References | 455

Mars =>
{ Temp => 'Blisteringly Cold', Position => 4 } };

2. To get the position of Mars, relative to the sun, we would use:

print $planets ref->{Mars}->{Position}; # Key Mars, then Key Position.
3. The temperature of Mercury would be:

print $planets ref->{Mercury}->{Temp}; # Key Mercury, then Key Temp

You can also mix and match your anonymous hash and array elements.

1. Take a look at the following devil’s advocate example:

$stars ref = { Aldebaran =>
[{ LightYears => 60 },
{ Constellation =>
['Taurus', 'Hyades', 'Crab Nebula']}]} ;

2. We want to get the third element of interest, under the Constellation flag, for the
star Aldebaran, home of the Emperor Zurg. Can we find it?:

print $stars ref->{Aldebaran}->[1]->{Constellation}->[2];
3. In the words of Buzz Lightyear, “yes, we can!”
Crab Nebula

Perl’s Object Orientation

So far, we’ve covered the whole of basic Perl in fewer than 20 pages (Perl purists will
be horrified at how much we’ve skipped over!) Now we’re ready to engage hyper-
drive and head toward Perl’s object orientation zone.

Packages

In order to provide the Holy Grail of code reusability, Perl provides plenty of scope
for the creation of software packages. These packages are generally held in a Perl
module file, such as MyPackage.pm, which can be accessed from a main script like
this:

use MyPackage;
A basic package skeleton can look as simple as this:

package MyPackage;
use strict;

sub doSomeStuff { # Some subroutine code here }
sub doSomeOtherStuff { # Some other subroutine code here }

To create our package, all we needed to do was name it and create some methods.
And that was it.

456 | AppendixA: The Essential Guide to Perl

Bless this Object

To go beyond packages and into object territory, we use the wizardry of the bless
command. We'll extend our earlier skeleton and make it into a real class by adding a
new constructor containing this most magical of commands:

package MyPackage;
use strict;

sub new {
my($class) = @_;
my $self = {}; # Anonymous hash! :-)

bless $self, $class;
return $self;

}
sub doSomeStuff { # Some subroutine code here }
sub doSomeOtherStuff { # Some other subroutine code here }

There’s an awful lot going on within those few lines of code in the new method.
We’ve broken it down into 11 life-cycle steps, listed below and illustrated in
Figure A-6.

Perl library

ﬁigel‘f\)l/Package; (1]
=
$ (s S — ‘ 9

package MyPackage; (y

i sub new () i 9

sub doSomeStuff ()
sub doSomeOtherStuff ()

oE
v
... MyPadagepm "

$
->doSomeStuff();

$

->doSomeOtherStuff(); MyPackage

B s L 1»” pe
o

MyPackage

Figure A-6. Object-oriented life cycle in Perl

Perl’s Object Orientation | 457

. To initiate the life cycle we call the use MyPackage command to import the pack-

age from the Perl library.

2. The package imports into memory and stands ready for action.

10.
11.

. If it were a more complex package, MyPackage could multiply inherit from other

objects in the Perl library.

. The new method is called in the main script, requesting that a key be returned to

a brand new object generated by the packaged class constructor:
$key = MyPackage->new();

. As we've seen, this new method contains the following code:

my($class) = @_;

my $self = {};

bless $self, $class;

return $self
When the arrow notation is used with a package name to call a method, such as
new, the package name gets sent automatically into the method as the first
parameter of the special @_ subroutine parameter array. We take this string
‘MyPackage’ and assign it to the $class scalar variable. We then create an anony-
mous hash with the {} notation. This effectively becomes the object for the rest of
the life cycle, and is used later to store important object state information.

. We take a reference key to this anonymous hash object and store it in the lexi-

cally scoped $self variable:
my $self = {};

. The magical bless command now associates the object with the class name:

bless $self, $class;

. With the class name firmly labeled to the object, the referential key is returned to

the calling program. The anonymous hash will continue to exist as long as at
least one reference is pointing to it:

return $self;

. The program can now use the returned key to drill down to the object’s class

and call its various methods to do useful work.
The calling program eventually undefines the key or lets it go out of scope.

With a reference count of zero, the original object has become a bubble of mem-
ory entirely disconnected from the outside world. Because it’s of no more use to
anyone, it is quickly gobbled up by Perl’s garbage memory collector. The
object’s life cycle is complete.

After this lightning tour of basic Perl, we’re now ready to start using Perl’s object-
oriented packages with confidence, including Perl DBI (whose features are summa-
rized in Appendix B, The Essential Guide to Perl DBI).

458

| AppendixA: The Essential Guide to Perl

APPENDIX B
The Essential Guide to Perl DBI

In this appendix we’ll examine the main elements of the application programming
interface (API) for Perl DBI, the Perl module that’s responsible for communication
between Perl and the Oracle database. Of course, there is much more to learn about
Perl DBI. Consult the online and offline references listed in Chapter 1, Perl Meets
Oracle, for additional and much more complete resources.

As with virtually all CPAN modules, you can generate the full online documentation
for both Perl DBI and DBD::Oracle (the Oracle-dependent driver for Perl DBI), with
the two following commands:

$ perldoc DBI
$ perldoc DBD::Oracle

DBI Class Methods

Before we connect to Oracle, we must establish a few DBI variable-naming conven-
tions (listed in Table B-1).

Table B-1. Conventional Perl DBI variable names

Name Description

Sdbh The database handle created on database connection.

Ssth The SQL statement handle.

Sdrh The driver handle, mostly used internally by the Perl DBI package.
Sh (an represent any of the three main handles above.

Src A general DB return code, mostly used in a Boolean context.

S A general DB return value, often used numerically.

@ary Alist of returned scalars, or a row fetched from the database.

Srows The number of rows processed.

Sth Afile handle, often used to change any default output from STDOUT.

459

Table B-1. Conventional Perl DBI variable names (continued)

Name Description

undef Perl’s generic undefined value is used in DBI for NULLS.

Y%attr A general name for hashes used to store various attributes.
connect

The connect Perl DBI constructor method generates our main database handle, $dbh:

use DBI;
my $data_source = "dbi:Oracle:orcl";
my $user = "scott";
my $password = "tiger";
my %attr = (RaiseError => 0, AutoCommit => 1);
my $dbh = DBI->connect($data_source, $username, $password, \%attr)
or die $DBI::errstr;
Note the following characteristics of the connection string held above in $data_

source:

* $data_source is composed of three elements separated by colons. However if
$data_source is undefined, the connect method will replace it with the environ-
mental variable DBI_DSN, making the following possible:

DBI->connect(undef, $username, $password)
This becomes interpreted as:
DBI->connect($ENV{DBI_DSN}, $username, $password)

* Sometimes the “Oracle” driver part of the connection string may be missing,
as in:

DBI->connect("dbi::orcl", $username, $password)

In this case, the environmental variable DBI.__ DRIVER is assumed, as if the code
actually looked like this:

DBI->connect("dbi:$ENV{DBI_DRIVER}:orcl", $username, $password)
* Sometimes, the actual target database string, such as orcl, may be missing:
DBI->connect("dbi:Oracle:", $username, $password)
In this case TWO_TASK, or subsequently ORACLE_SID, is assumed:
DBI->connect("dbi:Oracle:$ENV{TWO_TASK}", $username, $password)

Looking inside the $dbh variable

Assuming that everything goes well, we should now have a valid database handle
stored in the $dbh variable. But what’s actually inside this? Let’s find out:

my $dbh = DBI->connect('dbi:Oracle:orcl’, 'scott', 'tiger');
print "dbh >", $dbh, "<\n";

460 | AppendixB: The Essential Guide to Perl DBI

Blessed references give us both the class label and an object reference:
dbh >DBI: :db=HASH(0x466cd40)<

What we have in $dbh is the key to a DBI::db object. However, Perl DBI is unusual in
Perl. It operates within a hierarchy of objects rather than just one. As well as having
DBI::db objects, we later hang SQL statement objects off these objects (like baubles
from a Christmas tree). Each database handle gets its own collection of statement
handles. This hierarchy can be seen in Figure B-1.

Main Perl script
$lperl -w
use DBI;

$dbh_1 = DBI—)connects...g;
$dbh”2 = DBI->connect

eee)s

$sth_1 = $dbh_1—>prepareg...g;
$sth™2 = $dbh”1->prepare(...);
$sth_3 = $dbh_2—>prepare€...g;

= $dbh~2->prepare(...);

$sth™a
$dbh_1->disconnect;
$dbh”2->disconnect:

Database handle Database handle
k] >
[Sdbh_1

DBI::db DBI::db

Statement handle Statement handle Statement handle Statement handle
DD QD

DBI::st DBI::st DBI::st DBI::st

Figure B-1. Database handles and statement handles

Each of these handles can also be assigned its own collection of initial and modifi-
able attributes. Let’s see that connection code again:

my %attr = (RaiseError => 0, AutoCommit => 1);
$dbh = DBI->connect($data_source, $username, $password, \%attr);

DBI Class Methods | 461

You’ll often see variations on this theme, with anonymous hashes used instead:

$dbh = DBI->connect($data_source, $username, $password,
{RaiseError => 0, AutoCommit => 1}); # Anon. Hash

We cover the main generic handle attributes in Table B-2 (many of these are read-
only) and the database handle specific attributes in Table B-3. Reading and occasion-
ally resetting these attributes is straightforward:

$old value = $h->{AttributeName}; # Reading
$h->{AttributeName} = $some new value; # Setting

Table B-2. Main generic handle attributes

Attribute Description

PrintError Forces errors to generate warnings. Default is on.

RaiseError Forces errors to make the program die. PrintError runs before RaiseError, if both are on. Default
is off.

Warn Enabled by default to generate useful warnings.

ShowErrorStatement Appends DBI statement text to the end of other error messages usually generated by the
database.

Kids For driver handles Kids is the current number of related database handles. For database

handles it's the number of associated statement handles.

CachedKids For a driver handle, references database connections created by connect_cached. For
database handles, this references prepare_cached statements.

Taint If switched on, all “fetched” data is tainted if Perl is in taint mode and method arguments are
checked for taintedness.

LongReadLen Controls the maximum length of long fields such as the various LOBs (large objects). The
default LongReadLen value of 80 returns undef for all long fields.

LongTruncOk If any long data exceeds the LongReadLen value, the fetch will fail. If set to true, the long data
is truncated appropriately. Default is off.

FetchHashKeyName Used with the fetchrow_hashref method and defaulted to NAME, which may return column
names in a mixture of upper and lowercase. Set to NAME_uc or NAME_Ic to force uppercase
or lowercase, respectively.

ChopBlanks For fixed-width fields, controls blanks trimming.

Table B-3. Main database handle attributes

Attribute Description

AutoCommit Automatically commits DML statements when set to true. Defaults to true in order to line up with
JDBC and ODBC standards. Robust transactions in production code should switch this attribute off
and use the eval operator, which fills the $@ variable with relevant information if RaiseError throws
the eval statement (if switched on; see earlier). This behavior is used to create try-catcha structures:
$dbh->{AutoCommit} = 0; # Turn off! :-)
$dbh->{RaiseError} = 1; # Turn on! 8-)
eval { # try

do_some_stuff();

do_some_other stuff();

462 | AppendixB: The Essential Guide to Perl DBI

Table B-3. Main database handle attributes (continued)

Attribute Description
$dbh->commit;
b
if ($@) { # catch
warn "Transaction failed: $@";

$dbh->rollback;
do_some_other cleanup stuff();

}

Driver Holds the parent driver's handle. Useful for finding the name of the driver on a multi-driver
system:

print $dbh->{Driver}->{Name}, "\n";

Name Holds the TNSNAME of the database, where TNSNAME is part of the connection string, dbi:Oracle:
TNSNAME.

Statement Holds the latest prepared or executed statement string.

RowCacheSize A driver hint for row cache sizes for SELECT statements. Very useful for speeding up DBI.

aSee Pete Jordan’s Exception.pm module for more explicit try-catch structures: http.//www.cpan.org/authors/id/P/PJ/PJORDAN/

Alternative Oracle connection scenarios

There are several alternatives for connecting to Oracle. You can use the first alterna-
tive, shown in the following example, if you don’t have access to a tnsnames.ora file:

$dbh = DBI->connect("dbi:Oracle:host=myhost.com;sid=orcl"”,
$username, $password);

You can specify the port number in the connection, as shown in the next example. If
you don’t specify the port number, DBD::Oracle will try ports 1526 and 1521 in that
order. Other variations, which are particularly appropriate for older SQL*Net sys-
tems, can be used if TWO_TASK or ORACLE_SID have not been set:

$dbh = DBI->connect('dbi:Oracle:T:Machine:sid"', "username', " password");

$dbh = DBI->connect('dbi:Oracle:', 'username@T:Machine:sid", 'password');

$dbh = DBI->connect('dbi:Oracle:", 'username@orcl’, 'password');

$dbh = DBI->connect('dbi:Oracle:orcl’, 'username’, password');

$dbh = DBI->connect('dbi:Oracle:orcl’, 'username/password’,"'");

$dbh = DBI->connect('dbi:Oracle:host=foobar;sid=orcl;port=1521",
"scott/tiger', '');

$dbh = DBI->connect('dbi:Oracle:’,

q{scott/tiger@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP) (HOST=myhost)

(PORT=1521)) (CONNECT DATA=(SID=orcl)))}, "");

Oracle-specific connection attributes

You can select three connection attributes especially for Oracle:

ora_session_mode
Used to connect with SYSDBA or SYSOPER authorization:

DBI->connect($data_source, $username, $password,
{ ora_session_mode => 2 }); # SYSDBA

DBI Class Methods | 463

DBI->connect($data_source, $username, $password,
{ ora_session_mode => 4 }); # SYSOPER

ora_oratab_orahome
Set this attribute to true when you are using a DBD::Oracle version built against
Oracle7. Doing so changes SENV{ORACLE_HOME} to the Oracle home direc-
tory specified in /etc/oratab, if the database is listed there:

DBI->connect($data_source, $username, $password,
{ ora_oratab_orahome => 1 }); # True

ora_module_name
Passed to the SET_MODULE function in the DBMS_APPLICATION_INFO
package, which identifies this calling Perl application for monitoring and perfor-
mance tuning purposes. In the following example, $0 is the built-in Perl scalar
variable holding the name of the Perl script.:

DBI->connect($dsn, $user, $passwd, { ora_module_name => $0 });

connect_cached
The connect_cached method is virtually identical in appearance to connect, described
in the previous section:

$dbh = DBI->connect cached($data_source, $username, $password, \%attr);

New database handles are cached. Whenever another call is now made to connect_
cached using identical connection parameters, the cached database handle is returned
if it is still available. If the handle is not available, a new one is created, as with
connect.

available_drivers

The available_drivers method lets us know which DBD drivers (such as DBD::Ora-
cle) are available on the system:

@ary = DBI->available drivers;

data_sources

The data_sources method lists the available database targets. This method is useful
for populating drop-down CGI or Perl/Tk boxes to choose a target database before
connection. If no ‘Oracle’ parameter is supplied, the environmental variable DBI_
DRIVER is assumed:

@ary = DBI->data_sources('Oracle');

(DBD::Oracle reads oratab and tnsnames.ora to get this information.)

trace

The trace method lets you set the desired debug trace level. Various debug trace lev-
els (shown in Table B-4) are possible under DBI. The default is to turn off tracing.

464 | AppendixB: The Essential Guide to Perl DBI

Table B-4. Tracing levels

Level Description

0 Tracing is disabled.

1 Useful for overviews.

2 For more serious debug work.

3,4,5... Ever more complex detail for hard-core developers.

Typical calls might look like this:

DBI->trace(0); # Turn tracing off.
DBI->trace(1); # Turn tracing on, STDERR output.
DBI->trace(2, "my trace file.txt"); # Increase trace level, and

redirect to named file.

A w
y

You can use another method in conjunction with trace for your own
debug messages, as shown here:

N
S DBI->trace msg($message) ;
DBI->trace_msg($message, $min_level) ;

If the trace level is greater than 0, this will write $message to either
STDERR or any other nominated trace file, or you can specify the min-
imum level it should report on.

For further trace ability, Perl DBI also holds the very latest handle information in the
following handles:

$DBI::err:
Holds the Oracle error code from the last method called.

$DBI::errstr:
Returns the latest Oracle error message.

Let’s test this by setting up a piece of code we know will go wrong;:

$sth = $dbh->prepare('SELECT Should_go_wrong" from dual'); # Quote! :)

print "DBI::err: >", $DBI::err, "<\n";
print "DBI::errstr: >", $DBI::errstr, "<\n";

This produces the following output:

DBI->err: >1740<
DBI->errstr: >ORA-01740: missing double quote in identifier
(DBD ERROR: OCIStmtPrepare)<

Database Handles—Preparation

There are two groups of database handle methods. The methods in the first group
help prepare SQL statement handles or check that they can be prepared. The
methods in the second group work with SQL statement executions or clean up

Database Handles—Preparation | 465

afterward. In this section, we’ll work through the first group, those that help prepare
the SQL statement handles. Later in this chapter, after covering the statement han-
dles themselves, we’ll discuss the second group of database handle methods. Think
of these two groups as being like artillery troops and assault troops. They’re all wear-
ing the same uniform, but some prepare the ground while others go in and do the
real work.

ping

The ping method checks to see if the target database server is still running. It is use-
ful for batch programs. If this function fails to return true, there is little point trying
to use the handle. You need to reconnect to the database:

$rc = $dbh->ping;

prepare
The prepare method creates and prepares a statement handle for later execution:

$sth = $dbh->prepare("SELECT SYSDATE FROM DUAL");

prepare_cached

The prepare_cached method is similar in concept to connect_cached, as described
earlier:

$sth = $dbh->prepare cached($statement);

If the same parameters are re-sent to prepare_cached, it tries to use a cached $sth
statement handle instead of creating a new one.

quote
The quote method provides an excellent utility for preparing DML statements:

$quoteString = $dbh->quote("Let's buy O'Reilly books!"); # :-)
print "quoteString >", $quoteString, "<\n";

This produces the following output:
quoteString >'Let''s buy O''Reilly books!'<

Notice the doubled single-quotes which make this string ideal for inserting into an
Oracle table. Here’s one we created earlier:

create table test table (message col varchar2(50));
The following code is now possible:

$dbh->{AutoCommit} = 0; # Turning AutoCommit off! :)
eval {

466 | AppendixB: The Essential Guide to Perl DBI

$quoteString = $dbh->quote("Let's buy 0'Reilly books!");
$sth = $dbh->prepare("INSERT INTO test table
VALUES ($quoteString)");
$sth->execute;
$dbh->commit;
};
if (se) {
warn "Transaction failed: $@";
$dbh->rollback;
}

The row inserts neatly into the database:

SOL> SELECT * from test table;

MESSAGE_COL

Let's buy 0'Reilly books!

SoL>

An undefined value, such as $dbh->quote($an_undefined_value), will be returned as
the string NULL (without single quotation marks) to match how NULLs are repre-
sented in SQL.

Statement Handle Methods

Before we execute prepared statements, we can bind IN and OUT parameters using
the methods described in this section.

bind_param

The bind_param method binds parameters to SQL statements. Placeholders are num-
bered from 1 upwards. For example:

$sth = $dbh->prepare("SELECT * FROM emp
WHERE ename LIKE ? OR ename LIKE ?");

$sth->bind_param(1, "MILLER");
$sth->bind_param(2, "K%");

$sth->execute;

You can also use named parameters, described at the end of the next section.

bind_param_inout

The bind_param_inout method, available under DBD::Oracle, helps us with PL/SQL.
This method allows us to call procedures with OUT parameters. Let’s see how it
works.

Statement Handle Methods | 467

1. First of all, let’s create a simple Oracle procedure:

CREATE OR REPLACE PROCEDURE oracle power (in_base IN NUMBER,
in_power IN NUMBER,
out_result OUT NUMBER) IS

BEGIN

out_result := POWER(in base, in_power);
END;
2. Avoiding Perl’s own 9**4 notation, we can now run the following code to work
out 9 to the power of 4:

$sth = $dbh->prepare("BEGIN oracle power(?, ?, ?); END;");

$sth->bind param(1, 9); # 1st parameter, value 9
$sth->bind param(2, 4); # 2nd parameter, value 4

$sth->bind param_inout(3, \$got the power, 50); # Notice reference! :)
$sth->execute;

print "got the power >", $got the power, "<\n";

We must supply bind_param_inout with an extra parameter, in this case 50,
which is the maximum length of data we’re expecting to receive back. If in
doubt, opt for an XXL size here, as long as you have sufficient memory. The Perl
code shown above returns the following result:

got_the_power >6561<

As an alternative to using question marks, you can also use named bound parame-

ters with DBD::Oracle. In the following example, the procedure has been predefined
like this:

CREATE OR REPLACE PROCEDURE

squarer (in_number IN NUMBER, inout result IN OUT NUMBER) IS
BEGIN

inout_result := POWER(in_number, 2);
END;

Perl DBI code to use this procedure would look something like this:

my $in_number = 3;
my $inout result;

$sth = $db->prepare(q{
BEGIN
squarer(:in_number, :inout result);
END;
1;

We bind here, then execute the call.

$sth->bind param(":in_number", $in_number);
$sth->bind param_inout(":inout_result", \$inout result, 1);

$sth->execute;
print $inout result;

468 | AppendixB: The Essential Guide to Perl DBI

Download from Wow! eBook <www.wowebook.com>

execute

We've already strewn the execute method liberally throughout this chapter. It’s used
to execute prepared statements. It returns an undef on failure, or the number of rows
affected if this information can be determined. Otherwise, it returns -1.

$rv = $sth->execute;

If bind variables are being used, we can send these in as an array, rather than bind-
ing them all explicitly with separate bind_param calls:

$rv = $sth->execute(@bound_values);

fetchrow_array

The fetchrow_array method fetches rows from an array. A popular FETCH com-
mand is illustrated in Figure B-2.

$lperl -w
use strict; .
use DBI; ’ DBI"db4 o
my $dbh =
DBI->connect('dbi:Oracle:orcl', Oracle
'scott’, DBI::db database
'tiger', s Q
{ RaiseError => 1, P
AutoCommit => 0}); <. ADAMS CLERK
my $sth = $dbh->prepare(oo ALLEN SALESMAN
SELECT ename, BLAKE MANAGER
Job CLARK MANAGER
FROM emp FORD ANALYST
ORDER B\‘{ ename JAMES CLERK
; 1 0¢-€)-»| JONES MANAGER
s s
ToW =
wzlle(@row = $sth->fetchrow_array) { MILLER § CLERK
printf " %10s %-9s \n", @row SCOTT ANALYST
$ron[0], SMITH ~ CLERK
$row[1]; - TURNER SALESMAN
WARD SALESMAN
$dbh->disconnect;

Figure B-2. A simple fetchrow_array example

Let’s see what’s going on here.

1. Working through Figure B-2, we first create our object with the connect method.
(The diagram displays internal objects, but we never need to concern ourselves
with these in our coding work.)

2. Next we prepare our statement handle.

Statement Handle Methods | 469

3. We're then able to loop around the statement handle object using the fetchrow_
array method, which creates a copy of each data row selected.

4. We finally disconnect the database handle, which leads to the destruction of
associated DBI objects by the garbage memory collector.

fetchrow_arrayref

Going a step beyond fetchrow_array, the fetchrow_arrayref method is more efficient
because instead of copying data rows into a local array, it provides a reference to the
row of data already stored within the driver. It’s a fairly straightforward operation to
drill down from the reference into this remote array, as shown in Figure B-3.

$lperl -w Anonymous array
use strict;
use DBI;
my $dbh = 1 0
DBI->connect('dbi:Oracle:orcl’,

'scott’,

'tiger’',

{ RaiseError => 1,

AutoCommit => 0}); A

my $sth = $dbh->prepare("

SELECT enane, sarray tef o
job
FROM emp | e ,E.

ORDER BY ename Report generated by drilling down
5 to anonymous array via reference i
$sth->execute; y
my $a€ray_ref; # Declare local scalar) g Al[\)lﬁ.'\é‘li ngFégMAN
while($array_ref = $sth->fetchrow_arrayref
printf " %10s %-9s \n", BLAKE J MANAGER
$array ref->[0], CLARK MANAGER
$array ref->[1]; FORD ~ ANALYST
} JAMES CLERK
$dbh->disconnect; JONES MANAGER

KING ~ PRESIDENT
MARTIN ~ SALESMAN
MILLER CLERK
SCOTT ANALYST
SMITH CLERK
TURNER ~ SALESMAN
WARD _ SALESMAN

Figure B-3. fetchrow_arrayref

fetchrow _hashref

In a similar manner, the fetchrow_hashref method (shown in Figure B-4) returns a
reference to an anonymous hash for each row. This time the data is keyed on col-
umn name, rather than numeric index. It’s best to give this method an optional
string parameter of either NAME_uc or NAME_Ic to ensure that column names are

470 | AppendixB: The Essential Guide to Perl DBI

always in a preferred case; otherwise, they may be in mixed case, especially if you’re
using Perl DBI in a portable manner across different database types.

$!perl -w manager empname

use strict;
use DBI;

my $dbh =
DBI->connect('dbi:Oracle:orcl’,
iigﬁﬁ ’ position
{ Raisefrror => 1, Anonymous hash
AutoCommit => 0}); A

my $sth = $dbh->prepare("
SELECT ename empname,
job position,
NVL (mgr,0) manager

FROM emp This time an anonymous hash

ORDER BY ename array is used i
’ ADAMS CLERK 7788
$sth->execute(); ALLEN SALESMAN 7698
my $hash ref; # Declare local scalar BLAKE MANAGER 7839
while($hash ref = CLARK MANAGER 7839
$sth->fetchrow_hashref('NAME_1c')) { FORD ANALYST 7839
printf " %10s %9s %4d \n", JAMES CLERK 7566
iﬂasﬂ_fe;';%empﬂime}j JONES MANAGER 7698
ash_ret->ipositiony, | KING JPresiDent | o]
$hash_ref->{manager}; MARTIN® SALESVIAN 7698
: . MILLER CLERK 7782
$dbh->disconnect; SCOTT ANALYST 7566
SMITH CLERK 7902
TURNER SALESMAN 7689
WARD SALESMAN 7689

Figure B-4. fetchrow_hashref

fetchall_arrayref

Instead of accessing data one row at a time, you can get a single reference to access
all of the data in one go (if you have the available memory). Use the fetchall_arrayref
method, as shown in Figure B-5, which demonstrates the default use of fetchall_
arrayref. A single key accesses a first-level array composed of reference keys to
second-level arrays. There is one of these for each row of data found by the SELECT
statement.

Figure B-6 demonstrates a variation on this theme. An optional hash marks out the
various column names required. This transforms the second-level arrays into hashes,
accessed by column name rather than numeric index.

fetchall_hashref

The fetchall_hashref method can only be used with SELECT statements containing
unique key data combinations, such as single-column primary keys. This method

Statement Handle Methods | 471

SELECT ename empname,
job position,
NVL(mgr,0) manager
FROM emp
WHERE ename like 'M%’
OR ename like 'K%'
ORDER BY ename

N
o

my $all arrayref =
$sth->fetchall_arrayref();

Figure B-5. fetchall_arrayref with array batches

SELECT ename empname,
job position,
NVL(mgr,0) manager
FROM emp
WHERE ename like 'F%’
OR ename like 'J%'
ORDER BY ename

my $all_hashref =
$sth->fetchall arrayref(
{ empname => 1,
position => 1,
manager => 1

>

manager empname

>
anager empname

position

position manager empname
7698
position

Figure B-6. fetchall_arrayref with hashes

472 | AppendixB: The Essential Guide to Perl DBI

creates a first-level hash possessing as many index keys as there are uniquely keyed
rows. We can then drill down from this hash into second-level hashes, which con-
tain all of the row data by column name. Figure B-7 illustrates the use of this
method.

$dbh->{FetchHashKeyName} = "NAME_lc';
$sth = $dbh->prepare("
SELECT ename,
job,
mgr,
FROM emp
WHERE ename LIKE 'F%'
OR ename LIKE 'J%'
ORDER BY ename

>

$sth->execute;
$hashall ref = $sth->fetchall hashref('ename');

job mgr

ename

job job ename
Using ‘ename’as primary/' 7698
key in first hash leve|
mgr

Figure B-7. fetchall_hashref with its key requirement

finish

The finish method deactivates an active SELECT statement handle, thus causing any
pending unfetched data to be discarded. This can free up resources in the server,
especially for large GROUP BY or ORDER BY queries. It is rarely used, however,
because statement handles deactivate anyway after a last row is fetched. Neverthe-
less, you may want to use this method if you’re only fetching a fixed number of rows
from a statement (see the selectrow_array method mentioned later). You should also
finish active statements before disconnecting from a database:

$rc = $sth->finish;

Statement Handle Methods | 473

rows

The rows method holds the number of rows processed by the statement; it returns -1
if it is unable to determine a figure. When you use this method with a SELECT state-
ment, wait until all of the rows have been fetched before calling it, to get accurate
results:

$rv = $sth->rows;

bind_ col

For a more efficient way to access data, you can use the bind_col method and its part-
ner, bind_columns. We simply bind in the variables we need to associate selected col-
umns with, before calling a simple fetch command:

Let’s examine the following code:

$sth = $dbh->prepare(" SELECT deptno, dname, loc FROM dept ");
$sth->execute;

$sth->bind_col(1, \$deptno); # Notice the use of referencing! :)

$sth->bind_col(2, \$dname);

$sth->bind_col(3, \$loc);

while ($sth->fetch) { # Simple fetch
printf "%2d %14s %13s \n", $deptno, $dname, $loc;

}
When executed, this prints the following;:
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

bind__columns

Using the bind_columns method, you can shrink those three bind_col lines into a sin-
gle bind_columns call. Simply ensure that you have the same number of variables in
the bind_columns call as there are fields to be selected, and also make sure you then
get them in the right order. For example:

$sth->bind_columns(\$deptno, \$dname, \$loc); # List of references

dump_results

This prototyping method fetches all the selected rows out from a statement, as
comma-separated values, and prints them to STDOUT:

$sth->dump_results;

474 | AppendixB: The Essential Guide to Perl DBI

Database Handles—SQL and Cleanup

To save coding, we often combine database and statement handles using the meth-
ods described in this section. When we are finished executing SQL statements, we
clean up with a database disconnection, also described in this section.

do

The do method is typically used to prepare and execute DML statements in one call.
We can also use it in combination with bind parameters, as shown in the following
example:

$dbh->{AutoCommit} = 0; # Turn it off! :)

$sth = $dbh->do("DELETE FROM test_table"); # Binds unnecessary
$dbh->commit;

$sth =
$dbh->do("INSERT INTO test table values (?)",
undef, # <= Can be Attributes
"It's worse than that Jim"); # Binding this 1st value
$dbh->commit;

Let’s just check that:

SOL> select * from test table;

MESSAGE_COL

It's worse than that Jim

SQL>

If the statement will be executed several times, it is often more efficient to carry out a
single prepare, followed by many execute commands, to avoid constantly re-prepar-
ing the same DML statement.

selectrow_array

The selectrow_array method is a super-method that combines the prepare, execute,
and fetchrow_array entries—all in one go. It generates an array consisting of the first
row found:

@row_ary = $dbh->selectrow_array($statement);

selectall_arrayref

The selectall_arrayref alternative method uses fetchall_arrayref and thereby gener-
ates a reference to a first-level array containing references to however many second-
level arrays are necessary to hold every row returned by the SELECT statement. It’s a

Database Handles—SQLand Cleanup | 475

head twister—but in a good way. Here’s an example; see the earlier Figure B-5 for
more details.

$ary_ref = $dbh->selectall arrayref($statement);

selectall _hashref

We use the fetchall_hashref method, this time as the final link in the selection chain,
with selectall_hashref. You must supply a column key, as illustrated in the following
example. See the earlier Figure B-7 for more details.

$hash_ref = $dbh->selectall hashref($statement, $key); # Use key! :)

selectcol_arrayref

The selectcol_arrayref method returns a reference to an array containing the first field
from each row:

$ary ref = $dbh->selectcol arrayref($statement);
Other columns can be pushed into the array via the Columns attribute. Groovy!

$ary ref =
$dbh->selectcol arrayref($select statement, { Columns => [1,2] });

commit

The commit method commits transactions when AutoCommit is set to false:

$rc = $dbh->commit;

rollback

The rollback method rolls back transactions:

$rc = $dbh->rollback;

begin_work

This method switches AutoCommit off until either a commit or a rollback is encoun-
tered, thus completing a single explicit transaction. The AutoCommit behavior then
reverts back to what it was previously.

disconnect

The disconnect method is typically seen just before the end of a program. It neatly
closes down the database connection.

$rc = $dbh->disconnect or warn $dbh->errstr;

476 | AppendixB: The Essential Guide to Perl DBI

If you’re using transactions, it is good practice to explicitly call either commit or
rollback before disconnecting in order to keep your code clean and reliable.

Metadata

There are several metadata-related method calls associated with the main database
handle. These are summarized in Table B-5. (There will be an increasing amount of
metadata in future versions of DBI. Check perldoc DBI for the latest details.)

Table B-5. Database handle metadata methods

Method Description

table_info Lists schemas, tables, and other object metadata.

tables A simpler interface to the tables_info method.

primary_key_info Provides primary key metadata.

primary_key A simpler interface to the primary_key_info method.

type_info_all Returns a reference to a read-only array used to drill down on all type information in the data-
base.

type_info Returns information on a particular data type.

foreign_key_info Returns foreign key information.

column_info Returns column information.

Statement Handle Metadata

There are many read-only attributes you can access via the statement handle. Rather
than describe all of them individually, we’ve provided the following piece of code as
a good guide to the main ones used. Note that some are straightforward string val-
ues, whereas others are array references to columnar information:

use DBI;

my $dbh = DBI->connect('dbi:Oracle:orcl', 'scott', 'tiger',
{RaiseError => 1, AutoCommit => 0});

my $sth = $dbh->prepare("SELECT empno, hiredate
FROM emp
WHERE ename = ? ");

$sth->bind_param(1, 'MILLER'); # SOL uses 1 bound parameter
$sth->execute;

print "Number of Fields : ", $sth->{NUM_OF_FIELDS}, "\n";
print "Bound parameters : ", $sth->{NUM_OF_PARAMS}, "\n\n";

for $column (0..($sth->{NUM OF FIELDS} - 1)) { # Columns, 0 - N

Metadata | 477

print "Column Name : ", $sth->{NAME}->[$column], "\n",

"SQL Data Type : ", $sth->{TYPE}->[$column], "\n",
"Precision : ", $sth->{PRECISION}->[$column], "\n",
"Scale : ", $sth->{SCALE}->[$column], "\n",
"Nullable? (1=yes): ", $sth->{NULLABLE}->[$column], "\n\n";
}
print "SOL Statement : ", $sth->{Statement}, "\n";

When the above code is run, it generates the following listing:

Number of Fields : 2
Bound parameters : 1

Column Name : EMPNO
SOL Data Type :3
Precision t 4
Scale : 0

Nullable? (1=yes):

Column Name : HIREDATE
SOL Data Type : 9
Precision : 75
Scale 10

Nullable? (1=yes): 1
SQL Statement : SELECT empno, hiredate

FROM emp
WHERE ename = ?

You can see that some figures included above are unreliable when used with irrele-
vant data types, such as 75 for the Precision of the HIREDATE column.

Oracle-Specific Methods

There are a number of special Perl DBI methods that support the use of DBD::Ora-
cle and its handling of particular Oracle datatypes and operations.

DBMS_OUTPUT Methods

Four additional functions, available within DBD::Oracle, are provided for use in
accessing Oracle’s DBMS_OUTPUT built-in package; they are listed in Table B-6.

Table B-6. DBD::Oracle’s private methods for Perl DBI

DBD::0Oracle function Description

plsql_errstr Provides debug text from potential PL/SQL compilation errors
dbms_output_enable Enables the DBMS_OUTPUT package for use with Perl
dbms_output_get Provides access to the DBMS_OUTPUT.GET_LINE function
dbms_output_put Provides access to the DBMS_OUTPUT.PUT_LINE function

478 | AppendixB: The Essential Guide to Perl DBI

The following code illustrates the use of some of these private methods:

#! perl -w
use strict;
use DBI;

Step 1: Connect to orcacle database, orcl.

my $dbh = DBI->connect('dbi:Oracle:orcl’, 'scott', 'tiger'),
{RaiseError => 1, AutoCommit => 0});

Step 2: Enable the later collection of DBMS_OUTPUT information.
$dbh->func(1_000 000, 'dbms_output_enable');

Step 3: Prepare and run some anonymous PL/SQL containing some
output from DBMS OUTPUT.

my $sth = $dbh->prepare(q{
DECLARE
hello_string VARCHAR2(50);
BEGIN
SELECT 'Hello ' || USER || '! :-)'
INTO hello_string
FROM DUAL;
dbms_output.put line(hello string);
END;
1;

$sth->execute;
Step 4: Get the output and print it out.
print $dbh->func('dbms_output_get'), "\n";

$dbh->disconnect;
Let’s see what’s going on here.

1. First of all, set up the connection to the target database.

2. Now we use our private dbms_output_enable method to adjust the memory nec-
essary to pick up DBMS_OUTPUT.PUT_LINE calls later.

3. We prepare a very simple piece of anonymous PL/SQL to print out a message
from our sponsor.

4. Now we use a second private method, dbms_output_get, to pick up the relevant
message via DBD::Oracle so we can print it out:

$ perl hello dbd.pl
Hello SCOTT! :-)

Oracle-Specific Methods | 479

Handling LOBs

When DBD::Oracle fetches LOBs (large objects), they are treated as LONGs and are
subject to the LongReadLen and LongTruncOk handle attributes described earlier.
Note that at the time of this writing, only single-row LOB updates were supported,
and the ability to pass LOBS to PL/SQL blocks was not available. Consider the fol-
lowing examples:

To insert or update a large LOB, DBD::Oracle has to know about this operation
in advance. To do this in Oracle8 you need to set the ora_type attribute—for
example:

$sth->bind_param($field_num, $lob_value, { ora_type => ORA_CLOB });
The ORA_CLOB or alternative ORA_BLOB constants are imported with:

use DBD::Oracle gw(:ora_types);
To make scripts work for both Oracle7 and Oracle8 (and later), Oracle7’s DBD::
Oracle treats the LOBs as LONGs without error. Specify them as ORA_CLOB or
ORA_BLOB, as above, and DBI will be able to handle the LOBs properly.

In inserts or update, where there are multiple LOB fields of the same type in a
particular table, you must tell DBD::Oracle which field the LOB parameter
relates to:
$sth->bind_param(1, $myLobValue,
{ ora_type => ORA CLOB, ora_field= > 'my columnil' });

At the time of this writing there is no direct way to write LOBs in chunks via
DBD::Oracle. The official back-door workaround is to use DBMS_LOB.WRITE-
APPEND or, with some earlier versions of Perl DBI, the undocumented feature
blob_read. Note, though, that it is always better to stick with documented DBI
functions to remain on the safe side. (See Chapter 7, Invoking the Oracle Call
Interface with Oracle::OCI, for mention of a possible future solution to this LOB
problem via Oracle::OCI.)

Binding Cursors
DBD::Oracle returns cursors from PL/SQL blocks as shown here:

use DBI;
use DBD::Oracle qw(:ora_types);

my $dbh = DBI->connect('dbi:Oracle:orcl’, 'scott', 'tiger'),
{RaiseError => 1, AutoCommit => 0});

my $sth = $dbh->prepare(q{
BEGIN OPEN :cursor FOR
SELECT deptno, dname, loc
FROM dept
FROM user_tables WHERE loc = :loc;
END; 1});

480

| AppendixB: The Essential Guide to Perl DBI

Download from Wow! eBook <www.wowebook.com>

$sth->bind_param(":loc", "BOSTON");
my $sth curs;
$sth->bind_param_inout(":cursor", \$sth_curs, o,

{ ora_type => ORA_RSET });
$sth->execute;
$sth_curs can now be used like any other statement handle...
while (@row = $sth_curs->fetchrow array) {

Notice how ora_type is set to ORA_SET; this is mandatory. See the curref.pl script in
the Oracle.ex directory in DBD::Oracle’s source distribution for more examples.

Oracle-Specific Methods | 481

APPENDIX C

The Essential Guide
to Regular Expressions

The concept of regular expressions (or regexes as they’re often known) is central to
the Perl language. Regular expressions have been available for a long time in Unix
tools such as grep, sed, awk, and egrep, and they have also made their way into Java
and Python. But they are most closely associated with Perl where they are used
extensively for pattern matching. They are also very important for data munging, as
we describe in Appendix D, The Essential Guide to Perl Data Munging.

Regular expressions are patterns of literals and metacharacters that match target com-
binations of characters embedded within input data. Although the simplest regular
expression can be very simple indeed (it’s simply a literal string), regexes can also be
very complex. They can provide amazing efficiency, but can also lead to great frustra-
tion. We have found that unless you live in the same universe as Spock or Data,
where regexes compete with music and chess for sublime mathematical resonance,
they most likely mean pain, bashed foreheads, and late-night viewings of Casablanca
and The Matrix to calm the nerves. It’s only really by writing a million and one
regexes that most people do eventually figure out what the heck is going on—and
even then, there’s more to learn.

In this appendix, we’ll look at the origins of regular expressions and the main con-
cepts underlying their use. We’ll also examine Perl’s built-in string-handling func-
tions, which often supply enough functionality that you won’t need to use regexes at
all. We'll discuss the basics of constructing regular expressions and will pay special
attention to the use of metacharacters and suffixes. Metacharacters are special char-
acters such as the asterisk (*) that can be used to drive fuzzy nonliteral matching. Suf-
fixes are special switches at the end of matches and substitutions that change their
exact operation—for example, by making them replace strings globally across an
entire input, rather than just substituting the first one.

Obviously, in this short appendix we can only scratch the surface of regular expres-
sions. We strongly recommend that you consult the definitive reference on regular
expressions, Jeffrey Friedl’s excellent Mastering Regular Expressions (O’Reilly &
Associates); because of its cover design, it’s known as the Owl Book. You can also

482

generate the full online documentation for Perl regular expressions with the follow-
ing command:

$ perldoc perlre

The Origins of Regular Expressions

Where did regular expressions come from and why the funny name? Rather interest-
ingly, they grew from original research work on artificial intelligence, dating back
nearly 60 years and preceding the era of computing.

The Early History

In the 1940s, Warren McCulloch and Walter Pitts modeled neuron-like finite state
machines to mimic the human nervous system in an effort to help build a Turing
machine. After being introduced to this research by John von Neumann, mathemati-
cian Stephen Kleene later described these models in a notation that he called regular
sets. The actual term regular expression made its initial debut in Kleene’s 1951 paper,
from the University of Wisconsin at Madison, titled “Representation of events in
nerve nets and finite automata.”

Regexes supplemented Kleene’s Princeton University doctoral work, dating from the
1930s, on recursive algorithms,” a fundamental contribution which helped make
electronic computing directly possible in the first place. Kleene’s work also comple-
mented related work by the more famous British scientist Alan Turing, who like
Kleene was a doctoral student (1936-1938) of Professor Alonzo Church, the enig-
matic head of Princeton’s mathematics department. Church himself had extended
the earlier recursive work of Vienna’s Godel, who’d briefly lectured Kleene at Prince-
ton in 1934 before returning to Austria. Godel later escaped from Hitler’'s Germany
and came back to Princeton in 1940, via Russia and Japan, after World War II broke
out. After Turing completed his own doctorate, and some hurried studies on ciphers,
he returned to England in 1938 to successfully crack the Nazi’s ENIGMA code via
the use of repetitive symbolic manipulations. In these various ways, an early form of
regular expressions grew from the mathematical culture dish of Princeton.

After the war ended, research continued towards regular expressions proper and the
creation of their backbone components. The most famous of these is the asterisk
wildcard, still technically known as the Kleene Star, which was heavily adopted by
many different computing applications. From these beginnings, Kleene’s regular
expressions gradually made their way into a wide range of programming languages,
helping develop many other different technologies along the way.

* There’s a good joke on recursion: You can only learn how it works if you understand it already. (You’ll be
pleased to hear that’s all we’re going to say about recursion.)

The Origins of Regular Expressions | 483

qed, ed, and vi

Jumping ahead a number of decades, MIT’s Ken Thompson incorporated Kleene’s
regular sets notation into Butler Lampson and Peter Deutsch’s original Berkeley ged
editor program. This was the distant ancestor of Thompson’s ed and Bill Joy’s per-
sonal interpretation of vi. With the help of Dennis Ritchie, regexes were also popu-
larized via the Unix grep program, and from this historical point, regexes inveigled
their way into sed, lex, awk, nawk, gawk, and a host of other programs, including the
venerable CHANGE command line editor within SQL*Plus.

Enter Perl

When Perl bubbled spontaneously from its primeval soup in 1987, consisting mainly
of amino acids stripped from sed and awk, the rest was pure biological determinism,
swimming along in the moonlight with the general tide of Unix. If you add Larry
Wall’s linguistic origins to this tidal churn, the strong relationship between Perl and
regexes was an almost inevitable development (or a successful pre-adaptation, as
Darwinist Stephen J. Gould might have put it). And the relationship with regexes has
remained central to Perl ever since, as Figure C-1 illustrates.

Perl vs. grep

Regular expressions are found within many Unix tools to pattern-match groups of
characters within input data. Such data usually comes in through files, though it can
be any kind of data held within a scalar zvariable. Although many such tools exist—
for example, grep and awk™—for finding patterns of characters, it’s within Perl that
pattern matching has been most strongly developed. Perl contains the greatest range
of operators and metacharacters for finding and substituting patterns into something
else. Compared to grep, regexes in Perl have three major advantages:

1. They pulsate strongly within the beating heart of the Perl core engine. You can
therefore program far more complex regular expressions in Perl than you could
ever imagine doing with grep, and you can then immediately wrap them within
programming constructs.

2. Regexes in Perl can deal with binary data, without turning your xterm screen
into a mass of Klingon ideographs. This can all too easily happen when you do
an ordinary grep on a binary file.

3. Because Perl is available on virtually every operating system, regexes written in
Perl can be equally widespread. This is especially comforting for sysadmins

* grep itself stands for Global Regular Expression Print. awk is named after the surnames of its creators, Alfred
V. Aho, Peter J. Weinberger, and Brian W. Kernighan. (Alfred Aho also invented egrep. The roots of regexes
go deep.)

484 | AppendixC: The Essential Guide to Regular Expressions

operating across an entire range of OS quadrants. And because Perl works
seamlessly on Win32, you therefore get regexes there too.

Character classes
The language inside
the language inside
the language Regular expressions

Perl The language inside
The Iangl@‘e / the language

Figure C-1. Languages within languages

Built-in String Handling Functions

Lending the power of regular expressions to some simple data-handling operations is
a bit like giving a Kalashnikov to a small fish. It’s simply overkill. To prevent our-
selves from getting carried away and throwing away potential speed, we’ll summa-
rize the more useful of Perl’s built-in string handling functions in Table C-1. Repeat
after us:

We’re only allowed to use regular expressions if the built-in functions won’t hack it.

In this table, the Perl function is shown in lowercase (e.g., index) and its replaceable
parameters in uppercase (e.g., STRING). As with most things in Perl, many of the
functions in Table C-1 use $_ as a default EXPRESSION value, if no EXPRESSION

value is supplied.

Table C-1. Built-in Perl string-handling functions

Function Description
index STRING, SUBSTRING Returns the position of the first SUBSTRING in STRING, where the first position is zero. If
[OFFSET] OFFSET s given, it tells index how many characters to skip before searching:

index("Toad of Toad Hall’, Toad') gives 0
index("Toad of Toad Hall’, Toad’, 1) gives 8
(-1is returned if no match is found)

join EXPRESSION, LIST Joins a LIST of strings into a single string, each separated by EXPRESSION (which can be an
empty string, “”):
join“:", “Badger”, “Ratty”, “Mole” gives Badger:Ratty:Mole

Ic EXPRESSION Lowercases EXPRESSION:
Ic “The Stoats took the Hall” gives the stoats took the hall

Built-in String Handling Functions | 485

Table C-1. Built-in Perl string-handling functions (continued)

Function
Icfirst EXPRESSION

length EXPRESSION

reverse EXPRESSION

rindex STRING, SUBSTRING
[,POSITION]

split/PATTERN/, EXPRESSION,
Limir

sprintf FORMAT, LIST

substr EXPRESSION, OFFSET
[LENGTH] [,REPLACEMENT]

Description

Lowercases the first letter of EXPRESSION:

Icfirst “MyBeautifulMind” gives myBeautifulMind

Gives the length of EXPRESSION:

length “Washerwoman” gives 11

When used in a scalar context and with a single scalar, this reverses EXPRESSION:
reverse “Poop poop, said Toad” gives daoT dias ,poop pooP

(reverse is also often used in a list context to reverse arrays, hashes, and other listy type
things.)

Similar to index, this returns the position of the rightmost SUBSTRING in STRING. The
optional POSITION is the rightmost position which is acceptable:

rindex “Toad of Toad Hall”, “Toad” gives 8

rindex “Toad of Toad Hall”, “Toad", 7 gives 0

(-1is returned if no match is found.)

This function is the black sheep of the built-in string handling world, because it rather
naughtily uses regular expressions to process the /PATTERN/ match, to split EXPRESSION
strings into lists. After we've covered regular expressions proper, we'll come back to
split, one of the most useful of the Perl munge operators.

Returns a formatted string in the manner of the ubiquitous printf conventions from the C
programming language. The main sprintf Perl formatters are described in Table C-2. This is
highly useful for reports.

Extracts a substring out of EXPRESSION, starting at OFFSET, where the first position is
zero: substr “Messing about in boats”, 8 gives about in boats

If OFFSET is negative, the count starts from the right-hand side of the string: substr
“Messing about in boats”, -8 gives in boats

If LENGTH is omitted, everything to the end of the string is returned. Otherwise,
LENGTH determines the length of the string returned: substr “Messing about in boats”,
8, 5 gives about

If LENGTH is negative, this is how many characters are left off the end of the substring:
substr “Messing about in boats”, 8, -5 gives about in

The optional REPLACEMENT will replace the substring it finds in EXPRESSION:

$stoatl = "Messing about in boats";

$stoat2 = substr $stoat1, 0, 16, "Wonderful";
print $stoat1, "\n";

print $stoat2, "\n";

This produces:

Wonderful boats

Messing about in
An alternative to using REPLACEMENT is to use substr on the left-hand side of an assign-
ment operation:

$stoat = "Messing about in boats";

substr ($stoat, 0, 16) = "Wonderful";
print $stoat, "\n";

486 | AppendixC: The Essential Guide to Regular Expressions

Table C-1. Built-in Perl string-handling functions (continued)

Function Description

This produces:
Wonderful boats

uc EXPRESSION Uppercases EXPRESSION:

uc “canal barge” gives CANAL BARGE

ucfirst EXPRESSION Uppercases the first character of EXPRESSION:

ucfirst “railway engine” gives Railway engine

Table C-2. Perl formats for sprintf

Formatter Description

%c A character with the given number

%s Astring

%d Assigned integer, in decimal

%u An unsigned integer, in decimal

%o An unsigned integer, in octal

%x An unsigned integer, in hexadecimal

%e A floating-point number, in scientific notation (e.g., 1.00e+09 for 1 billion)

%f Afloating-point number, in fixed decimal notation

%g A floating-point number, in either %e or %f notation

%X Like %x, but using upper-case letters

%E Like %e, but using an upper-case “E” (e.g., 1.00E+09)

%G Like %g, but with an upper-case “E” (if applicable)

%b An unsigned integer, in binary

%p A pointer (outputs the Perl value’s address in hexadecimal)

%n This is a special formatter which stores the number of characters output so far into the next variable in
the parameter list

%% An ordinary percent sign

Regular Expression Concepts

As we mentioned earlier, regular expressions are patterns of literals and metacharac-

ters

that match target combinations of characters embedded within input data:

Literal character

A plain honest-to-goodness character, which mostly means no harm to anyone
and which goes about under the motto, “What you see is what you get”. So
when you see the letter n by itself, without a mischievous backslash nearby, it
means “please match the letter n at this position, and nothing else”.

Regular Expression Concepts | 487

Metacharacter

A nonalphabetic keyboard character, such as #, * $, and so on, which either has

a special meaning or can give special meaning to surrounding characters. For

instance, the \ metacharacter backslash gives a special meaning to the letter n,

making it into the newline character, \n.

Matching, Substitution, and Translation

There are three main types of regular expression. All three work only on scalars, usu-

ally strings:

m// is for match

At the basic level, m// simply tells you whether the required regular expression is
matched, or exists, within the input data. Because matching is so ubiquitous
within Perl, just the simple use of // will indicate to Perl that you’re performing a
match. If you change the delimiters, however, you do need to explicitly use the

m prefix, as in m%my match%. (We’ll say more about delimiters shortly.)
s/l is for substitute

If you want to replace the located matches with something else, you call up the

substitution operator. You always need to use the s prefix.

tr//l is for translate

Although St. Peter at the Perly gates would fail to recognize tr/// as a definitive
regular expression operator, it’s so close in form and function that we can usu-
ally get away with fudging the issue. The translate operator takes a range of char-
acters on its left side, and replaces them with another range of specified

characters on its right side. Its typical use is to capitalize a passage of text, or

shift some number ranges. To keep old sed users happy, tr/// also possesses a
synonym, the y/// operator, which behaves in an identical fashion. A typical
translation program to uppercase every line of an input file would look like this:

while(<>){
tr/a-z/A-1/;
print;

}

Regular expression input

A special double character is used to indicate the scalar value the regex should work

on. This is the =~ pattern binding operator. Although this looks a lot like an
assignment operator, try to think of it being more like the word “contains”:"

print "I have found a match" if $target string =~ /corleone/;

* The =~ operator originates from the ~ and !~ regex operators in awk.

488 | AppendixC: The Essential Guide to Regular Expressions

This translates into English, as follows:

Print out the phrase, ‘I have found a match’ if the variable $target_string contains the
matching word ‘corleone’.

As with awk, the good angel of =~ has a naughty devil partner-in-crime for negative
assertions, !~:

print "I have failed to find a match" if $target_string !~ /michael/;
This translates to:

Print out the phrase ‘I have failed to find a match’ if $target_string fails to contain the
word ‘michael’.

A N

‘ You can use any nonalphanumeric or non-space character as a delim-
iter within Perl regexes. This is particularly useful when you’re match-
ing strings that contain / Unix slash characters, which you need to
otherwise escape with a \ backslash character. A typically required
match pattern string might be “/etc/passwd”. When using the standard
match syntax, this would become NetcVpasswd/, a process known as
toothpicking. You can avoid this unsightly use by changing the delim-
iter character directly following from the now compulsory match func-
tion character, m, thus m#/etc/passwd#. No more fangs!

S

You can also use four sets of brackets, m<...>, m{...}, m(...), and
m]...]. The first two are usually preferred because their bracket charac-
ters are less frequently used within regexes. You can also mix and
match brackets for substitutions, sf...J<...>, though you may still pre-
fer s(...)(...) or even s#...#...#. As a rule of thumb, use delimiters
that aren’t going to appear in your regex to keep everything clean. For
example s<><> is a good one if you're not dealing with XML or
HTML.

The implicit use of $_

As with many other places in Perl, if no scalar variable is supplied to our regular
expression via the =~ or /~ constructs, it’s assumed that the scalar value under con-
sideration is the $_ default value. The good angel of =~ is also assumed:

$ = "Who is greater, Von Mises or Hayek?";
print if /greater/;

The print statement here could be fully expanded to:
print $_ if $_ =~ m/greater/;
Either of the two preceding print statements would translate to:

Print the full contents of the $_ variable, if $_ contains a match for the word ‘greater’.

Regular Expression Concepts | 489

The Implicit Left-to-Right Assumption

Some rules are so implicit in Perl (and in regular expressions in general) that it’s hard
to spot them as assumptions as opposed to incontrovertible facts of life. The impor-
tant one to watch out for is that regular expressions work in a left-to-right fashion.
This may seem obvious to native English speakers, but if you’re a fluent writer of
right-to-left Arabic or Hebrew script, or you're trying to match right-to-left Unicode
data, the importance of this assumption becomes more significant. If there are two or
more matches on a single line, it is the left-most one that is matched first. Without
the special /g global suffix, which we’ll talk about later, it is only this first match that
is either then validated, recorded, or substituted. (As with all computer languages
that ultimately originate from the English language, Perl goes left-to-right, following
the left-to-right convention of Latin, which followed the left-to-right tradition of
fourth century BC classical Greek.)

Let’s run our first regular expression to take a look at this concept. Try to keep an
open mind on the following syntactical details, just for the moment; we promise to
get to the meaty details of regular bracketing, curly bracketing, list context, and so
on, a bit later. All we need to know for now is that we’re looking for a seven-
character phrase, in the supplied text, starting with the word “Bag,” and we’re going
to store this in the $seven_letter_Bag_phrase variable. As we’ll also cover later, the .
{4} notation picks up any four characters, except \n newlines:

#!/usr/bin/perl
use strict;

my $party text =
"When Mr. Bilbo Baggins of Bag End announced that " .
"he would shortly be celebrating his eleventy-first " .
"birthday with a party of special magnificence, there "
"was much talk and excitement in Hobbiton.";

my ($seven_letter Bag phrase) = ($party_text =~ m/(Bag.{4})/);
So what got stored inside the $seven_letter_Bag_phrase variable?:
print "Seven Letter Bag Phrase: >", $seven_letter Bag phrase, "<\n";
This provides an output of:
Seven Letter Bag Phrase: >Baggins<

This may be a surprise. Our clever plan was to get you to guess “Bag End,” as this
may seem at first glance the slightly more obvious match within the supplied $party_
text variable. However using our left-to-right rule, the first match found was in fact
“Baggins.” As soon as we’d matched this, it was game over. To get the actual word
“Bag,” followed by a space and then a three-letter word, we’d have to tune our regu-
lar expression accordingly. For instance, we could re-tune our original code like this,
to make sure there is an \s for space character after the word “Bag”:

490 | AppendixC: The Essential Guide to Regular Expressions

my ($seven letter Bag phrase) = ($party text =~ m/(Bag\s.{3})/);

print "Seven Letter Bag Phrase: >", $seven letter Bag phrase, "<\n";
This produces:

Seven Letter Bag Phrase: >Bag End<
(We'll also explain more about \s later.)

Planning regular expressions is like planning killer attack moves in chess. It’s easy to
go forward with all bishops blazing, but we’ve got to leave ourselves covered at the
back. Let’s summarize the rules we followed here:

1. In the first case, we were after “Bag End,” so we played a quick Bag.{4} move to
go and grab it.

2. We then got punished for our hastiness, because this matched the more left
“Baggins,” too.

3. By replaying the move with Bag\s.{3}, we got the desired result.

4. Our regex opponent had to concede to us the “Bag End” phrase we were after
originally. Fantastic!

Regular expressions can also be likened to the perfect jury. They must always get the
guilty party (or match), and must always release the innocent bystander (or fail to
match an unwanted pattern). Of course in the real world, perfect juries are uncom-
mon, and we therefore tend to err on the side of letting the odd guilty person go (or
miss the odd match), in order to make sure innocent bystanders (or false matches)
are never wrongly convicted. Getting regular expressions to match exact require-
ments can be equally troublesome. It is only through fine-tuning and the constant
honing of regex common law that we’re able to achieve ultimate grand regex
mastery.

Regular Expression Architectures
There are two major regular expression engine types.

The DFA (Deterministic Finite Automaton)

With a name taking us back to Kleene’s 1951 paper on neural nerve nets, the
DFA engine powers many regex tools, including most versions of Alfred Aho’s
egrep, and awk, as well as lex and flex. Basically, while the DFA filters the input
text, it simultaneously holds every single possible combination of text the regex
could be searching for. Think of a police cell filling with the usual suspects, until
the guilty party is recognized or the match found. The DFA engine therefore pro-
vides fast, consistent matches.

The NFA (Nondeterministic Finite Automaton)
The alternative backtracker NFA engine drives Perl, sed, vi, and most versions of
grep. It is controlled much more by the actual regex. It works by bumping and

Regular Expression Concepts | 491

grinding through the input text one character at a time. If it goes up a blind alley,
it backtracks to the last position that still makes sense (the saved state), and then
begins working through the regex again, bumping and grinding once more
through the text. It’s a bit like a mad genius film editor, checking out a film
sequence one frame at a time, and then cutting backwards and forwards until the
Holy Grail’s final cut is discovered. The NFA approach is illustrated in
Figure C-2, where the Witch King of Angmar has crafted a regex to try to find
Baggins.

Although the NFA is logically slower than the DFA engine at finding matches, it has
two major advantages which often overcome this speed gap:

* Its backtracking architecture allows the NFA to save and store marked snippets

of information as it works through the text. Think of Theseus trying to locate the
Cretan Minotaur in the labyrinth at Knossos. He could use Ariadne’s ball of
silken thread to retrace his way out from blind alleys and dead ends, until in the
end he found and slaughtered the Minotaur (or got his match). He could then
get out of the maze, once again using the thread, bringing with him his life and
his sword. The DFA would approach the situation differently. If there were 99
blind alleys, it would send in 100 gladiators, only one of which would find and
kill the Minotaur (or get the match). Then all 100 gladiators would stay where
they were (99 stuck up blind alleys, 1 in the central chamber), all incapable of
going anywhere except forwards into the nearest wall. The task would be
achieved, and the Minotaur would be dead, but no gladiators would be able to
re-emerge into the light. This is illustrated in Figure C-3.

The other disadvantage of the DFA engine is that its swordsmen slaves would
never benefit from a map. Their orders are always to just keep piling into the
Labyrinth, like the Roman soldiers in The Life of Brian, until every possible
cubby-hole, including the central chamber, is covered. In other words whatever
regex you provide, as long as it’s logically similar to another regex looking for
the same match, it makes no speed difference to the match. The same 100 gladi-
ators will always end up in the same 100 locations, one of which will happen to
be the final match in the central chamber. NFA regexes, on the other hand, are
very different. If you become skilled at regexes (or skilled at solving mazes), you
can begin directing the route of Theseus beforehand by drawing him a map (or a
better regex). And the better your map-drawing or predictive skills become, the
fewer blind alleys Theseus will hit, the less backtracking he’ll have to do, and the
quicker he’ll find the Minotaur. Because you can craft your regex in this way to
speed up the game, the NFA appeals to code crafters and Perl hackers every-
where.

492

| AppendixC: The Essential Guide to Regular Expressions

m/Baggins/

E“ m/Baggins/ Gotone!:-)

The initial pitch goes into production

mm|
E “. x m/Bagglns/ Failed so backtrack to “B”
mm|

. a Production goes into turnaround
(e TTTT T TTTITITTTITITITTT]

O i 150 5a5lc il
LE

(ontinues

Got one!
E“ m/Baggins/ (again:)

Production revived from the ashes

Bumpn’ Grind ¢

E“a“ m/Baggins/ Got two!

Looking good in the rushes

Bumpn’ Grind ¢

« (ontinues

a [mn] [mm| [mm] m m
E“E“gvg““ EJ E“ m/Baggins/ g::::!e!gggmﬁcent
H

Film award gained for

Bump'n’ Grind ¢ best match

Figure C-2. Bump ’n’ grind backtrack matching

Regular Expression Concepts |

493

Download from Wow! eBook <www.wowebook.com>

DFA NFA
Text or maze structure driven Regex or maze route driven

-ﬂ_ Possible match -'_ Actual match @ Backtrack point v Minotaur

m— Retraceableroute oo Nonretraceable route

Figure C-3. DFA and NFA engines compared

Metacharacters

Most regular expressions rarely look for exact literal matches (such as m/Saruman/)
but more often for fuzzy matches, as in our earlier Baggins code snippet. For exam-
ple, suppose we have possession of a secret file called listOfPowers.txt. This was dis-
covered within the bowels of Orthanc by Gandalf before he left for the Blessed
Realm. It consists of the following names:

Saruman
Aragorn, son of Arathorn
Frodo Baggins
Mithrandir
Sauron
Bombadill
Durin's Bane
Smaug

Elrond
Galadriel
Witch-King
Celeborn
Radagast

Dain Ironfoot
Denethor

494 | AppendixC: The Essential Guide to Regular Expressions

We’d like to find all the Powers known to have existed within Middle-Earth in the
Third Age, whose names begin with an “S” and end with an “n.” Example C-1 is the
program we use.

Example C-1. Using regex metacharacters—findTheBaddies.pl
#lperl

while(<>){
print if /S.*n/;
}

Notice the use of two special metacharacters, the . (dot) and the * (Kleene Star),
within our main match expression. Before we explain how these are being used, let’s
see what we get:

$ perl findTheBaddies.pl listOfPowers.txt

Saruman

Sauron
The results seem appropriate, but notice how we failed to pick up Smaug or any-
thing else that nearly matches. So how are these two metacharacters combining?
Before we answer this question, let’s examine all of Perl’s main regex metacharacters
in Table C-3.

Table C-3. Perl’s main regular expression metacharacters

Metacharacter Description

\... The backslash giveth and the backslash taketh away. If the next character is special (for example, a $, * or
even another \), the backslash character takes away its specialness and makes it just another character
(so \\ means “match a single backslash”). If the backslashed character is ordinary (e.g., a straightforward
“n”, “b”, or “w”keyboard letter), \ usually gives it special meaning (\n for a newline character).

I This is used for alternation, matching either one expression or the other, as in:
m/Merry|Pippin/for a match that contains either “Merry” or “Pippin.”
(...) This has two concurrent meanings:

It can group various matches, usually in combination with the alternation just shown, as in
m/(Sam|frodo|Gollum) bore the ring in Mordor/.

At the same time, it will store or return whatever is found within the brackets, usually into backreference
variables, so we can make use of this information elsewhere in the program (we’ll say more about this
later).

[...] The character class brackets allow you to provide a range of match characters, so [abcJfg can match afg,
bfg or cfg. You can also use a character class range, so that [0-9] is equivalent to [07123456789].

[A..] Aslight variation on [.. .]. If the first character encountered within a character dlass s a
A (caret), it negates the whole thing. So [AabcJfg will match dfg, efg, and every character in the

un u.n

known Unicode universe preceding the fg string, except an “a”ora “b” ora “c.

* The Kleene Star—match the preceding item zero or more times, up to infinity. See the Kleene Star
and the other regex multipliers at work in Figure C-4.

+ Match the preceding item one or more times.

Metacharacters | 495

Table C-3. Perl’s main regular expression metacharacters (continued)

Metacharacter
?

{Exact Count}

Min,}

{Min, Max}

Description
Match the preceding item zero times or once only.

Match the preceding item an exact number of times. For instance, af4} means “Find exactly four “a” char-
acters within the pattern, so they look like aaaa.”

(Note the comma.) Find at least the specified number of the previous item, up to infinity. For example,
af3,} greedily matches aaa, aaaa, aaaaa, and so on. (We'll say more about “greediness” shortly.) Inci-
dentally {0,} is exactly equivalent to *, the Kleene Star shorthand version, and {7,} is exactly equiva-
lentto +.

Match an exact range of the preceding item. For instance, af4,5} fails to match a, aa, aaa, but will com-
pletely match aaaa and aaaaa. Under greedy conditions, it will match the first five characters of aaaaaa,
aaaaaaa, and so on. The {0, 7} construct is exactly equivalent to the ? metacharacter above, as you can see
in Figure C-4.

Anchors the beginning of a string, and sometimes follows the \n newline character depending on the /m
match suffix discussed later. This means that m/AAngmar/ will match “Angmar was of old the realm of
the Witch-King” but fails to match “The Witch-King of Angmar.”

Anchors the end of a string before any \n newline, if there is one. It can occasionally precede other
embedded \n newlines, depending on suffixes (described later). This means that m/Minas Morgul$/ will
match “Dreadful was the vale of Minas Morgul,” but refuses to match “Minas Morgul was once the

fair moonlit valley of Minas Ithil.”

The dot character matches any character except the \n newline, although this behavior can be modified
slightly with the /s suffix, as we'll see later.

To answer our original question, we can now see how the /S.*n/ match worked its
magic on the listOfPowers.txt file:

1. It looked for a capital “S.” (No prizes so far.)

2. The . dot character then meant it looked for any character, except \n newlines,
and the *meant it looked for zero or more of them.

3. The regex then looked for an “n” to terminate the name, which ensured that
Smaug was pulled at the last hurdle because it didn’t comply with this condition.

4. Only Saruman and Sauron matched all three of these requirements in full, with
aruma and auro matching the .* multiplier.

In the following sections, we’ll examine how we can further refine such munge
requirements to search for other fuzzy data, while keeping track of what falls within
our fuzzy requirements and what falls outside them.

Character Class Shortcuts

If you’ve ever used character class ranges with an older version of grep, you may have
used a command like the following one to find words of at least one character in

length:

$ grep '[a-zA-Z0-9][a-zA-Z0-9]*' myFile.txt

496 | AppendixC: The Essential Guide to Regular Expressions

“{n,m

} matches
L. 1€}

matches
Wwo)

HUH»

mmm Exactly 3 camels

)

m”m 3 camels

RRBBanes

bishiobiob B8

*

An infinite number

same as matches
W OB)

m +same as Hﬂ\bm 1} matches HH\) m
mm 2 camels

same as matches mmmm — m
W DWWy

No camels

1 camel

mm 2 camels

bishiobiob B

At least 1 camel

No camels

1 camel maximum

atches of camels
m{3:5} I3 mmm 3 camels
”mmm 4 camels
mmmmm 5 camels
Ge Ty mmm—

An infinite number
of camels

An infinite number
of camels

Figure C-4. Variable numeric character requirements

This seems reasonable enough, and the ranges are nice because they’ve cut out the
typing in of many alphabetical characters. But this is still too much work for a Perl-
head; a similar match in Perl would involve just three keystrokes:

There are many other such regex shortcuts in Perl for other character class ranges. To
illustrate these, including \w, we’ll first detail some double-quotish characters which
are recognized within Perl regexes, in Table C-4. Table C-5 will then display some of
the best-known character class shortcuts. (Fortunately, many of these have now
made their way into more modern versions of grep and egrep, too.)

Table C-4. Escaped characters

Escape

\0
\a

Description
Null character

Alarm (often producing an 0S bell ring)

Metacharacters

497

Table C-4. Escaped characters (continued)

Escape Description

\e Escape character

\f Form feed

\n Newline

\r Return

\t Tab

\X Control character, where Control-Cis \cC

\N{NAME} Named character, such as \N{greek:Alpha}

\x{abcd} Hexadecimal character, where \x{263a} is a smiley face
o

The . (dot) character is normally used to represent any character,
except \n newline. However, it has no such special meaning within
s character classes. Therefore [.J+ literally means one or more . dot char-
" acters, such as full-stops, periods, or decimal points.

Table C-5. Character class shortcuts

Symbol Description Fully expanded version

\d Any digit. [0-9]

\D Anything except a digit. [N0-9]

\s Whitespace, including spaces, tabs, line feeds, [\E\m\N\f] (Note that the first character in this range is a
form feeds and newlines. single ordinary spacebar character.)

\S Non-whitespace. [AM\AA]

(You have to be careful when using shortcuts
such as \s and \S. They can easily look like each
other within large code blocks, or even within

small ones.)
\w A word, or alphanumeric character (includes [a-zA-Z0-9_] (Note that this also depends upon your
underscores, typically found in file names). locale settings—for example, 6 in a German locale is
matched by \w; see perldoc perllocale for more details.)
\w Non-word character. [Na-zA-20-9_]

(The ends and beginnings of strings, as marked
by the A and $ string anchors, are often honorary
\W characters for the devilish purposes of
regexes.)

Boundaries

In addition to the * (caret) and § (dollar) string anchors, there are two other special
boundary assertions commonly used in Perl regexes. These are described in
Table C-6.

498 | AppendixC: The Essential Guide to Regular Expressions

Table C-6. Positions and boundaries

Symbol
\b

\B

Description

This matches any boundary between a \w word character, and a \IW non-word character, in either the \w\W or
\W\w order. It is a zero-width assertion and can be seen matching various word boundaries in Figure C-5. For
the purposes of \b boundary matches, the A and $ anchors count as honorary \W non-word characters.

Simply the opposite of \b. This is the boundary between either a \w\w or \WAW pairing.

This is like a strict A. It matches at the beginning of the string. We'll see later in this appendix how A can also
match just after embedded \n characters, if it is used with the /m match suffix. However, \A only matches right
at the start of the string, come what may.

Again, this is like a super-strict $. The \z symbol only matches at the end of a string, with or without \n new-
lines, and with or without the /m match suffix (described later).

This usually means the same as S—that is, it comes either before the \n newline at the end of a string, (if
there is one) or right at the end (if there isn't). With the /m match suffix, the $ character can then come
before \n characters embedded within the string, whereas \Z cannot.

Beware of punctuation within words such as “Let’s”, as in Figure C-5. Remember
that \w is both for alphanumerics and the underscore, but it never covers punctua-
tion marks, such as apostrophes. Sometimes it’s better to use matches, such as the
following, to pick up words containing punctuation:

mAs+\S+\s+/

\w abcdefghijkimnopqrstuvwxyz0123456789_
\W | Non-alphanumeric and not"_" underscore

\b | Infinitesimally narrow boundary between a\W and a \w (or a \w and \W).The imaginary
characters at the start and the end of a line, marked by the A and the $ metacharacters,
count as \W in this situation.

\b \b \b \b \b \b
\b \b \b \b
\b
\b

"Let|'|s.lseel.] what 'matches/.’\b]?"

Notice how we have used the " character to indicate space characters.

Figure C-5. Word boundaries

This means: “Some spaces, followed by some nonspaces, followed by some more
spaces.” The sequential non-space characters can be a word containing apostrophes.
Notice how it may also be difficult, at first glance, to pick out the difference between
the \s and the \S shortcuts.

Metacharacters | 499

Greediness

If the first great principle of Perl regexes is the left-most match wins, the second great
principle is that by default any match will try to take as much text as it can. More
specifically, the mass character quantifiers will always try to grab the maximal possi-
ble match. These quantifiers include:

*(or {0,})

+ (or {1,})

?(or {0,1))

{Min,}

{Exact Count}(see Table C-7 for the special case created by this quantifier)
{Min,Max]}

Particularly when they’re used in combination with the . (dot) character, they will
always try to eat as much as they can, unless we tell them otherwise. For instance,
let’s take a typical line out of an /etc/passwd file line:

andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
You might expect the substitution s/. */jkstill:/ to produce the following;:
jkstill:fruitbat:/home/andyd:dba,apache,users:/bin/ksh

You might have thought the .* would only take the andyd, and allow the colon char-
acter to match the first colon. But this doesn’t happen. Instead, the .* will try and
grab as much as it possibly can get away with. Remember that the . dot character can
match anything, except \n newlines, and that includes colons. What the preceding
substitution actually produces is:

jkstill:/bin/ksh

This may go against common sense, but it is the result of default greedy behavior.
Perl regexes operate greedily via the NFA mechanism of backtracking and by saving
success states. This is illustrated in Figure C-6, which we’ve broken down into seven
steps:.

1. The first step establishes that there is at least one possible solution involving a
trailing colon. The regex saves this state and will only come back to it later if it’s
forced to by the turn of events.

2. Being greedy, the regex decides to march on and go for another bridge over the
river into the enemy’s territory. It assigns the colon it has just found to being
part of the .* match and moves on until it can (if it’s lucky) find a second save
state and another colon.

3. Continuing the greedy pattern, the regex has another go to see if it can feed yet
more bridge-head territory into the .* multiplier. It finds a third save state.

4. Once again, the regex moves on to greedily acquire a fourth save state. This is
the last one it will successfully find, but it has yet to learn this.

500 | AppendixC: The Essential Guide to Regular Expressions

5. The regex goes for glory and attempts to acquire a fifth save state, but crashes
and burns instead, running out of text and failing to find a fifth colon to com-
plete its target match. It has gone a colon too far.

6. Using the NFA architecture, the regex can now backtrack to the latest save state.

7. It hands this save state result onto the rest of the substitution program, which
will then go on to complete the operation by replacing andyd:fruitbat:/home/
andyd:dba,apache,users: with jkstill:. Mission accomplished.

Target string
andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh

Substitution regex
s/ *:/jkstill:/

Save state ‘A’

0 andyg :fruitbat:/home/andyd:dba,apache,users:/bin/ksh
A

Save state ‘B’

ISASAARSANAL | .
Q andyd:fruitbat®/home/andyd:dba,apache,users:/bin/ksh
A B

Save state‘'C’

- —y Y Yy .
9 andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
A B (

Save state ‘D’

AR YYYYYry COYYYNYYYYY
0 andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
A B C D

Failpoint
9 andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh '
A B (

.

Backtrack to latest save state T

@ andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh
A B C D

Match result
0 andyd:fruitbat:/home/andyd:dba,apache,users:/bin/ksh

Figure C-6. Greedy matching, save states and backtracking

When you’re munging large quantities of data, be sure to take this greedy behavior
into account when crafting your regular expressions.

Now that we know how the NFA works on greediness, we can think about the regex
pathways that will take up the least amount of work. However, sometimes we would
rather avoid this maximally greedy behavior—perhaps we want just the bare mini-
mum. In the case under consideration, all we really wanted to do was to replace

Metacharacters | 501

andyd: with jkstill:. So how do we do this? With the multiply useful ? (question mark
character), summarized in Figure C-7. What we have in the top portion of Figure C-7
is a maximally greedy regex, which eats as much it can, while still ultimately produc-
ing the match. In the bottom half, the regex has been limited by the shackles of the
extra question mark suffix. It is now a minimalist regex, and will match as little as it
can to find a successful match. It may be less than happy about this, but what can it

do?

1 Greedy match
s/ ¥/l
) ©
2 Nongreedy match
s/ X2/l

Figure C-7. The question mark and its effect on greediness

In our earlier example, if we use a substitution regex of s/.*?:/jkstill:/, we now get the
result of:

jkstill:fruitbat:/home/andyd:dba,apache,users:/bin/ksh

Incidentally, the greediness-restraining ? (question mark) suffix is, in addition to the
other main use of ?, a quantifier in its own right equivalent to {0,1}. All the multiple
quantifiers are similarly restrained, as in Table C-7.

Table C-7. Minimizing greediness

Syntax Description

{Min,Max}? Will match at least Min of the preceding character, and up to Max in order to make the match work, but
will try to only match Min if it can get away with it.

Min,}? Will match at least Min of the preceding character, and up to infinity of them in order to make the match
work, but again will try to only match Min.

{Exact Count}? Although minimization is logically available here, this match always has to get an Exact Count anyway,
regardless of whether it's greedy or otherwise. There may be processing implications by making this non-
greedy, but these constantly vary depending on whatever else you're doing.

*? From zero to infinity of the preceding character, and as close as possible to zero, to make the match
work.

502 | AppendixC: The Essential Guide to Regular Expressions

Table C-7. Minimizing greediness (continued)

Syntax Description

+? From one to infinity of the preceding characters, and as close as possible to one, to make the match
work.

7 This match will try to find zero to one of the preceding character, but will prefer to find zero characters, if

that will make the match work.

Interpolated Strings

Variables found within Perl regexes behave similarly to interpolated strings within
print statements. This is because of two levels of parsing:

1. The first parse interpolates, or expands, any possible variables.
2. The second parse works out the actual regular expression, and how to process it.
For instance:

$orginal Gandalf = "Olorin";
$wizard String = "Olorin or Mithrandir? ";

if ($wizard_String =~ m/$original_Gandalf/)

{
print "Wizard found! <|:-))))"

}

This interpolates the $original_Gandalf variable inside the match, which expands to
Olorin and then processes the regex on the $wizard_String input data to see if it con-
tains Olorin. The resultant output is:

Wizard found! <|:-))))

However, although regexes can generally be treated in the same way double-quoted
interpolated strings are treated, this varies slightly with the special use of metachar-
acters. For instance, Example C-2 will fail.

Example C-2. almostInterpolated.pl—Checking interpolation in regexes
#lperl -w

use strict;

my $regex pattern = "[*Casablanca”;

my $input film = "[*Casablanca";

if ($input_film =~ m/$regex_pattern/)
{

}

print "Is the Maltese Falcon just as good?\n";

Metacharacters | 503

If we run almostInterpolated.pl, we get a rude awakening:

$ perl almostInterpolated.pl
Unmatched [before HERE mark in regex m/[<< HERE *Casablanca/ at almostInterpolated.
pl line 10.

This is because [is a special regex metacharacter for character classes, as described in
Table C-3, which needs a matching] dancing partner. Because we’re looking for the [
square bracket opener as an actual literal within the string, we need to backslash it to
escape its special meaning. Fortunately, we can avoid pasting backslashes every-
where into our pattern. We can use the quotemeta() built-in function instead. What
this does is return the input string value with all nonalphanumeric characters, includ-
ing the underscore, backslashed for our convenience:

my $regex_pattern = quotemeta('[*Casablanca');
my $input film = "[*Casablanca";

if ($input_film =~ m/$regex_pattern/)
{

print "Is the Maltese Falcon just as good?\n";

}
Now we get:

$ perl almostInterpolated.pl

Is the Maltese Falcon just as good?

Scalar or List Context Results

A match in a scalar setting will generally produce either a 1 for true (if it finds a
match) or an empty string “” for false (if it fails to find the required match):

Scalar context on the LHS, left hand side.

$my string = "Galadriel and Celeborn";

Note below how the =~ symbol takes precedence over the = symbol.
What happens in the following, is that the $my string =~ m/Galad/
operation takes place, and then the $result = (match operation)

comes second.

$result = $my string =~ m/Galad/;

print "Expecting 1: result: >", $result, "<\n";

$result = $my string =~ /Legolas and Gimli/;

print "Expecting Empty String: result: >", $result, "<\n";

504 | AppendixC: The Essential Guide to Regular Expressions

Fingers crossed, we get the results we’re after:
Expecting 1: result: >i<
Expecting Empty String: result: ><

«»

Excellent. This behavior of returning 1 or “” differs if Perl detects that a list array is
required on the left-hand side of the equation (i.e., whether it is in scalar context or
list context). In this case, if anything within a match is marked for storage with
parentheses, these values are copied across into the list array elements on the left-
hand side. If no valid match is found, these array elements are left empty:

Array context on the LHS
$my_string = "Galadriel and Celeborn";

Once again, the =~ operation takes precedence over the = operation,
and the wantarray() function detects that a list is required on the
left-hand side.

($queen, $king) = $my string =~ m/(Galad\w+)\s+\w+\s+(\w+)/;
Valid results expected

print "Value Expected, Queen: >", $queen, "<\n";
print "Value Expected, King: >", $king, "<\n";

($queen, $king) = $my string =~ m/(Legolas\w+)\s+\w+\s+(\w+)/;
print "Empty String Expected, Queen: >", $queen, "<\n";
print "Empty String Expected, King: >", $king, "<\n";

When executed, this provides:

Value Expected, Queen: >Galadriel<

Value Expected, King: >Celeborn<

Empty String Expected, Queen: ><

Empty String Expected, King: ><
This is a bit fiddly, but if you work through a few examples of your own, it should
begin to make sense.

Alternation and Memory

We promised earlier, when we were discussing list contexts and the internal use of
the wantarray() function, that we’d cover backreferences. So what’s the mechanism
behind backreference memory storage?

Capturing backreferences

As we explained earlier, backreferences are made possible by the architecture of the
NFA engine, which always leaves a ball of string back into the labyrinth. Think of the
bracketing as paired knots in the string, which tell the regular expression what to

Metacharacters | 505

retrieve. We can see this in action in Figure C-8, where we’re using backreferences to
store the noted values in special built-in variables, rather than returning them as part
of a list. Note also the use of the /i regex suffix in Figure C-8, which ignores the
alphabetic case of the target string under scrutiny.

m/(ring) to (rule)/i

Eventually matches the following string; however, the bracketed
elements of the match are marked as special and consequently
stored in special variables.

IIIIIIJ_|_|_|i_|_|,IIIII
Return 1 (true) f 1
RO HE 7o QOHE
OIITIITITITTITTITTINITITI]
o
$1=[R|i|n|g
Set two spedial HHHHI [Hm|
variables M
$2=[R[lu|1fe
Ll

Figure C-8. Capturing backreferences and ignoring case

Note the following:

* These special built-in variables start from $1, and move up to $n, depending on
how many bracketed elements you have (which always start from the left).

* This is why we are prohibited from starting the name of a normal Perl scalar
value with a number. Such names are reserved for built-in regex backreferences.

* A value, like $1, will continue to exist within your program until another regular
expression is executed that successfully matches. (Such values are dynamically
scoped until the end of the innermost block, until the end of the current file,
until the eval statement, or until the next successful match, whichever comes
first.)

* You can nest your brackets as much as you dare.

Let’s run through Example C-3, with a range from $1 to $12.

506 | AppendixC: The Essential Guide to Regular Expressions

Example C-3. Capturing multi-bracketed values—roundDozen.pl

#lperl -w
Start with a large match, involving twelve captures
$_ = "abcdefghijklmnopqrstuvwxyz";

abcdefghijklmnopgrstuvwxyz
(.
2

#1 1 backreferences

#t = ten, e = eleven, w = twelve

print '$1 :', $1, "\n";
print '$2 :', $2, "\n";
print '$3 :', $3, "\n";
print '$4 :', $4, "\n";
print '$5 :', $5, "\n";
print '$6 :', $6, "\n";
print '$7 :', $7, "\n";
print '$8 :', $8, "\n";
print '$9 :', $9, "\n";
print '$10 :', $10, "\n";
print '$11 :', $11, "\n";
print '$12 :', $12, "\n";

Now let's go for a small match, which only fills
up $1, $2 and $3

$_ = "1234567890";

1234567890

m/(.(.(.).).)/;

#1233 2 1 backreferences
print '$1 :', $1, "\n";
print '$2 :', $2, "\n";
print '$3 :', $3, "\n";
print '$4 :', $4, "\n";
print '$5 :', $5, "\n";
print '$6 :', $6, "\n";
print '$7 :', $7, "\n";
print '$8 :', $8, "\n";
print '$9 :', $9, "\n";
print '$10 :', $10, "\n";
print '$11 :', $11, "\n";
print '$12 :', $12, "\n";

Running this script produces the following results:

$ perl roundDozen.pl
$1 :abcdefghijklmnopgrstuvw

Metacharacters

507

$4

Use
$5
Use
$6
Use

$7
Use
$8
Use
$9

Use

:bcdefghijklmnopgrstuv
:cdefghijklmnopgrstu
:defghijklmnopgrst
:efghijklmnopqrs
:fghijklmnopgr
:ghijklmnopq
:hijkImnop
:ijkImno

:jkImn

:klm

11

112345
1234

3
of

of
of
of
of
of

of

$10 :

Use

of

$11 :

Use

of

$12

uninitialized

uninitialized

uninitialized

uninitialized

uninitialized

uninitialized

uninitialized

uninitialized

uninitialized

Note the following:

* On the first set of printouts, we got $1 to $12 printed out neatly, following the
left-to-right bracketing rule.

* However, on the second print run, after the second regular expression the val-
ues, $1, $2, and $3 printed out OK, but $4 to $12 are now completely unde-

fined.

* You may have expected $4 to $12 to remain the same as they were after the first
regex, but to keep a logically consistent picture, the entire board is swept clean if
a successful match is found. As soon as you run another matching regex, the
whole $1 to $n shooting match begins again, all the way up to infinity.

You can also use backreferences within the actual matches. The rule is that if these
are used on the left side of the substitution or within an ordinary match, you must
use the \1 style notation (instead of $1). On the other hand, on the right-hand side of
the substitution you can use the straight $1 notation. For instance, you might be try-
ing to replace all double-word typos in a piece of text with equivalent single words:

value

value

value

value

value

value

value

value

value

in

in

in

in

in

in

in

in

in

print
print
print
print
print
print
print
print

print

at

at

at

at

at

at

at

at

at

roundDozen.

roundDozen

roundDozen.

roundDozen.

roundDozen.

roundDozen.

roundDozen

roundDozen.

roundDozen.

pl

.pl

pl
pl
pl

pl

.pl

pl

pl

line

line

line

line

line

line

line

line

line

32.

33.

34.

35.

36.

37.

38.

39.

40.

508 |

Appendix C: The Essential Guide to Regular Expressions

#lperl -w

Our input string has two double-word typos,

"work work", and "was was". We'd like to remove both of them.
$ = "Ludwig von Mises greatest work work was Human Action, "

"and F.A. Hayek's greatest work was was the Road to Serfdom.";

On the left side of the substitution, to pick up

the double-word, we have to use \1 in the match,

and on the right side substitution we use $1 to replace

both instances of the same word with a single string value.

s#\b(\w+)\b\s+\1\bi#$1#g; # Substitute double-word typos

print;

Note the following:

We've used the # character to delineate the substitution, to prevent eye-strain
among all those shooting-star slashes.

We've also used the global suffix, g, which we’ll talk about shortly, to ensure
that we substitute the first match found, work work, and the second one too,
was was.

The use of the \b word boundary ensures that we’re only picking up real individ-
ual words, and avoiding phrase combinations such as:

the theocracy
lathe the
bathe their

Our solution code produces the following output text:

Ludwig von Mises greatest work was Human Action, and F.A. Hayek's
greatest work was the Road to Serfdom.

Match Suffixes

We'll complete this appendix by looking at how we can alter the operation of regexes
with the various suffixes listed in Table C-8, including /g used in the double-word
substitution in the previous section.

Table C-8. Match and substitution suffix modifiers

Suffix ~ Description

/i

/g

Matches ignore alphabetic case, so m/http/i will pick up http, Http, HTTp, and HTTP, as well as every other pos-
sible combination of these letters.

Matches: Used in matches for globally parsing strings into sub-units.

Substitutions: Used within substitutions for globally replacing all matches found, as well as the first one found in
the left-most position.

Match Suffixes | 509

Download from Wow! eBook <www.wowebook.com>

Table C-8. Match and substitution suffix modifiers (continued)

Suffix

/s

/m

/0

/e

/X

Description

Most often used with data that contains embedded \n newline characters. The /s suffix allows the.. (dot) char-
acter to match \n newlines in addition to everything else. All input therefore effectively becomes a single line.
(Use this suffix with care, especially in combination with greedy multipliers.)

Often used in combination with /5. The /m suffix modifies the behavior of the /A and $ end anchors. Instead of being
fixed to the ends of the match, /m allows these anchors to occur wrapped around \n newlines, with $ coming just
before \n, and /A coming just after \n. This allows a single-line data entry to be treated as multiple lines. An
extended example of this, in combination with /s, can be found in Figure C-9.

There are usually two parse operations associated with each regular expression. The first expands any embedded

variables that may make up the matches and replacements. The second then computes the actual regular expres-
sion. Both of these operations possess a processing hit, which you may wish to avoid on a regex within a million-

row loop. To compile a regex only once, the first time it is used you can use the /o suffix.

Only used within substitutions. This evaluates the replacement on the right-hand side, as if it were an ordinary
code expression.

Used to make regexes clearer. This suffix ignores most whitespace, allowing indentation, and also allows com-
ments within the match pattern.

/i—Ignore Case

The /i suffix simply makes the match ignore the alphabetic case on the match side of
the equation. Consider the following example.

We have the following file to process:

http
Http
HTtp
HTTp
HTTP
hTTP
htTP
http

We’ll work this through following code snippet, which has yet to use the /i suffix:
while(<>){

print if /http/; # No /i suffix

}

This processes the file to produce:

http

Now we’ll change the code snippet to include the /i suffix:
while(<>){

print if /http/i; # /i suffix in place

510

| AppendixC: The Essential Guide to Regular Expressions

The code now totally ignores case, and prints the following list:

http
Http
HTtp
HTTp
HTTP
hTTP
htTpP
httP

/g—~Global Matching

When used with the match operator, the global suffix /g will gradually break down a
string into parsed components, as shown in Example C-4.

Example C-4. Global matching—parseGlobal.pl
#lperl -w

$ = "/usr/local/apache/conf/httpd.conf";

while (m#/([\w.]+)#g){

print $1, "\n";
}

When executed, parseGlobal.pl breaks down the input string into its wordy com-
ponents:

$ perl parser.pl

usrTr

local

apache

conf
httpd.conf

Let’s look at some examples of global replacements:
* The global suffix is more often used with substitution, as with its sed program
ancestor, to replace all matches found. This usually occurs in the following way:
s/$match/$replacement/g

* The following code snippet has yet to use the global suffix to deal with the two
major fortresses of Morgoth, Sauron’s old master, in the First Age of Middle-
Earth:

$_ = "Angband Angband Angband";
s/Angband/Utumno/;

print;

Match Suffixes | 511

¢ When executed, this returns:
Utumno Angband Angband

* The following code is identical, except for the addition of the /g suffix:
$ = "Angband Angband Angband";

s/Angband/Utumno/g;

print;
e This returns:

Utumno Utumno Utumno

/s & /m—Single- and Multiple-Line Matching

The /s and /m suffixes are often used in combination, especially when many lines of
data have been packed into a single scalar variable. Their combined use can best be
seen in Figure C-9.

/o—Compile Only Once

To avoid recompiling regexes unnecessarily, you can use the /o suffix. A typical usage
of /o is shown in the following example:

1. We have the following constantly changing diary file:

Wed: Mow Lawn

Mon: Sell Donuts

Sun: Meet President

Sat: Save World

Tue: This must be Belgium

Thu: Shred Evidence

Sun: Change 0il on Car

Fri: Buy Monkey Nuts

2. Every day we run the following program to work out our daily routine. This had

been taking three nanoseconds too long, so we added the /o suffix to get the
regex compile time down a bit, as the regex needs compiling only once within
the loop:

#lperl -w

@time array = localtime;
@day array = ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');

$today match = $day array[$time array[6]];
print "Appointments for ", $today match, "day\n\n";

while(<>){

512 | AppendixC: The Essential Guide to Regular Expressions

The Ginger Cat The original text from the file
sat on the H\M\» is inputted into the program and
purple mat used to fill the $_ variable.

$ = "The Ginger Cat\nsat on the\npurple mat";

| Note, that the \n newline representation is a single character

- Theanchorflag ~ # $
— characters match. v
Inanormal "Th : h 1 "
match: The Ginger Cat\nsat on the\npurple mat
Thedot characters _1N€ Ginger Cat sat on the purple mat

m// match.
. - Theanchorflag 4 $
— characters match. v
Imn:dsi'f?egrk;!{ﬁ?umx "The Ginger Cat\nsat on the\npurple mat"
Thedotcharacters _1N€ Ginger Catlnsat on thef\npurple mat

m//s match.

Theanchorflag 4 n
characters match. l % l

$ " $

(

— v v
Ina multiple-line " : n
suffix modifier match: The G}nger Cat\nsat on the\npurple mat
The dot characters .T.h.e. Glnger cat Sat .o.n. the Purple .m.a.t.
m//m match.
& Theanchorflag 4 $ 4 $ A $
— characters match. v v v
::Laeg?]mﬂlet?psllenghl:e "The Ginger Cat\nsat on the\npurple mat"
modifier suffises The dotcharactes 118, Ginger Catlinkat on thefinpurple mat
match: match.
m//sm

Figure C-9. Single- and multiple-line suffixes
print if /$today _match/o;

}

3. Today happens to be Sunday, so let’s find out what we’ll be doing later by exe-
cuting the program on the appointments file:

Appointments for Sunday

Sun: Meet President
Sun: Change 0il on Car

Match Suffixes | 513

This leaves us with an interesting clothing choice!

It’s often tempting to spice up many Perl programs via a liberal use of the /o suffix,
but beware. Many Perl programmers have spent many long hours tracking down
impossible “I-must-be-going-mad” bugs, finally realizing that they should have
removed the /o suffixes. No matter what value $today_match goes to in the previous
example, the regular expression will continue to search for Sun until the cows come
home in the twenty-third century.

/e—Evaluations

Often overlooked, /e is a rough diamond of a suffix and is especially useful for math-
ematical and scientific munge purposes. Basically it takes the right side of a substitu-
tion and evaluates it as a code expression, as if embedded in a do{...} code block.
Let’s run through a quick example:

1. We have a file containing two columns of numbers for working out gravitational
firing points for the Mars Lander project:

34.5 87.33

99300.3002 459020

17777.3 2

32.880993 999999999999.3314
13.4 26.42140

2. We need to add all these figures together to work out our analysis, and the but-
tons on our calculator are getting a bit wobbly. We need to make sure that our
results are right, so we write the following Perl snippet:

while(<>){
s/([\d. J+)\s+([\d.]+)/$1 + $2/e;
printf("-> %20s + %20s = %20s", $1, $2, $);

}
3. The crucial regex is:
s/([\d. J+)\s+([\d.]+)/$1 + $2/e
Breaking this down, the first thing we do is to pick out one or more digits or dec-
imal points, and save these into $1 via the use of backreference brackets:”
([\d.]+)
We then look for one or more spaces, so we can throw them away:

\s+

* Remember that . (dot) characters within class ranges lose their specialness, and become mere full-stops or
decimal points.

514 | AppendixC: The Essential Guide to Regular Expressions

We now look for a second number, which may contain a decimal point. We save
this into $2:

([\d.]+)
The /e suffix then wraps a dof...} block around the $1 + $2 expression. Logi-
cally, the expression now looks like this:

s/([\d.]+)\s+([\d.]+)/ do { $1 + $2 } /e

4. The expression can now be evaluated. We substitute the sum into the $_ vari-

able, which previously consisted of the two numbers separated by spaces. Run-
ning the code snippet over the file, we get the following results.

-> 34.5 + 87.33 = 121.83

-> 99300.3002 + 459020 = 558320.3002

-> 17777.3 + 2 = 17779.3

-> 32.880993 + 999999999999.3314 = 1000000000032.21

-> 13.4 + 26.42140 = 39.8214
We can now begin our Mars Lander rocket firing pattern analysis with confi-
dence.

You may think /e is pretty clever, but it gets better. You can wrap unending amounts
of eval{...} commands around the original dof{...} code block by adding an extra
evaluation command to the suffix, /ee. This will take whatever the first expression
evaluation gives you, and then evaluate it, so that the following two lines are equiva-
lent:

s/PATTERN/CODE/ee
s/PATTERN/eval (CODE)/e

Let’s work through another example to cover it:

1. This time we have the following three-column file:

134.5 + 87.33
99.3 - 45.3
17.3 + 2
100.03 - 4.12
100 +9
2. Notice that the mathematical operation we wish to use on the two numbers is
the second column within the file. Unfortunately, we only find out what each
one is when we’re actually processing the line. We therefore have to select this
operator out from the file, build up the code string, and then evaluate its out-
come before printing the formatted results. We do this via the following code
snippet:

while(<>){
s/([\d. J+)\s+([+-1)\s+([\d.]+)/"\$result = $1 $2 $3"/ee;

printf("-> %8s %1s %-8s = %9s\n", $1, $2, $3, $result);

Match Suffixes | 515

3. Let’s break down the regular expression:
s/([\d.J+)\s+([+-1)\s+([\d.]+)/"\$result = $1 $2 $3"/ee
On the left side, we once again store the first number into $1:
([\d.]4)
We then throw away some spaces on either side of the mathematical operation

we wish to perform.” The calculation will either be an addition or a subtraction,
and will be stored in $2:

\s+([+-])\s+
We then pick up the second number and store it into $3:

([\d.1+)

4. On the right-hand side of the regex, we build up a string that will perform the
required operation upon our two numbers, and then store the calculated num-
ber into the $result variable. We’ve backslashed $result to prevent it from being
interpreted as an empty string, within the string evaluation:

"\$result = $1 $2 $3"
This code is then evaluated via the eval{...} double-e suffix:
/ee

5. The results can now be printed out:

-> 134.5 + 87.33 = 221.83
-> 99.3 - 45.3 = 54
-> 17.3 + 2 = 19.3
-> 100.03 - 4.12 = 95.91
-> 100 + 9 = 109

/x—The Expressive Modifier

You may have noticed that some of the regexes we’ve talked about were starting to
get rather long and trickier to follow until we broke them down across several lines.
This is where /x steps out from behind the curtain.

Some years ago, Jeffrey Friedl, author of Mastering Regular Expressions, was replying
to a regex question on comp.lang.perl.misc when he pretty-printed a very large regu-
lar expression to make it easier to read. Larry Wall saw the post and liked it so much
that he immediately added the /x suffix to Perl. This made it possible for everyone to
create indented regexes containing embedded comments.

Essentially, within /x regexes you can use any amount of whitespace, and the regex
will ignore it. You can also put comments within the regex, prefixed by the usual Perl
hash comment character. If you do want to include spaces or # hashes within the

* Notice how we have the hyphen, indicating the minus sign, as the second character inside the class range [+-].
This prevents Perl from marking it as some kind of a class range.

516 | AppendixC: The Essential Guide to Regular Expressions

actual regex, you merely backslash them, or use the \s escape for spaces. Let’s work
through a regex problem and see how we can help solve it more clearly with the
assistance of /x:

We have an Oracle PL/SQL program file, mars_rocket.sql, which has some C-style
comments within it which we wish to remove. There is a reason for this, but it’s clas-
sified:

/*
|| Create this procedure to fire the positioning rockets when
|| we approach the Martian surface.
*/
CREATE OR REPLACE PROCEDURE mars rocket (v_thrust in IN NUMBER)
AS
v_momentum NUMBER; /* Adjustment factor */
v_twist NUMBER; /* Rotational factor */
BEGIN
/*
|| Loop and then fire.
*/
LOOP
EXIT WHEN v_thrust _in = 0;
v_twist := v_thrust in + mars_env.gravi bind; /* Newton :-) */
v_momentum := v_thrust in + mars_env.mass_emc; /* Einstein :-) */

mars_env.fire retros(v_twist, v_momentum); /* Fire in the hole */
END LOOP;
/* Fired and forgotten. */

END mars_rocket;
/

Example C-5 shows our program to remove these comments, making use of the
/x suffix.

Example C-5. Removing C-style comments with the /x suffix—xErase.pl
#lperl -w
Open the target file, and the target.
open(MARS _IN, $ARGV[0]) or die "Could not read $ARGV[0]";
open(MARS_OUT, ">$ARGV[1]")

or die "Could not open $ARGV[1], to write to";

Slurp the entire file

$/ = undef; # Houston, - Undefining the input record separator.

Match Suffixes | 517

Example C-5. Removing C-style comments with the /x suffix—xErase.pl (continued)

$_ = <MARS_IN>; # Entire file slurped into
the single default $ variable.

The main substitution begins:

s{
The search pattern brackets are {},
and the replacement brackets are [].
We're removing all C-style comments, so
the replacement is completely empty.
/I* # We're looking for the C-style comment
start marker. We have to escape the
Kleene Star, to make it a normal asterisk.
K2 # We're then looking for any character,
including the \n newline, though we're
doing this minimally, to avoid stripping
out everything between the first comment
and the last.
*/ # We then find the first C-style comment
terminator. Once again, we've had to
backslash the asterisk.
}
[1gsx;
The gsx suffixes mean:
#
g: We're replacing every match we find within the file.
s: Because we've slurped the entire file into a single variable,
including \n newlines, we need to treat the entire thing as a
single line, so . dot will match \n newlines, and catch comments
which spread over more than one line.
x: The "expressive" syntax means we can break down a potentially
confusing regex, over many lines, and use comments :-)

Now print out the new file without C-style comments and close down.
print MARS OUT $;

close(MARS_IN);
close(MARS_OUT);

Because of the /x suffix within the program, we can now fully expand the match pat-
tern with white space, and pepper it with plenty of comments. This will help our
Marsonauts figure out what our regex is trying to do when they come to maintain the
script halfway through on the trip out.

Now we test run the program, to create the mars_bar.sql output file:

$ perl xErase.pl mars rocket.sql mars_bar.sql

518 | AppendixC: The Essential Guide to Regular Expressions

The mars.bar.sql output file has now had all of its C-style comments removed:

CREATE OR REPLACE PROCEDURE mars_rocket (v_thrust in IN NUMBER)
AS

v_momentum NUMBER;

v_twist NUMBER;
BEGIN

Loop
EXIT WHEN v_thrust in = 0;
v_twist := v _thrust in + mars env.gravi bind;
v_momentum := v_thrust_in + mars_env.mass_emc;

mars_env.fire retros(v_twist, v_momentum);
END LOOP;

END mars_rocket;
/

We can almost see Tom Hanks, getting excited about this in the follow-up movie.

Splitting Up is Easy To Do

As promised, we need to dissect the split operator, which basically splits up strings into
array lists with the following differing input patterns:

split /PATTERN/, EXPRESSION, LIMIT

split /PATTERN/, EXPRESSION

split /PATTERN/

split

The operator takes a regex /PATTERN/, and then splits the EXPRESSION string value
by it into a list (usually an array). If LIMIT is specified, the maximum size of the list
will be this value; otherwise, the list will be as long as it needs to be. For instance:

@ = split /:/, "andyd:banana:/bin/ksh:dba";

print scalar @a, "\n"; # Size of array

print "@", "\n"; # Prints interpolated array

This splits on the : (colon) character, and will produce the following output:

4
andyd banana /bin/ksh dba

On the other hand, with LIMIT defined, the following keeps the split down to just
three elements:

@ = split /:/, "andyd:banana:/bin/ksh:dba", 3;

print scalar @a, "\n"; # Size of array

print "@", "\n"; # Prints interpolated array

Match Suffixes |

519

Notice how the LIMIT value of 3 above changes the output below, retaining the : colon
within the third and last element:

3
andyd banana /bin/ksh:dba

If EXPRESSION is omitted, the current value contained within $_ is used. If /PAT-
TERNY/ itself is omitted, the regex split pattern assumed is As+/, for a split on any
amount of white space. This is particularly useful for splitting up columnar output:

$ = "-rw-r--r-- 1 jkstill 766 22:49 sqlnet.log";
@a = split; # => split /\s+/, $;

print scalar @a, "\n"; # Size of array

print "@", "\n"; # Prints interpolated array

This produces the following interpolated output, showing the size of the new @a array
and then its six discrete elements:

6
-1w-r--1r-- 1 jkstill 766 22:49 sqlnet.log

This appendix barely touches upon Perl’s regular expression capabilities. There is
much more to discover. (The Camel and Owl books are good places to start, as is the
online perldoc perlre command.) Nobody ever stops learning about regexes. Just
when you think you possess a complete knowledge, another little wrinkle turns up.
This is especially true today with the growing use of Unicode. But hey, where would
life be if every day were utterly predictable? As Mithrandir said to Sam, Merry, and

Pippin at the Grey Havens, on the last day of Middle-Earth’s Third Age:

Well, here at last, dear friends, on the shores of the Sea comes the end of our fellow-
ship in Middle-Earth. Go in peace! I will not say: do not weep; for not all regexes are
an evil.

520

| AppendixC: The Essential Guide to Regular Expressions

APPENDIX D

The Essential Guide
to Perl Data Munging

Oracle DBAs spend a great deal of time handling data that for one reason or another
needs to be cleaned, transformed, and/or formatted. They need to fill Oracle data
warehouses with customer data from multiple sources, import data into Oracle data-
bases from non-Oracle data streams, and convert and format source material of all
kinds. Whether it’s an XML stream from a web page, a SQL*Loader feed from a tele-
com switch, or a snapshot transfer from another database, DBAs must ensure that
these data transfers are clean, accurate, and timely. Unfortunately, the raw data
they’re given to work with is often dirty, inaccurate, behind schedule, and unfit for
SQL*Loader. This is a job for Perl and its wonderful world of data munging!

Data munging, the process of transforming data as it is transferred from one place to
another, is a topic that is increasingly important for Oracle DBAs to understand. It is
also an operation that Perl is particularly good at. Perl DBI’s innate ability to deal
with multiple database types simultaneously also makes the transfer of data from one
database to another as simple as lining up dominoes!

This appendix presents the basics of data munging and illustrates a typical data-
munging operation—importing a MySQL data stream into an Oracle database,
transforming it as necessary. We'll also describe the many Perl data-munging mod-
ules that you can download from CPAN and use in conjunction with Oracle data-
bases. We’ll examine these modules in several major categories:

Numeric modules
The modules in this category deal with numeric data and handle mathematical
operations used in data munging. We’ll pay special attention to the very useful
Number::Format module.

Date modules
The modules in this category deal with the special requirements of dates and
their formatting and conversion. Because speed is often important in data mung-
ing, we’ll focus on the very efficient C-based Date::Calc module.

521

Conversion modules
The modules in this category perform conversions of data from one text format
to another. We’ll take a special look at Convert::Recode, a popular Perl data con-
version module that can convert between many different kinds of character
sets—for example, between ASCII and EBCDIC mainframe formats.

Perl XML modules
The modules in this category use XML in performing data munging. We’ll focus
on the XML::XMLtoDBMS module, part of the XML-DBMS middleware project,
which is especially effective at transferring variable data between XML docu-
ments and relational databases.

What Is Data Munging?

Data munging means taking data that’s stored in one format and changing it into
another format. The term “data munging” has an ironically mixed etymological ori-
gin. The following definition is taken from version 4.3.0 of the Jargon file:"

munge /muhnj/ vt.

1. [derogatory] To imperfectly transform information. 2. A comprehensive rewrite of a
routine, data structure or the whole program. 3. To modify data in some way the
speaker doesn’t need to go into right now or cannot describe succinctly (compare
mumble). 4. To add spamblock to an email address.

This term is often confused with mung, which probably was derived from it. However,
it also appears the word ‘munge’ was in common use in Scotland in the 1940s, and in
Yorkshire in the 1950s, as a verb, meaning to munch up into a masticated mess, and as
a noun, meaning the result of munging something up (the parallel with the kluge/
kludge pair is amusing). The OEDT reports ‘munge’ as an archaic verb meaning “to
wipe (a person’s nose)”.
Perl, with its excellent text-processing capabilities and high performance, is ideally
suited to the task of data munging. In this chapter we’ll focus on those munging
capabilities most relevant to processing Oracle data. If you want to learn more, we
recommend the book, Data Munging With Perl, by David Cross (Manning, 2001),
which we’ve found to be invaluable in our own data-munging efforts:

How Data Munging Works

Figure D-1 illustrates graphically how data munging works. As shown in the figure,
there are several distinct components and steps involved in a data-munging opera-
tion:

* See http://'www.tuxedo.org/~esr/jargon/html/entry/munge.html.Used with permission. Available in print, as
The New Hacker’s Dictionary, edited by Eric S. Raymond, 3rd ed. (MIT Press, 1996), http://www-mitpress.
mit.edu.

1 Oxford English Dictionary: http://www.oed.com

522 | AppendixD: The Essential Guide to Perl Data Munging

Business rules

Data designs

Sort algorithms

Figure D-1. Basic data-munging principles

The data source
On one side of the munging equation is our data source, or initial wellspring of
data. This can be anything from a raw binary file to a stream of digital output
from a remote MySQL database. Because Perl was designed from the start to be
one of the fastest text-processing languages available, it is able to process and
transform data at a very high speed. For this reason, Perl is an ideal language for
data munging.

The munge operation
Once the source data is extracted, we begin our munge operation. This opera-
tion can be any kind of transformation. We can reverse data, expand data, and
recombine data. We can munge it through regular expressions or sprintf style
commands, as in Appendix C, The Essential Guide to Regular Expressions, or we
can parse it through complex data trees. Although Perl abounds with such tech-
niques, there are three controlling paradigms:

Sort algorithms
Some of the world’s brightest mathematicians have created sort algorithms,
and all of these algorithms can be programmed in Perl. The language is also
packed with built-in commands, such as sort and map, and Perl-specific sort
techniques, such as the Schwartzian transform.”

Data structure and design
The central munge operation must be able to represent the data structures
for both the source and the sink (which is essentially the destination), no
matter how complex. It must also be able to transform data from one struc-
ture into the other. Because Perl’s referenced structures are virtually
unbounded in extent, Perl is a perfect language for handling such transfor-
mations.

* http://'www.perlfaq.com/cgi-bin/view view_by_category=sorting

What Is Data Munging? | 523

Download from Wow! eBook <www.wowebook.com>

Business rules
We can easily encapsulate business rules within Perl modules, and can thus
provide reusable, business-specific data transformations.

The data sink
Our transformed data is finally deposited within a chosen data sink. A data sink
works conceptually the same way as a “heat sink” does in engineering; it sucks
away the final output from a processing operation. In data munging, this output
is the final data generated, rather than the unwanted “heat” in the process. (In
engineering, the heat would be generated by a piece of electrical equipment such
as a satellite or a laptop computer.)*

The Art of Algorithms

There are legions of algorithms used with data munging. The most venerable source
for all of them is Donald Knuth’s The Art of Computer Programming, volumes 1-3
(Addison-Wesley, 1998). Professor Knuth began writing this magnum opus in 1962,
and it is divided into several volumes as follows:

Volume 1: Fundamental Algorithms
Volume 2: Seminumerical Algorithms
Volume 3: Sorting and Searching

We make use of his Soundex algorithm, from volume 3, later in this appendix, and
you can check out Professor Knuth’s own home page here:

http://www-cs-faculty.stanford.edu/~knuth

Those who already have volumes 1 through 3 will be happy to know that Professor
Knuth is also aiming to complete the following volumes:

Volume 4: Combinatorial Algorithms
Volume 5: Syntactic Algorithms

For a more Perl-based approach, check out the following excellent book, written by
several of the main authors behind perldoc:

Mastering Algorithms with Perl, by Jon Orwant, John Macdonald, and Jarkko
Hietaniemi (O’Reilly & Associates, 1999)1

Enter the Real World

You may have spotted a problem with Figure D-1. Yes, it’s just too spotless and clean
for the real world. One data source, one munge operation, and one data sink. How

* Another analogy is that of sinking a putt in golf. Getting the data in the right hole is the final process desti-
nation in our data-munging operation.

T http:/flwww.oreilly.com/catalog/maperl

524 | AppendixD: The Essential Guide to Perl Data Munging

convenient. If you’ve ever carried out telecom call transfers, share deal transfers, or
any other major corporate data transfer, you’ll know that data-munging operations
often tend to look a bit more like Figure D-2.

-
Data Sort Data Sort i
- structure #1 algorlthm #7 structure #2 algorlthm #2 Datasink #1
pata source #1 ; ' ; A
= iw I\Mw \iv
: Data source #2 : H H H :
ensrmmnzzzznl 5 Munge operatlon #1 E Munge operation #2 ; Munge operatlon #3 ;
i Busmess Busmess Data / =
ot rules #1 rules #2 structure #3
t Data source #3 ; _ Datasink#2

Figure D-2. A real-world data-munging operation

But this is no problem for Perl. Although Figure D-2 is complex, that’s just fine,
because Perl is also designed to be complex. That allows it to map itself to the real
world’s necessary complexity. Or, in the words of Mr. Wall himself:"

You have a deep desire to turn the complex into the simple, and Perl is just another
tool to help you do that—just as I am using English right now to try to simplify real-
ity. I can use English for that because English is a mess.

This is important, and a little hard to understand. English is useful because it’s a mess.
Since English is a mess, it maps well onto the problem space, which is also a mess,
which we call reality. Similarly, Perl was designed to be a mess (though in the nicest of
possible ways).

This is counterintuitive, so let me explain. If you’ve been educated as any kind of an
engineer, it has been pounded into your skull that great engineering is simple engineer-
ing. We are taught to admire suspension bridges more than railroad trestles. We are
taught to value simplicity and beauty. That’s nice. I like circles too.

However, complexity is not always the enemy. What’s important is not simplicity or
complexity, but how you bridge the two.

In the next section, we’ll take a look at a real-world Oracle data transfer and illus-
trate how Perl can help munge the data. We’ll later point you towards the many Perl

* Second State of the Onion address, from the 1998 Perl Conference, hitp://www.perl.com/pub/a/1998/08/
show/onion.html

What Is Data Munging? | 525

modules that you can use to invoke the specific conversion or formatting operations
you need in order to transform your data appropriately.

Data-Munging Example:
An Inter-Database Transfer

People often think of SQL*Loader as being the answer to all their data loading needs.
But the reality is that running SQL*Loader might be the last step in a data load, not
the only step. You might need to perform a number of additional steps to get data in
a state fit for use by SQL*Loader. And sometimes you might not need SQL*Loader at
all; often, Perl DBI works equally well as the last process stage for finally inserting
data into a database. This is particularly true if you’ve used Perl exclusively to get to
that last stage. Why add another process to manage, even one as good as
SQL*Loader? Let’s keep that data load as simple as possible.

We'll discuss the respective roles of Perl DBI and SQL*Loader later on in more detail.
For now though, we’ll introduce data munging conceptually by providing a very
basic source-to-sink example in a single munge operation. This example emphasizes
Perl DBI’s ability to munge data across from one database type to another within a
single Perl script. In this example, MySQL is the source and Oracle is the sink. We’re
going to munge the data from one datatype (MySQL) into another (Oracle), plus do
a little date format munging on the side.

The MySQL Source

We’ll assume in this example that the data you are loading into an Oracle database
comes from a MySQL database. You can find out more about MySQL at the follow-
ing sites:

http://lwww.mysql.com

http://sourceforge.net/projects/mysql

You might also like to check out Jochen Wiedmann’s DBD::mysql driver; this driver
is the interface that allows Perl programs to connect to MySQL databases via Perl
DBI:

http://www.cpan.org/authors/id/fWIED
Assuming that a MySQL test database has already been created, let’s go ahead and

create the source data and prepare to transfer it to our Oracle database, orcl. These
are the steps we followed:
1. We entered MySQL, and switched to the test database:
$ mysql --user=irish --password=lion

mysql> use test;
Database changed

526 | AppendixD: The Essential Guide to Perl Data Munging

2. We then created a new clone EMP table, emp_store:

mysql> create table emp_store (
-> empno numeric(4) not null,
-> ename varchar(10),
-> job varchar(9),
-> mgr numeric(4),
-> hiredate date,
-> sal numeric(7,2),
-> comm numeric(7,2),
-> deptno numeric(2));
Query OK, 0 rows affected (0.02 sec)

mysql> describe emp_store;

Hmmmmmm e oo Hmmm - Hmm - Hmmmmmmem Hmmm e +
Field | Type | Null | Key | Default | Extra
Hmmmmmm e fmmmmmmmm e Hmmmmme Hmmmm- Hmmmmmm e Hmmmmmn- +

empno	decimal(4,0)	\	o	
ename	varchar(10)	YES		NULL
job	varchar(9)	YES		NULL
mgr	decimal(4,0)	YES		NULL
hiredate	date	YES		NULL
sal	decimal(7,2)	YES		NULL
comm	decimal(7,2)	YES		NULL
deptno	decimal(2,0)	YES		NULL
Hmmmmmm e fmmmmmmmm e Hmmmmme Hmmmm- Hmmmmmm e Hmmmmmn- +

8 rows in set (0.00 sec)

3. Three test rows were inserted into our MySQL table, using the MySQL default
date format of YYYY-MM-DD. (This is going to be the extra thing we’ll have to

munge, later, to smoothly transfer data from one database type to another.):

mysql> insert into emp_store
-> values (1001, 'Groucho', 'Professor', 1,
-> '2001-01-01', 100, 10, 10);
Query OK, 1 row affected (0.00 sec)

mysql> insert into emp_store
-> values (1002, 'Chico', 'Minister', 2,
-> '2001-01-02', 200, 20, 20);
Query OK, 1 row affected (0.00 sec)

mysql> insert into emp store

-> values (1003, 'Harpo', 'Stowaway', 3,
-> '2001-01-03"', 300, 30, 30);
Query OK, 1 row affected (0.00 sec)

mysql> select * from emp_store;

+------ oo EREEEEEEEEE +----- oo o +------ EEEEEEEEE +
| empno| ename | job | mgr | hiredate | sal | comm | deptno |
+------ B fo-mmmmo - +----- B et e +------ B +
| 1001| Groucho | Professor| 1 | 2001-01-01| 100.00| 10.00| 10 |
| 1002| Chico | Minister | 2 | 2001-01-02| 200.00| 20.00| 20 |

1003| Harpo | Stowaway | 3 | 2001-01-03| 300.00| 30.00| 30 |
+------ oo EREEEEEEEEE +----- oo o +------ EEEEEEEEE +

3 rows in set (0.00 sec)

Data-Munging Example: An Inter-Database Transfer

527

4. Finally, we quit out of MySQL:

mysql> quit
Bye

The Oracle Sink

We’d like to transfer these three rows across to the EMP table under Oracle’s orcl
database. We’ll do this via the munge script in Example D-1.

Example D-1. Inter-database transfers into Oracle—mySQLtoOracle.pl
#lperl -w

use strict;
use DBI;

Step 1: Establish a MySQL source database handle, and

an Oracle sink database handle. Notice we can connect to two
different databases, and database types, at the same time,

in one Perl script. Code Simplicities 'R' Us! :-)

my $mysql_dbh = DBI->connect('DBI:mysql:database=test;host=localhost’,
"irish', 'lion")
or die "Couldn't connect to MySQOL database:
DBI->errstr;

my $oracle dbh = DBI->connect('DBI:Oracle:orcl', 'scott', 'tiger',
{ RaiseError=>1, AutoCommit=>0 });

Step 2: Prepare and execute the selection statement taking
data from our MySQL source. Bind the columns, for efficiency.

my $select sql = gqq { SELECT empno, ename,

job, mgr,
hiredate, sal,
comm, deptno

FROM emp_store };

my $mysql sth = $mysql dbh->prepare($select sql)
or die "Couldn't prepare selection statement:
$mysql dbh->errstr;

$mysql sth->execute;

Create the munge bind variables
my ($empno, $ename, $job, $mgr, $hiredate, $sal, $comm, $deptno);
$mysql_sth->bind_columns(\$empno, \$ename,
\$job, \$mgr,
\$hiredate, \$sal,
\$comm, \$deptno);
Step 3: Prepare our Oracle insert statement.

my $insert_sql =

528 | AppendixD: The Essential Guide to Perl Data Munging

Example D-1. Inter-database transfers into Oracle—mySQLtoOracle.pl (continued)

qq{ INSERT
INTO emp (empno, ename,

job, mgr,
hiredate, sal,
comm, deptno)

VALUES (2, ?,
?, 7,
to_date(? , 'YYYY-MM-DD'), ?,
2, 0k

my $oracle sth = $oracle dbh->prepare($insert sql);

Step 4: Select from MySQL and fill bound array, before populating
Oracle EMP table.

while ($mysql sth->fetch) {

$oracle_sth->bind param(1, $empno);
$oracle_sth->bind_param(2, $ename);
$oracle sth->bind param(3, $job);
$oracle_sth->bind_param(4, $mgr);
$oracle_sth->bind_param(5, $hiredate);
$oracle sth->bind param(6, $sal);
$oracle sth->bind _param(7, $comm);
$oracle_sth->bind_param(8, $deptno);

Insert!
$oracle_sth->execute;

}
Step 5: Clean up, commit the transaction, and finish.
$oracle_dbh->commit();

$mysqgl_dbh->disconnect();
$oracle_dbh->disconnect();

Let’s see what’s going on in this code:

1. We create our two database handles, one to draw data from the MySQL source
and the other to pour the munged data into the Oracle sink.

2. We prepare the main selection statement to draw information from the source.
This will fill our first known data structure.

3. Next, we prepare the matching Oracle INSERT statement, using our second data
structure, which will push the data into the sink. Notice the to_date() function
for munging the hiredate column. As we’re mixing Perl and Oracle, we’re uncon-
cerned as to who does the munging, as long as the job gets done.

Note that there are several other ways we could have performed this date col-
umn munge operation in Perl. For instance, the following code could have been

Data-Munging Example: An Inter-Database Transfer | 529

adapted to produce an “Oracle-friendly” date string that could be inserted
directly into the database:

@date_array = reverse split /-/, '2001-01-02';

$date array[1] =

('JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN',
'JuL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC')[$date array[1]-1];

$oracle insert date = join '-', @date array;

print 'oracle insert date: >', $oracle_insert_date, "\n";
This code snippet would produce:

Oracle insert date: >02-JAN-2001<
However, we’re not zealots. The munge problem Perl is helping us overcome
here is the transformation of MySQL data into Oracle data. Because it’s easier to
let the Oracle database engine do the extra date column munge work in this par-
ticular case, that’s the route we’ll choose here. (Note that the join and split func-
tions are mentioned in Appendix C; for more on these functions, try perldoc -f
join and perldoc -f split. You can also try perldoc -f reverse for an explanation of
this other built-in Perl function.)

4. Once everything’s set, we begin the munge. As each row is drawn from the
MySQL source, we pump it straight down into the Oracle sink, using the
Soracle_sth->execute statement and the to_date() data transformation.

5. When the task is finished, we clean up and shut down the munge.
Running the script itself is straightforward:
$ perl mySQLtoOracle.pl

We can then check the orcl database. Notice that our earlier to_date() operation has
given us the dates in the more usual Oracle-style DD-MON-YY format:

$ sqlplus scott/tiger@orcl

ORCL> select * from emp where empno < 2000;

EMPNO ENAME JoB MGR HIREDATE SAL COMM DEPTNO
1001 Groucho Professor 1 01-JAN-01 100 10 10
1002 Chico Minister 2 02-JAN-01 200 20 20
1003 Harpo Stowaway 3 03-JAN-01 300 30 30

3 rows selected.

ORCL>

That concludes our simple example—but wait a minute! There seems to be precious
little in the way of actual data transformation going on except for the date munge.
The main transformation here was from MySQL data to Oracle data, and the fact is
that this transformation is extraordinarily simple to do in Perl. Nevertheless, the real-
ity is that very few other languages could have managed this transformation so trivi-
ally, in so few lines of code.

530 | AppendixD: The Essential Guide to Perl Data Munging

We can add onto this simple example by layering on additional data-munging opera-
tions, depending on specific processing requirements. For instance, we could pull
information from other databases to get hold of department descriptions, drag in
other personnel information from remote HR databases, aggregate the salaries, sub-
stitute some of the data to match agreed-upon business rules, and so on. And all of
this is easily done in Perl. For many more data-munging examples, refer to the more
detailed sources mentioned at the beginning of this chapter.

The use of Perl for data munging gives us something else in addition to the excellent
resources of Perl DBI. We also get the ability to use the 200-plus built-in operators,
such as split, join, and reverse, binary-capable functions such as read, regular expres-
sions (covered in Appendix C), and the 2000-plus object-oriented Perl modules avail-
able from www.cpan.org (or www.activestate.com). We can make use of all of these
resources, in conjunction with Perl DBI, to carry out a wide range of the most diffi-
cult data-munging operations. In the rest of this appendix, we’ll summarize what we
consider to be the best of these 2000-plus data-munging modules. Whether you’re
regularly filling data warehouses with difficult-to-extrapolate aggregated data, man-
aging the ever-increasing complexity of XML information transfer, or just moving
small pieces of fiddly DBA data from one place to another, Perl is a comprehensive
one-stop shop full of data-munging functionality.

Numeric Modules

Many Perl data-munging modules are available on CPAN that you can use to con-
vert and otherwise manipulate numeric data, analogous to Oracle functions such as
TO_NUMBER or TO_CHAR, but often going beyond these with increased special-
ization (an example is Number::Latin). Those we consider to be the most useful in
pre-handling Oracle database data are summarized in Table D-1.

You can obtain these modules and many others from both the CPAN (for Unix) and
ActiveState (for Win32) archives. You can check for the latest status of PPM pack-
ages at:

http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/Packages

Table D-1. Numeric modules

CPAN module Description/CPAN address

Number::Encode Written by Luis Mufioz; converts bit strings into numeric strings, in a similar manner to Oracle’s BIN_
TO_NUM.
http://www.cpan.org/authors/id/L/LU/LUISMUNOZ/

Number::Format Written by William R. Ward; a popular number formatting package, which performs a variety of

numeric operations and is described in the next section.
http://www.cpan.org/authors/id/WRW/

Numeric Modules | 531

Table D-1. Numeric modules (continued)

CPAN module Description/CPAN address
Number::Latin Written by Sean M. Burke and going beyond Oracle function capabilities, this module converts

P S

numbers to and from the W3C Latin numbering system. This system uses the ‘a’..Z, ‘aa’..’az’,

7

‘ba’..’zz' notation, often seen in spreadsheets.

http://www.cpan.org/authors/id/S/SB/SBURKE/
Number::Phone::US Written by Hugh Kennedy; validates US telephone numbers.

http://www.cpan.org/authors/id/K/KE/KENNEDYH/

Number::Spice Written by Wim Verhaegen; reformats to the Spice notation for integrated circuit designa —for
example, 225 picofarads becomes 225p.
http://www.cpan.org/authors/id/W/WI/WIMV/

Number::Spell Written by Les Howard; spells out integers in words—for example, print(spell_number(777)) out-
puts seven hundred seventy seven.
http://www.cpan.org/authors/id/L/LH/LHOWARD/

aThe Simulation Program for Integrated Circuits Emphasis. Check out the classic Berkeley Spice circuit design tool at http://
freshmeat.net/projects/berkeleyspice/

Let’s take a look at one of these modules, Number::Format, and how you might use it
to format Oracle database data.

Number::Format

Number::Format is a very useful Perl module that offers a variety of useful conver-
sion methods, which produce results similar to Oracle’s built-in TO_NUMBER and
TO_CHAR functions. Number::Format also adds a few features that aren’t available
in the Oracle functions, such as the wide range of negative number formats you can
adopt. We illustrate a typical usage of Number::Format’s format_number, format_
price, and format_bytes in Example D-2. (This particular example deals with the
Altairian Dollar currency favored by recent Galactic President, Zaphod Beeblebrox.)

Example D-2. The Number::Format module—numberFormat.pl

#lperl -w
use strict;

use Number::Format;
The neg_account key uses an "x" to represent the number, and then
whatever other formatting you require.

my $Altarian =
new Number::Format(-thousands sep => ',',
-decimal point => '.',
-int_curr_symbol => 'ALT',
-decimal digits => 4,
-decimal fill => 2,
-neg_format => '(x)"', # Accounting Style Negs

532 | AppendixD: The Essential Guide to Perl Data Munging

Example D-2. The Number::Format module—numberFormat.pl (continued)
-kilo_suffix => ' KiloAlt',
-mega_suffix => ' MegaAlt',
-giga suffix => ' PanGalacticGargle');

my $finiteProbability = 6666666666.66;

We've used a negative currency amount for format_price() to

demonstrate the regular collapses of the Altairian Dollar! :-)

print $Altarian->format_number($finiteProbability), "\n",
$Altarian->format_price (-$finiteProbability, 3), "\n",
$Altarian->format bytes ($finiteProbability);

Running the numberFormat.pl script produces the following output. Notice that the
accounting-style neg_format method has enclosed our negative figure in brackets:

$ perl numberFormat.pl

6,666,666,666.6600

(ALT 6,666,666,666.660)
6.2088 PanGalacticGargle

You can download the Number::Format tarball from:
http://'www.cpan.org/authors/id/ WRW

You can install the Win32 ActivePerl package as follows:

C:\>ppm
PPM> install Number-Format

Mathematics Modules

There are four mathematical modules bundled with Perl (summarized in Table D-2)
that you can use to handle most of the mathematical data-munging operations you
are likely to perform. For less common operations, check CPAN; you will find many
unbundled modules there that provide mathematical support for data-munging oper-
ations on data ranging from Fibonaci” numbers through financial annuities.

Table D-2. Mathematics modules bundled with Perl

Module Description
Mark::BigFloat Written by Mark Biggar; used for operations on arbitrary-length floating-point numbers.
Math::Bigint Also written by Mark Biggar; a related module used for operations on integers of any length.

* The Fibonaci numbers are an inductive sequence of numbers in which each term is generated by the two
previous terms. The first two terms are both assigned the value of 1 and all other terms are created by adding
the last two numbers together. The first few terms of the sequenceis 1, 1,2, 3, 5, 8, 13, 21, 34, 55. This num-
ber pattern is often useful for mathematical and financial analysis, and is also used within Mother Nature to
determine many different growth patterns. For instance, we may have five fingers, and vine leaves may have
five fronds, because both are using the Fibonaci number sequence.

Numeric Modules | 533

Table D-2. Mathematics modules bundled with Perl (continued)

Module Description
Math::Complex Written by Raphael Manfredi and Jarkko Hietaniemi; used for operations on complex numbers.

Math::Trig Also written by Manfredi and Hietaniemi; used to provide trigonometric support, including a definition of
the pi constant ().

Date Modules

There are a large number of Perl modules that you can use to format and convert
data that represents dates. Date handling has traditionally been a challenge for Ora-
cle DBAs and developers. The fact is that dates are, well, confusing. After 100,000
years of Neolithic Sky watching, with some heavy input from the Babylonians, dates
have become more twisted in their logic than a boat full of lawyers arguing over a
politician’s expense account. Although Oracle provides a number of built-in func-
tions for date handling (TO_DATE, TO_CHAR, etc.), you may find these functions
cumbersome or inefficient. This is particularly true if you’re working with time inter-
vals (NUMTODSINTERVAL, NUMTOYMINTERVAL, TO_DSINTERVAL etc.).
The Perl data modules described in this section provide easier ways to handle data
conversion. You will also find them helpful if you simply want to pre-clean data in
Perl before overloading the Oracle SQL engine with calls to Oracle’s own date func-
tions.

The date-related modules listed in Table D-3 are available on both CPAN (for Unix)
and ActiveState (for Win32). Some of them are dependent on each other, so we've
listed them out in the appropriate installation order (least dependent first). Some also
require additional modules, which are listed in Table D-3 (also in installation order
wherever possible).

Table D-3. Date-based modules

CPAN module Description/CPAN address

Date::Business Written by Richard DeSimine; calculates business dates.
http://www.cpan.org/authors/id/D/DE/DESIMINER

Date::Calc Written by Steffen Beyer; a C-based date formatting masterpiece, described in detail in the follow-
ing section.
http://www.cpan.org/authors/id/STBEY

Date::Pcalc Written by J. David Eisenberg; a pure Perl version of Date::Calc.
http://www.cpan.org/authors/id/STBEY

Date::Christmas Written by Elaine M. Ashton; returns Christmas day for any Gregorian year following 1600 AD —

for example, christmasday(2002) => Wednesday.
http://www.cpan.org/authors/id/H/HF/HFB

534 | AppendixD: The Essential Guide to Perl Data Munging

Table D-3. Date-based modules (continued)

CPAN module
Date::Decade

Date::Easter

Date::Handler

Date::Japanese::Era

Date::Simple

Date::Range

Date::Manip

DateTime::Precise

Description/CPAN address

Written by Michael Diekmann; provides decade-based date calculations; relies on either Date::Calc
or Date::Pcalc.

http://www.cpan.org/authors/id/M/MI/MIDI

Written by Rich Bowen; requires several extra modules, listed in Table D-4. Date::Easter provides
both Gregorian and Orthodox Easter information.

http://www.cpan.org/authors/id/RBOW

Written by Benoit Beausejour; handles time zones and locales.
http://www.cpan.org/authors/id/B/BB/BBEAUSE)

Written by Tatsuhiko Miyagawa; converts dates between the Japanese Era and Gregorian calen-
dar; requires two modules, listed in Table D-4.

http://www.cpan.org/authors/id/M/MI/MIYAGAWA

Written by John Tobey; this speed-driven module validates dates, calculates date-time intervals,
performs day-of-week arithmetic, and much more.

http://www.cpan.org/authors/id/JTOBEY

Written by Tony Bowden; calculates date ranges and analyzes date patterns; relies on Date::Simple
and Test::Simple (see Table D-4).

http://www.cpan.org/authors/id/T/TM/TMTM

Written by Sullivan Beck; a pure-Perl module for dates and times, which is recommended when
the faster Date::Calc fails to provide the required options or when you need some really clever date

string parsing. Date::Manip is the Daisy-Cutter date module in the Perl world; when all else fails,
you can rely on Date::Manip to provide that extra bit of functionality.

http://www.cpan.org/authors/id/SBECK

Written by Blair Zajac; this object-oriented module deals with the usual date and time suspects,
plus GPS operations and fractional seconds.

http://www.cpan.org/authors/id/B/BZ/BZAJAC

Table D-4. Required modules for date-based formatting

CPAN module
Mime::Base64

Jeode

Devel::CoreStack

Test::Harness

Test::Simple

Reliant module Description/CPAN address
Date::Japanese::Fra Written by Gisle Aas; used for Base64 strings.

http://www.cpan.org/authors/id/GAAS

Date::Japanese::Fra Written by Dan Kogai; code for the Japanese character set.

http://www.cpan.org/authors/id/D/DA/DANKOGAI

Date::Easter Written by Alligator Descartes; used for debuggers.

http://www.cpan.org/authors/id/ADESC

Date::Easter Written by Michael G. Schwern; a test harness for Perl modules.

http://www.cpan.org/authors/id/MSCHWERN

Date::Easter, Date::Range Also written by Michael G. Schwern; provides basic utilities for writing

Perl tests.
http://www.cpan.org/authors/id/MSCHWERN

Date Modules | 535

In the following sections we’ll look at Date::Calc, the module we consider the most
powerful in the Perl date munging world because of its high speed.

Date::Calc and Date::Calendar

Perl’s most useful and efficient date formatting module is Steffen Beyer’s Date::Calc.
Although this module offers fewer methods than does the Date::Manip module,
Date::Calc’s C library greatly enhances its munge processing speed. You can obtain
this module from:

http://www.cpan.org/authors/id/STBEY

We'll also look at Date::Calendar, which comes with Date::Calc and provides some
handy methods for dealing with business calendars. To use Date::Calendar, you may
have to install the Bit::Vector module, also available from Steffen Beyer’s CPAN site.

For Win32 users, the latest Bit::Vector and Date::Calc versions are available from
ActiveState (although Date::Calc is already pre-installed with ActivePerl):

C:\>ppm

PPM> install Bit-Vector

PPM> install Date-Calc # To get the latest version! :-)

The Date-Calc-5.0 API

In the following list we’ve described every nondeprecated method in the Date::Calc
5.0 APL:

Days_in_Year
The days in the year, up to the supplied month (1..12), in the given year:
$days = Days_in Year($year, $month);
Days_in_Month
The number of days in a month for a given year. The year is required, although
it’s logically only necessary for February’s leap-year variations:
$days = Days_in_Month($year, $month);
Weeks_in_Year
Fetches the number of weeks in a given year (either 52 or 53) (see Figure D-3):
$weeks = Weeks in Year($year);
eap_year
Returns 1 for true, in a leap year, otherwise O for false:
$leap year flag = leap year($year);
check_date
Returns 1 if the year, month, day combination is a real date, otherwise 0:
$valid date flag = check date($year, $month, $day);

536 | AppendixD: The Essential Guide to Perl Data Munging

150 86071: “The first week of the year is the week containing the first Thursday”
December 2003 IIIIIIIIIIIIIIIIIIII.4||IIIIIIIIIIIIIIIIII January 2004
Monday Tuesday Wednesday Thursday Friday SatiSun
2 an| 31 December 2003 1 January 2004 2 3
P
Week 10f 2004
December 2009 T—) {11! January 2010
Monday Tuesday Wednesday Thursday Friday SatiSun
28 29 30 31 Decermnber 2009 1 January 2010 2
3
Week 53 of 2009

Figure D-3. ISO 8601—Which year owns which week?

check_time
Returns 1 if the hour, minute, second combination is valid, otherwise O:

$valid time flag = check time($hour, $min, $sec); # 24 hour clock! :-)
check_business_date
Returns 1, for valid business dates (e.g., Year 2002, Week 47, Day 3), otherwise
0:
$valid business flag = check business date($year, $week, $day of week);
Day_of_Year
Returns the year day from 1...366 (with 366 for leap years):
$day of year = Day of Year($year, $month, $day);
Date_to_Days
Starting from 1 Jan 1 AD, which is day one,” returns the number of days since
that date, such that Date_to_Days(1, 1, 1) returns 1:
$days = Date_to_Days($year, $month, $day);
Day_of _Week
Returns the weekday of the supplied date (1 = Monday, .., 7 = Sunday):
$weekday = Day of Week($year, $month, $day); # Returns 1..7

Week_Number
Returns the year’s week number; Week_Number(2002, 12, 25) gives 52:

$week = Week Number($year, $month, $day);

Week_of_Year
Using ISO 8601, decides which year owns a week split over a New Year cusp by
calculating which year has the Thursday. The first week containing it (and there-
fore four days) is the first week in any year:

($week, $year) = Week of Year($year, $month, $day);

* The Gregorian calendar goes from 31 Dec 1 BC, to 1 Jan 1 AD. There’s no year zero.

Date Modules | 537

Download from Wow! eBook <www.wowebook.com>

Monday_of_Week

Generates the date on the first day of the given year’s week:

($year, $month, $day) = Monday of Week($week, $year);

Nth_Weekday_of _Month_Year

For recurring dates. You can calculate the third Tuesday’s date in May, using
Nth_Weekday_of_Month_Year(2003, 5, 2, 3) to return (2003, 5, 20):

($year, $month, $day) =
Nth Weekday of Month Year($year,$month,$day of week,$nth weekday);

Standard_to_Business

Converts a given date to a business format of year, week, and day:

($year, $week, $day_of week) = Standard_to_Business($year,$month,$day);

Business_to_Standard

The dark half of Standard_to_Business. This performs a reverse operation:

($year, $month,$day) = Business to Standard($year, $week,$day of week);

Delta_Days

The number of days between dates. A greater second date makes this positive:

$diff days = Delta Days($year1,$monthi,$day1,$year2,$month2,$day2);

Delta_ DHMS

The days, hours, minutes, and seconds difference between two date-times:

($diff days, $diff hours, $diff mins, $diff sec) =
Delta DHMS($year1, $monthi, $day1, $houri, $mini, $sect,
$year2, $month2, $day2, $hour2, $min2, $sec2);

Add_Delta_ DHMS

Performs complex date and time addition in many permutations, the most usual
of which is to take a date and time, add on some differences, and then see what
new date and time is generated:

($year, $month, $day, $hour, $min, $sec) =

Add Delta DHMS($year, $month, $day, $hour, $min, $sec,
$diff day, $diff hour, $diff min, $diff sec);

Delta_ YMD

Creates an array: ($year2—S$yearl,$mnth2—$mnthl,$day2—3$day1):

($diff year, $diff mnth, $diff day) =
Delta YMD($yearl, $mnthi, $dayl, $year2, $mnth2, $day2);

Delta_ YMDHMS

Similar to Delta_YMD, but with the extra time element:

($diff year,$diff month,$diff day,$diff hour,$diff min,$diff sec) =
Delta YMDHMS($year1, $monthi, $dayi, $houri, $mini, $seci,
$year2, $month2, $day2, $hour2, $min2, $sec2);

538

| AppendixD: The Essential Guide to Perl Data Munging

Normalize_ DHMS
Takes four different time elements, days, hours, minutes, and seconds, negative
or positive relative to right now. It then combines them into a smoothed-out
figure:
use Date::Calc gw (Normalize DHMS) ;

Take away 3 days from right now, add on 120 hours, take away
750 minutes, and add on 3645 seconds. We should end up
with 1 day, 12 hours, 30 minutes and 45 seconds as the
smoothed out computed result, in relation to right now.

($diff day, $diff hour, $diff min, $diff sec) =
Normalize DHMS(-3, +120, -750, +3645); # days, hours, mins, secs

We're expecting 1 day, 12 hours, 30 minutes and 45 seconds! :-)
print "$diff day day, $diff hour hrs, $diff min min $diff sec sec\n";

Executing this code produces the following result:

$ perl normalizeDHMS.pl
1 day, 12 hrs, 30 min, 45 sec

Add_Delta_Days
Answers questions such as “What’s the date 30 days from today?”:
($year, $month, $day) = Add Delta Days($year, $month, $day, $diff day);
Add_Delta_DHMS
Answers questions like “What’s the date-time if we add on 30 hours?”:

($year, $month, $day, $hour, $min, $sec) =
Add Delta DHMS($year, $month, $day, $hour, $min, $sec,
$diff day, $diff _hour, $diff min, $diff sec);
Add_Delta_YM
Returns the date, when provided with a date, plus a year and month offset:
($year, $month, $day) =
Add Delta YM($year, $month, $day, $diff year, $diff month);
Add_Delta_YMD
Extends Add_Delta_YM by allowing the addition of an offset days figure:

($year, $month, $day) =
Add Delta YMD($year,$month,$day,$diff year,$diff month,$diff days);

Add_Delta_YMDHMS
Another extension to Add_Delta_YMD, this time allowing a time offset:
($year, $month, $day, $hour, $min, $sec) = Add Delta YMDHMS(
$year, $month, $day, $hour, $min, $sec,
$diff year,$diff month,$diff day,$diff hour,$diff min,$diff sec);
System_Clock
Returns the list of values displayed in Table D-5, with localtime() being used
by default. An optional true flag calls gmtime() instead, to get the GMT

Date Modules | 539

(Greenwich Mean Time) or UTC (Universal Time Coordinated), depending
on your system:’

($year, $month, $day, $hour, $min, $sec, $Julian day of year,
$day_of week, $daylight savings) = System Clock([$gmt_flagl);

Table D-5. Figures provided by Date::Calc’s system_clock

Figure type Range Comments

Year 1970.2038+ Your 0S determines the maximum value

Month 1.12 January =1, .., December =12

Day of month 1.31 Notice that this is not 0..n format, as with hours below
Hour 0.23 The 24-hour clock is used

Minute 0..59 Notice that this s not 1..60

Second 0.59 Range may be 0..61, to cope with leap seconds

Day of year 1..366 The 366 figure is for leap years

Day of week 1.7 Monday =1, .., Sunday =7

Daylight Savings -1.1 -1=daylight savings info unavailable,

0 = daylight savings currently out of use,
1= daylight savings in use

Leap seconds slip into the calendar every 500 days or so at the end of
s December or June. Our globe spins 2 milliseconds a day slower than it
ke did in 1900 because of the moon’s tidal braking effect. Therefore,
* GMT gradually diverges from the atomic clocks measuring UTC. Leap
seconds bring everything together again.

Note that tidal braking has already stopped the moon’s face rotating
relative to the Earth, giving rise to Pink Floyd’s album, The Dark Side
of the Moon. One day, a single face of the Earth will oppose a more
distant Moon. However, by then the Sun will have expanded, giving us
something even more interesting to experience—a Floyd album called
Jolly Red Giant perhaps?

For more information (not about Pink Floyd, promise), see: http://
www.npl.co.uk/npl/ctm/leap_second.html.

Today
Returns a subset from System_Clock: the year, month and day:
($year, $month, $day) = Today([$gmt]);

Now
Another System_Clock subset returns the current hour, minute, and second:

($hour, $min, $sec) = Now([$gmt flagl);

* For a discussion of Julian dates and Julian days, try the following web page: http://aa.usno.navy.mil/data/
docs/[ulianDate.html

540 | AppendixD: The Essential Guide to Perl Data Munging

Today_and_Now
Returns the current year, month, day, hour, minute, and second:
($year, $month, $day, $hour, $min, $sec) = Today_and Now([$gmt]);
This_Year
Returns the current year:
$year = This Year([$gmt flag]);
Gmtime
Returns the GMT values displayed in Table D-6 according to the optional
parameter, the number of seconds since midnight, 1 Jan 1970. This is the start of
the Unix epoch. If absent, the current time() value is used:

($year, $month, $day, $hour, $min, $sec, $doy, $dow, $dst) =
Gmtime([$time_in seconds since 1970]);

Localtime
The local time equivalent to Gmtime:
($year, $mnth, $day, $hour, $min, $sec, $doy, $dow, $dst) = Localtime([$time]);
Mktime
Generates the number of seconds since the 1970 epoch:
$time = Mktime($year, $month, $day, $hour, $min, $sec);
Timezone
Generates differential time offsets between local time and GMT. Those to the
east of Greenwich, England receive positive offsets. Those to the west receive
negative ones. A daylight savings flag is also returned:

($diff_year, $diff month, $diff day,
$diff hour, $diff min, $diff sec, $dst) = Timezone([$time]);

Date_to_Time
This is similar to Mktime, but faster because it avoids system calls:
$time = Date_to Time($year, $month, $day, $hour, $min, $sec);
Time_to_Date
Returns the GMT date-time values when supplied with the appropriate number
of seconds since 1970. Uses the built-in time() function as the default:
($year, $month, $day, $hour, $min, $sec) = Time to Date([$time]);
Easter_Sunday
Calculates the Gregorian Easter Sunday date for the years 1583 to 2299, via the
Gauss algorithm. The original Easter was agreed to by the early Christians in 325
AD. This held firm until 1582 AD when the Gregorian Easter, which now differs
from the Orthodox one, became the first Sunday following the first full moon
preceding a Sunday after the Spring equinox:
($year, $month, $day) = Easter Sunday($year);
For Orthodox functionality, try the Date::Easter module in Table D-3.

Date Modules | 541

Decode_Month
Requires a string to uniquely identify a month in the current Date::Calc lan-
guage. For example, the parameters ‘N’, ‘nov’, and ‘November’ all return 11.
Zero is returned if Decode_Month fails to work out the month:
$month = Decode_Month($string);
Decode_Day_of_Week
As with Decode_Month, a string able to identify a day will return 1 to 7:
$day_of week = Decode Day of Week($string);
Decode_Language
Returns Date::Calc’s internal ID for a supported language, if uniquely identified
from a string. Otherwise, zero is returned. Eleven languages come automatically
with Date::Calc, as detailed in Table D-6. Others can be added by following the
instructions in INSTALL.txt:

$lang = Decode_Language($string);

Table D-6. Languages supplied with Date::Calc 5.0

Internal ID Language Comments/English translation
1 English Default language for Date::Calc
2 Francais French

3 Deutsch German

4 Espafiol Spanish

5 Portugués Portuguese

6 Nederlands Dutch

7 Italiano Italian

8 Norsk Norwegian

9 Svenska Swedish

10 Dansk Danish

n Suomi Finnish

Decode_Date_ EU
One of the cleverest Perl functions we’ve ever seen. Feed it a string, with some
kind of embedded date, and if Decode_Date_EU can identify three lucky num-
bers inside it, in the European date order of day, month, and year, it returns this
list. An empty list is returned if no date can be found.
($year, $month,$day) = Decode_Date EU($string);
Decode_Date_US
Behaves identically to Decode_Date_EU above, except it tries to find a valid date
in the North American date format of month, day, year:
($year, $month,$day) = Decode_Date US($string);

542 | AppendixD: The Essential Guide to Perl Data Munging

Fixed_Window
Takes a two-digit number and turns it into a four-digit year, dependent on a
fixed window centered around 1970. All numbers from 70 to 99 are converted in
the range 1970 to 1999. All numbers below 70 are converted upwards. For
example, 69 goes to 2069:
$year = Fixed_Window($non_negative_number_less_than_100);
Moving_Window
Imposes a 100-year window, cross-haired upon today’s date, to go back 50 years
and forward 50 years. The two-digit entry is initially mapped to the current cen-
tury. If more than 50 years ago, 100 years are added to the total. If 50 years or
more into the future, 100 years are taken off:
$year = Moving_Window($non_negative number less_than_100);
Date_to_Text
Translates year, month, and day into a short piece of text, dependent on the cur-
rently selected language. For example, with the English default language, Date_
to_Text(2002, 12, 25) creates Wed 25-Dec-2002:
$string = Date to Text($year,$month,$day);
Date_to_Text_Long
Provides a longer date-string, dependent on language; Date_to_Text_
Long(2002,12,25) creates Wednesday, December 25th 2002:
$string = Date_to_Text_Long($year,$month,$day);
English_Ordinal
Takes a cardinal number and turns it into an English ordinal abbreviation, so
English_Ordinal(101) produces 101st:
$string = English_Ordinal($number);
Calendar
Produces a calendar string:
$string = Calendar($year,$month[,$orthodox]);
The optional $orthodox flag, if set to true, returns a calendar starting on a Sun-
day, rather than a Monday, so Calendar(2002, 12, 1) produces:

December 2002
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Month_to_Text
Provides the full month name, in the current language, when supplied with a
number in the range 1 to 12. Month_to_Text(11) outputs November:
$string = Month to Text($month);

Date Modules | 543

Day_of_Week_to_Text
With a day range of 1..7, Day_of_Week_to_Text(2) returns Tuesday:
$string = Day_of _Week_to Text($day_of_week);
Day_of _Week_Abbreviation
Returns day of the week abbreviations, such as Mon for 1:
$abbrev_string = Day of Week Abbreviation($day of week);
Language_to_Text
When given a valid internal ID, returns the name of the language:
$string = Language to Text($lang);
Language
Works out the internal ID for the current language, or changes it:

$lang = Language();
Language($lang);
$oldlang = Language($newlang);

Languages
Returns the total number of languages Date::Calc is currently supporting:
$max_lang = Languages();
Parse_Date
Does its best to parse a date string for you:
($year, $month, $day) = Parse Date($string);
ISO_LC
Returns a string in which all ISO-Latin-1 characters are lower-cased:
$lower = ISO LC($string);
ISO_UC
Returns a string in which all ISO-Latin-1 characters are upper-cased:
$upper = ISO _UC($string);
Version
And finally, this one provides the current version of Date::Calc—for example, 5.0:

$string = Date::Calc::Version();

Conversion Modules

Perl provides a variety of modules that you can use to convert from one data format
to another. In Table D-7 we list what we think are the most useful conversion mod-
ules available from CPAN. All of them should also be available via ActivePerl’s PPM,
except possibly Convert::Recode, which requires the use of the GNU recode pro-
gram; we’ll describe that one shortly.

544 | AppendixD: The Essential Guide to Perl Data Munging

Table D-7. Perl conversion modules

CPAN module
Convert::EBCDIC

Convert::Recode

Convert::SciEng

Convert::Translit

Convert::Units

Convert::UU

Description/CPAN Address
Written by Chris Leach; converts between EBCDIC and ASCIl format.
http://www.cpan.org/authors/id/CXL

Written by Ed Avis, built upon work from Gisle Aas; creates a Perl front end to the GNU recode library
(described in the next section).

http://www.cpan.org/authors/id/E/ED/EDAVIS

Written by Colin Kuskie; converts numbers with scientific- and engineering-style suffixes.
http://www.cpan.org/authors/id/COLINK

Written by Genji Schmeder; converts between 8-bit character sets.
http://www.cpan.org/authors/id/GENJISCH

Written by Robert Rothenberg; converts unit measurements, such as meters, to other units, such as
inches.

http://www.cpan.org/authors/id/R/RR/RRWO
Written by Andreas J. Knig; used for uuencode and uudecode work.
http://www.cpan.org/authors/id/ANDK

Convert::Recode and GNU recode

The Convert::Recode module provides a front end to the GNU recode library, which
is a powerhouse of conversion operations. You can download this library, which was
written by Frangois Pinard, from:

http://www.gnu.org/software/recode/recode.html
ftp://ftp.gnu.org/gnulrecode

The recode library converts between more than 300 different character sets, depend-
ing on what’s possible upon your operating system. The following command tells
you what sets you have access to, once you’ve installed recode:

$ recode -1

On SuSE 7.3 Linux, we had 281 character sets, from arabic7 to MacGreek.

You can install this library as follows:

1. Once you have the tarball downloaded, unpack as follows:

$ gzip

-d recode-3.6.tar.gz

$ tar xvf recode-3.6.tar
$ cd recode-3.6

2. Before configuring, take a look at the INSTALL file:

$ vi README INSTALL
$./configure

$ make

3. Instead of make test, as with Perl modules, use make check instead:

$ make

check

Conversion Modules

545

4. Now we can install:
$ make install
5. Once the recode install completes, we’re ready to install Perl’s Convert::Recode
module, which is a standard Perl install.

Convert::Recode is unusual in that you roll your own methods directly from it. Sim-
ply identify the two character sets you wish to convert between, such as ascii and
ebcdic, and then decide the conversion direction. Once you’ve decided, just add a _
to_ string between the two character set names and then import the final method via
Convert::Recode. For example:

use Convert::Recode qw(ascii_to_ebcdic);
or:
use Convert::Recode qw(ebcdic_to ascii);

We've created two short programs; recodeAscEbc.pl in Example D-3, and
recodeEbcAsc.pl in Example D-4. We're going to use these to:

* Convert feedRecode.txt into an EBCDIC equivalent, ebcdicRecode.txt
* Then re-convert this back into an ASCII file called outRecode.txt

Example D-3. ASCII to EBCDIC—recodeAscEbc.pl
#lperl -w

use Convert::Recode qw(ascii_to_ebcdic);

while (<>) {
print ascii_to_ebcdic($_);

}

Example D-4. EBCDIC to ASCII—recodeEbcAsc.pl
#lperl -w

use Convert::Recode gw(ebcdic_to_ascii);

while (<>) {
print ebcdic_to ascii($_);

}

The original feedRecode.txt file looks like this:

To sit in solemn silence,
In a dull dank dock,

In a pestilential prison,
With a life long lock,

546 | AppendixD: The Essential Guide to Perl Data Munging

Awaiting the sensation of a short sharp shock,
From a cheap and chippy chopper,
On a big black block

The execution run, which converts this file from ASCII into EBCDIC and then back
again, looks like this:

$ perl recodeAscEbc.pl feedRecode.txt > ebcdicRecode.txt
$ perl recodeEbcAsc.pl ebcdicRecode.txt > outRecode.txt

This conversion run is displayed in the ASCII-based vi editor in Figure D-4.

¥ Konsole <2> ——
File Sessions Seftings Help
I sit in solen silence,

In & cull dank dock.
In & pestilential prison,

ith a life long lock.
Fuaiting the sensation of & short share shock.
Fron @ cheap and chippy chopper,
n & big black block
1.1 ALl

"feedRecode,txt" 7L, 199C

[o[

—
- Konsole <2> »
File Sessions Seftings Help

——

F"V@w"ﬂ:@"I"UB@"V"S"E"T"LEW:“I"S"E"U"C"&@%é“LE"M”DE"S"QB”D"ﬂ"U"HB"D“V"C"W JE "2 “AE “H ELL ¥ TS E“LE T
AR ST "ER S "V U G “5 VT RAS YA TE “T*UERE “H ER ¢ “E Ut “AC“TVUE "V FE“ARC"H Y YLEE “HA™ Y HE ¢ H YT R YV T8 “Ae “C HE“AH|
2 “A™U DR T H™L "W WEE “C"H™Y "W HE "~ Yk %0~ UE “A2“B~1 "GE “B~S“A"C"RE "B"S "V "C"RY

T

ASE Y T8V k@7~ IE "HE|

T

"ebodicRecode. txt” [noeol] 1L, 1990

D Nan @Knnsnle

e
- Konsole <2»
File Sessions Setfings Help

Pu sit in solewn silence,

In & dull dank cock.

In & pestilential prison

ith & life long L

Ruaiting the sensation of a short sharp shook.
From & cheap and chippy chopper.
n a big black block

"outRecode.txt” L. 199C

[e[onece

Figure D-4. Convert::Recode at work

Text Conversion Modules
Perl comes with a number of text-based conversion modules bundled into it. These
are listed in Table D-8.

Table D-8. Perl-bundled text processing modules
Module
Text::Abbrev

Description

Written by the Perl 5 porters; when supplied with an array, Text::Abbrev returns a hash of keyed
abbreviations and original string values (see Example D-5).
Text::ParseWords

Written by Hal Pomeranz; parses text into token arrays or arrays of arrays (see Example D-6).
Text::Soundex

Written by Mike Stok; a Perl implementation of Donald Knuth’s Soundex algorithm (see
Example D-7).

Conversion Modules | 547

Table D-8. Perl-bundled text processing modules (continued)

Module Description

Text::Tabs Written by David Muir Sharnoff; does what the Unix utilities expand() and unexpand() do. Given a
line with tabs, expand replaces them with a specified number of spaces. The unexpand method adds
tabs to a line when it can save bytes by doing so.

Text::Wrap Written by David Muir Sharnoff; this line wrapper forms simple paragraphs from munged lines.

Let’s take a look at some of these modules in action.

Text::Abbrev

Example D-5 takes a list of amino acids, creates an abbreviation hash, and then iter-
ates over it, creating a uniquely sorted hash of the smallest possible abbreviations
before displaying it.

Example D-5. Text list abbreviations—textAbbrev.pl
#lperl -w

use strict;
use Text::Abbrev('abbrev');

The Stuff of Life

my %h1 = abbrev qw(Alanine Cysteine Aspartic_Acid Glutamic_Acid
Phenylalanine Glycine Histidine Isoleucine Lysine
Leucine Methionine Asparagine Proline Glutamine
Arginine Serine Threonine Valine Tryptophan Tyrosine);

my %h2;

for my $abb_key (keys %h1) {

Iterate through the hash, producing all keys and values.
Build up a 2nd hash, with the smallest possible abbreviations.

Have we started filling the 2nd hash yet, with reversed data?
if (defined ($h2{ $h1i{$abb_key} })){

Yes, we already have an abbreviation. Is the current one
longer than the new one? If so, replace it.

if (length($h2{ $h1{$abb key} }) > length($abb_key)){
This abbreviation is shorter, so we replace.

$h2{ $h1{$abb _key} } = $abb key;
}

} else {

548 | AppendixD: The Essential Guide to Perl Data Munging

Example D-5. Text list abbreviations—textAbbrev.pl (continued)

}

Now we've built up our reduced hash, print it out.

}

Provide our first value, for hash 2. Reverse the sense

of the hash. The value becomes key, the key becomes the value.

$h2{ $h1{$abb _key} } = $abb key;

for my $min key (sort keys %#h2) {

}

The results are as follows:

printf("%15s :

$ perl textAbbrev.pl
Alanine :

Arginine :
Asparagine :
Aspartic_Acid :
Cysteine :
Glutamic_Acid :
Glutamine :
Glycine :
Histidine :
Isoleucine :
Leucine :
Lysine :
Methionine :
Phenylalanine :
Proline :
Serine :
Threonine :
Tryptophan :
Tyrosine :
Valine :

Text::ParseWords

%15s\n", $min_key, $h2{$min_key});

Al

Ar
Aspara
Aspart

C
Glutamic
Glutamin
Gly

H

I

Le

Ly

M

Ph

Pr

S

Th

Tr

Ty

v

This time, in Example D-6, we’ll split a list of words into separate elements via a reg-
ular expression splitting on white space. You may sometimes want to include spaces
inside the strings, and we can do this with either quote characters or backslash
escapes. We'll then create a tagged list of values, in XML format, to send them fur-
ther down a potential munge chain.

Example D-6. Text list parsing—textParse Words.pl

#lperl -w

use strict;
use Text::ParseWords('quotewords');

Conversion Modules

549

Example D-6. Text list parsing—textParseWords.pl (continued)

We want to keep the spaces within Aspartic Acid, and Glutamic acid.
We can do this in two ways, either by using non-escaped quote marks,
or escaped space characters. To cut things down a bit, we'll only
use amino acids beginning with "A" or "G".

my @amino_acids =
quotewords('\s+', # Regular Expression to split on white space
0,
q{ Alanine "Aspartic Acid" Glutamic\ Acid
Glycine Asparagine Glutamine Arginine});

print '<?xml version="1.0"?>", "\n";
print '<!DOCTYPE Genetics SYSTEM "genetics.dtd">', "\n";

for my $array element (sort @amino_acids) {
printf("<Amino_Acid>%s</Amino_Acid>\n", $array element);
}

This produces the following XML-style output. All the spaces have gone, except the
ones we wanted to keep. Mission accomplished:
$ perl textParseWords.pl
<?xml version="1.0"?>
<IDOCTYPE Genetics SYSTEM "genetics.dtd">
<Amino_Acid>Alanine</Amino_Acid>
<Amino_Acid>Arginine</Amino_Acid>
<Amino_Acid>Asparagine</Amino_Acid>
<Amino_Acid>Aspartic Acid</Amino_Acid>
<Amino_Acid>Glutamic Acid</Amino_Acid>
<Amino_Acid>Glutamine</Amino_Acid>
<Amino_Acid>Glycine</Amino_Acid>

Text::Soundex

In Example D-7 we want to find all the sound-alike amino acids. This is so we
can put checks into a later munge process and avoid word confusion, as in John
le Carré’s spy novel, Tinker, Tailor, Soldier, Spy, where “Tinker,” “Tailor,” “Sol-
dier,” and “Poor Man” (for George Smiley) were used as codes for possible trai-
torous moles. This avoided “Tailor” getting confused with the more usual
“Sailor.” (You may notice the similarity between Text::Soundex, and Oracle’s
SOUNDEX function which is based on exactly the same Knuthian algorithm—
see the first part of this appendix for more on such algorithms.)

Example D-7. Identifying soundalikes—textSoundex.pl
#lperl -w

use strict;
use Text::Soundex('soundex');

Yet More Stuff of Life. We want to find out the amino acids

550 | AppendixD: The Essential Guide to Perl Data Munging

Example D-7. Identifying soundalikes—textSoundex.pl (continued)

which sound the same.

my @amino_array =

('Alanine', 'Cysteine', 'Aspartic Acid', 'Glutamic Acid',

'Phenylalanine', 'Glycine', 'Histidine', 'Isoleucine', 'Lysine',
'Leucine', 'Methionine', 'Asparagine', 'Proline', 'Glutamine',
'Arginine’, 'Serine', 'Threonine', 'Valine', 'Tryptophan',
'Tyrosine’

)s
Build up all the Soundex codes, for the array above.
my @soundex_codes = soundex @amino_array;
Now we want to build up a hash of amino acids that sound
like each other. We'll do this by going through the Sortex codes,
and add up counters on a temporary hash.

my %soundex_count_hash;

for my $soundex _element (sort @soundex codes) {
$soundex_count_hash{$soundex_element}++;

}

Now if anything in the @soundex_codes list, has at least a double,
it is going to have a value of at least 2, in the %soundex count hash
variable. So now we can go through that, and when we find the double+
values, we'll whizz through the @amino_array, and add to our new
%doubles hash.
my %doubles hash;
for my $soundex _key (keys %soundex_count_hash) {
if ($soundex_count_hash{$soundex_key} > 1) {
Ah, we've found a code that had at least 2 ++ operations
performed on it, earlier. Find the amino acids, which
produced this code, and add them to the final hash.
for my $amino_element (@amino_array) {
Regenerate the code for the amino acid and compare.
if ($soundex_key eq soundex $amino_element) {

The soundex codes are the same. Hurrah! :-)

$doubles_hash{$amino_element} = $soundex_key;

}

Conversion Modules

551

Example D-7. Identifying soundalikes—textSoundex.pl (continued)

}
}
}

Finally, print out the soundalike list, with soundex codes first.

for my $amino_element (sort keys %doubles hash) {
printf("%10s : %s\n",$doubles hash{$amino_element},$amino_element);

}

Here are the results:

$ perl textSoundex.pl
A216 : Asparagine
A216 : Aspartic Acid
G435 : Glutamic Acid
G435 : Glutamine
L250 : Leucine
L250 : Lysine

XML Modules

XML (eXtensible Markup Language) is becoming increasingly important in the Ora-
cle world. The language most associated with XML is Java, but there’s plenty of
XML-related Perl functionality as well, and we’ll explore that in the context of data
munging in this section.

Perl’s XML facilities are surprisingly powerful. Some would even claim they go
beyond Java, with more than 300 CPAN modules, SAX2 support, DOM support,
and machine facilities allowing the pipelining of XML and XSLT transformations.

Good Perl XML resources include:
http://www.xml.com/publq/perlxml:
Main xml.com portal page for articles on Perl and XML.

http://www.perlxml.net:
One of the central Perl XML portals.

http://www.xmlproj.com/perl-xml-faq.dkb:
Main Perl XML FAQ.

http://xmlxslt.sourceforge.net:
XML::XSLT home page.

http://perl.apache.org:
Main Perl Apache portal, mostly related to mod_perl.

http://xml.sergeant.org:
For the latest razor-sharp detail, go to Matt Sergeant’s place.

552 | AppendixD: The Essential Guide to Perl Data Munging

http://sourceforge.net/projects/expat:
James Clark’s expat XML parser C library, as accessed by the venerable XML::
Parser module written by Larry Wall and Clark Cooper.

http://www.xmlsoft.org:
Home of the libxml2 XML C library, used by the XML::LibXML parser.

http://www.cpan.org/modules/by-module/XML:
The main CPAN page, for Perl XML projects.

http://sourceforge.net/projects/perl-xml:
The main SourceForge site, for Perl XML projects.

Many different XML modules are also on ActiveState. Most of those covered in this
section also have a complementary ActivePerl package:

http://'www.activestate.com

We'll concentrate in this chapter on the Unix side of life, because this is where we
need the more detailed installation instructions. The actual scripts and XML file out-
puts should be identical for ActivePerl PPM loads.

General Perl XML Parsers
There are two main XML parsers employed by the majority of Perl XML users:

XML::Parser
This was the first major Perl XML parser, and it relies upon expat. As XML has
matured, many supplementary modules have been created for it to deal with
DOM and SAX issues. XML::Parser comes automatically with ActiveState, and
we’ll be installing it shortly on Unix.

XML::LibXML
Created by Matt Sergeant and Christian Glahn, this is Perl’s interface to Daniel
Velliard’s libxml2 XML C library. Unlike XML::Parser, this was written after
most of the major XML standards had become settled. At the time of writing,
there was no ActiveState binary available for XML::LibXML; however, one is

sure to come soon. We'll also demonstrate installing this system on Unix, as we
need it for the XML::XMLtoDBMS munge described at the end of this section.

XML::Parser
You can obtain the latest XML::Parser from the following CPAN address:
http://www.cpan.org/authors/id/C/CO/COOPERCL

You may also want to pre-install Gisle Aas’s LWP World Wide Web library bundle,
libwww-perl, and URI module, to provide XML::Parser’s make test step with extra
tests. See Chapter 5, Embedding Perl into Apache with mod_perl, for the required
LWP installation details.

XMLModules | 553

Download from Wow! eBook <www.wowebook.com>

The expat C program download is also available from:
http://sourceforge.net/projects/expat
Follow these steps:

1. We start with the expat tarball:

$ gzip -d expat-1.95.2.tar.gz
$ tar xvf expat-1.95.2.tar
$ cd expat-1.95.2

2. The README file is the best place to go next:
$ vi README

3. Useful help for the configuration is available via the following command:
$./configure -help

4. The default installation directories and files are as follows:

/usr/local/lib/libexpat
/usr/local/include/expat.h
/usr/local/bin/xmlwf

If you’d like to change these, do the following:
$./configure --prefix=/home/oracle/xml
This will create:

/home/oracle/xml/1lib/1ibexpat
/home/oracle/xml/include/expat.h
/home/oracle/xml/bin/xmlwf

5. We were happy with the default:
$./configure
6. Now we can build and install expat:

$ make
$ make install

7. In a triumphant burst of heroic action glory, we install XML::Parser:

$ gzip -d XML-Parser.2.30.tar.gz
$ tar xvf XML-Parser.2.30.tar

$ cd XML-Parser.2.30

$ vi README

With a clean expat install, the following should be straightforward:

$ perl Makefile.PL
$ make

You may get some messages about the absence of LWP and URI—you can safely
ignore these if you left them out deliberately.

$ make test

A1l tests successful.
Files=13,Tests=113,6 wallclock secs (2.93 cusr + 0.24 csys = 3.17 CPU)

$ make install

554 | AppendixD: The Essential Guide to Perl Data Munging

XML::Parser is now well and truly on board. Next up is XML::LibXML.

XML::LibXML

The latest XML::LibXML download is available from CPAN. We also need the
XML::SAX module from the same place:

http://www.cpan.org/modules/by-module/XML

XML::LibXML is based on the libxml2 C library, which is available from:
http://www.xmlsoft.org

Follow these steps:

1. We start with the libxml2 tarball:

$ gzip -d libxml2-2.4.10.tar.gz
$ tar xvf libxml2-2.4.10.tar

$ cd libxml2-2.4.10

$ vi README INSTALL

You’ll find much fuller documentation online at http:/xmlsoft.org.
2. The actual installation should be very similar to expat as described in the previ-
ous section. Configuration help can also be found via the following command:
$./configure --help
We were happy with the defaults and went for the simplest route:

$./configure
$ make
$ make install

3. Once installation completes, you can run a large test suite, which deviates
slightly from our usual Perl pattern by coming after the installation:
$ make tests
%é;ting catal
Add and del operations on XML Catalogs
Some of these regression tests may fail because of a tiny number of platform
incompatibilities. If the warnings look acceptable, move on.

4. We can now come to grips with the actual XML::LibXML Perl module. Before
we install this, though (come on, you knew there’d be a catch), we have to install
Matt Sergeant’s XML::SAX module. This is a straightforward typical Perl instal-
lation.

5. The same goes for XML::LibXML. Just unpack the tarball and install with the
usual perl Makefile.PL installation run.

XML::LibXSLT

If you are interested in XSLT (Extensible Stylesheet Language Transformations), the
Gemini twin of XML::LibXML is XML::LibXSLT, and now’s a good time to install it,

XMLModules | 555

because it relies on XML::LibXML. We'll require Daniel Veillard’s libxslt C library.
For more information try the following:

http://www.w3.0rg/TR/xslt
http://xmlsoft.org/XSLT

To get hold of XML::LibXSLT and libxslt go here:

http://www.cpan.org/authors/id/M/MS/MSERGEANT
http://xmlsoft.org/XSLT/downloads.html

Follow these steps:

1. The installation follows the usual pattern. First, libxslt:

$ gzip -d libxslt-1.0.9.tar.gz
$ tar xvf libxslt-1.0.9.tar

$ cd libxslt-1.0.9

$./configure

$ make

$ make install

2. Next, unpack XML::LibXSLT and run through its perl Makefile.PL steps.

Do you need XML::LibXSLT? Not really, but if you’re a completist as we are, you’ll
feel that it’s nice to be fully loaded with XML::LibXSLT. The ability to transform
data with XSLT enables us to cope with XML files that fail to match our exact
requirements. This way, we can feed XML through a transformation operation, as in
Figure D-5, to make it fit our munging needs.

XML
data | XLT))y ML)
o The original XML data arrives and Q The transformed data is processed E
is transformed via XSLT into something via a standardized XML program,
the XML code guarding the database and inserted into the database. 9
can understand. sQL Once inside the
database, the data is
processed via the
___________ SQL engine.
O B S l
XML XML XML
data | XSUT “'m“ data | XML ¢ data
9 The XML s finally transformed 0 The processed XML data is extracted
again by XSLT into whatever from the database via another
form of data is required standardized XML program.
by the outside world.

Figure D-5. Transforming data with XSLT

556 |

Appendix D: The Essential Guide to Perl Data Munging

Let’s see what’s going on here.

1. Suppose that we wish to pump out XML-ized news data from our corporate
public relations database. This news could include the following data file,

horsefeather.xml:

<?xml version="1.0"?>

<news>

<item>
<title>Hackenbush Speaks Out</title>
<publication>Horsefeather Gazette</publication>
<url>http://www.horse.feather</url>
<date>20021225¢</date>
<quote>"That's no Lady. That's my Wife."</quote>
</item>

</news>

2. For web browsers, we need to transform this presentation slightly with the XSLT
code in Example D-8, stored in horsefeather.xsl. Notice, particularly, the date
transformation code, which can take a string like 20021225 and turn it into the

corresponding 25 December 2002: string.

Example D-8. XSLT code—horsefeather.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.01g/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Horsefeather News - World Latest</TITLE>
</HEAD>
<BODY>
<xsl:apply-templates select="//item">
<xsl:sort order="descending" data-type="text" select="date"/>
</xsl:apply-templates>
</BODY>
</HTML>
</xsl:template>

<xsl:template match="item">

<P>

<CITE><xsl:value-of select="publication"/></CITE>,
<xsl:apply-templates select="date"/>

"<xsl:value-of select="title"/>"
</P>

<BLOCKQUOTE>

<xsl:value-of select="comment"/>
<xsl:value-of select="quote"/>
</BLOCKQUOTE>

</xsl:template>

<xsl:template match="date">

XML Modules

| 557

Example D-8. XSLT code—horsefeather.xsl (continued)

<xsl:param name="date" select="."/>

<xsl:variable name="day" select="number(substring($date,7,2))"/>
<xsl:variable name="month" select="number(substring($date,5,2))"/>
<xsl:variable name="year" select="number(substring($date,1,4))"/>

<xsl:if test="$day>0">
<xsl:value-of select="$day" />
<xsl:text> </xsl:text>
</xsl:if>

<xsl:choose>

<xsl:when test="$month= 1">January</xsl:when>
<xsl:when test="$month= 2">February</xsl:when>
<xsl:when test="$month= 3">March</xsl:when>
<xsl:when test="$month= 4">April</xsl:when>
<xsl:when test="$month= 5">May</xsl:when>
<xsl:when test="$month= 6">June</xsl:when>
<xsl:when test="$month= 7">July</xsl:when>
<xsl:when test="$month= 8">August</xsl:when>
<xsl:when test="$month= 9">September</xsl:when>
<xsl:when test="$month=10">October</xsl:when>
<xsl:when test="$month=11">November</xsl:when>
<xsl:when test="$month=12">December</xsl:when>
</xsl:choose>

<xsl:if test="$year>0">

<xsl:text> </xsl:text>

<xsl:value-of select="$year" />

<xsl:texty>: </xsl:text>

</xsl:if>

</xsl:template>
</xsl:stylesheet>

3. We then need the Perl code in Example D-9 to transform our original XML into
viewable HTML.

Example D-9. Transforming news output—xmILibXSLT.pl
#lperl -w

use strict;

use XML::LibXSLT,;
use XML::LibXML;

my $parser = XML::LibXML->new();
my $xslt = XML::LibXSLT->new();

my $source = $parser->parse file('horsefeather.xml');
my $style doc = $parser->parse file('horsefeather.xsl');

my $stylesheet = $xslt->parse_stylesheet($style doc);

558 | AppendixD: The Essential Guide to Perl Data Munging

Example D-9. Transforming news output—xmlLibXSLT.pl (continued)

my $results = $stylesheet->transform($source);
print $stylesheet->output string($results);

4. We simulate the online running of xmlLibXSLT.pl with this command:
$ perl xmlLibXSLT.pl > horsefeather.html
5. The resultant horsefeather.html file now pops out of the transformation:

<HTML>
<HEAD>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
<TITLE>Horsefeather News - World Latest</TITLE>
</HEAD>
<BODY>
<P><CITE>Horsefeather Gazette</CITE>,
25 December 2002:
"
Hackenbush Speaks Out"
</P>
<BLOCKQUOTE>
"That's no Lady. That's my Wife.8quot;
</BLOCKQUOTE>
</BODY>
</HTML>

This can be viewed in Figure D-6.

@F Horsefeather Hews - World Latest - Konqueror i s - i |
Location Edit ¥iew Go Bookmarks Tools Settings Window Help “
. & G Fe)
oD GO 5 &g]
E3 Location @] lehome/andyd/horsefeather. hitm! -

@ SIJSEv

Gazette, 25 Di 2002: "Hackenbush Speaks Out"

“Tieat s o Laay. That's my Wie”

Figure D-6. XSLT transformation from XML to HTML

XML Database Facilities

Now that we have our parsers loaded, we can start racking up our XML weapon
toolset prior to battle. In the following sections we’ll look at the following Perl XML

modules:

XML::Generator::DBI
XML::XPath
XML::XMLtoDBMS

XML Modules

559

In addition to these, there are many other Perl XML modules available from CPAN.
If you have XML needs that these modules don’t satisfy, just visit cpan.org, and type
in “XML” via the search page. Prepare to be bombarded by 1001 different XML
responses. The same goes for the XML-based PPM packages on ActiveState.com. It
seems that all the world has been writing XML modules for Perl. Enjoy!

XML::Generator::DBI

XML::Generator::DBI, written by Matt Sergeant, transforms database calls to XML
SAX events. It is useful for quickly generating XML files directly from SQL state-
ments. It’s also the replacement for the earlier DBIx::XML_RDB, another module
from the prolific Mr. Sergeant. Check it out at:

http://www.cpan.orglauthors/id/M/MS/MSERGEANT

For testing purposes, and general usage, we also require the services of Michael
Koehne’s XML::Handler::YAWriter (Yet Another Writer, for Perl SAX):

http://www.cpan.org/authors/id/KIKR/KRAEHE

This, in turn, requires the talents of Ken MacLeod’s XML::Parser::PerlSAX, which
comes as part of his libxml-perl package. It consists of a general cornucopia of pro-
ductivity tools, designed originally for use with XML::Parser::

http://www.cpan.org/authors/id/KMACLEOD

Then it’s time for that ol’ Potomac two-step, with bundle unpacking and Makefile.
PL:

1. First, install libxml-perl.
2. Now install XML::Handler::YAWriter:

3. If up untl now you’ve avoided installing MIME::Base64, as described in
Chapter 5, you’ll need to do it here. This is another prerequisite module:

http://'www.cpan.org/authors/id/GAAS

4. Paratroopers having established a beachhead, we send in the heavy armor:

$ gzip -d XML-Generator-DBI-0.01.tar.gz
$ tar xvf XML-Generator-DBI-0.01.tar
$ cd XML-Generator-DBI-0.01

5. Before building and testing XML::Generator::DBI, we need to edit the PWD file,
which comes with the tarball. The PWD information is needed to verify make
test investigations. Our PWD file looked like this:

user name

UID=scott

password

PWD=tiger

Driver to use (as in dbi:Driver)
DRIVER=Oracle

Extra stuff (as in dbi:Driver:extra stuff)

560 | AppendixD: The Essential Guide to Perl Data Munging

EXTRA=ORCL .WORLD
Query to use - Get Groucho! :-)
QUERY=SELECT ename, hiredate FROM EMP WHERE empno = 1001

6. Once PWD is ready, restart the dance band:

$ perl Makefile.PL
$ make

7. The make test step uses the PWD information to generate quite a bit of test infor-
mation. We're expecting to see hiredate data on Groucho from the test rows we
originally loaded into EMP:

$ make test

<select query="SELECT ename, hiredate FROM EMP WHERE empno = 1001">
<row>
<ENAME>Groucho</ENAME>
<HIREDATE>01-JAN-01</HIREDATE>
</row>
</select>

t/0lyawriter....ok
All tests successful.
Files=2, Tests=7, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU)

8. Once the tests look good, install:
$ make install

We’re now ready to run our XML script to produce ducksoup.xml in Example D-10.

Example D-10. First attempt linking XML to DBI—xmlGenDBI.pl
#lperl -w
use XML::Generator: :DBI;

use XML::Handler::YAWriter;
use DBI;

my $writer = XML::Handler::YAWriter->new(AsFile => "ducksoup.xml");
my $dbh = DBI->connect("dbi:Oracle:ORCL.WORLD", "scott", "tiger");

my $xml_generator = XML::Generator::DBI->new(Handler => $writer,
dbh => $dbh);

$xml_generator->execute('select * from emp where empno < 2000');
$dbh->disconnect;

What Example D-10 should do, in a mere handful of lines, is to take a SELECT state-
ment, and turn it into an XML file. You might recall the data we added to the EMP
table earlier in this chapter:

SOL> select * from EMP where empno < 2000;
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

XMLModules | 561

1001 Groucho Professor 1 01-JAN-01 100 10 10
1002 Chico Minister 2 02-JAN-01 200 20 20
1003 Harpo Stowaway 3 03-JAN-01 300 30 30

Let’s run the script and see what happens:
$ perl xmlGenDBI.pl
We've taken just the first <row> output from our generated ducksoup.xml file:

<?xml version="1.0" encoding="UTF-8"?><database>
<select query="select * from emp where empno < 2000">

<row>

<EMPNO>1001</EMPNO>

<ENAME>Groucho</ENAME>

<JOB>Professor</JOB>

<MGR>1</MGR>

<HIREDATE>01-JAN-01</HIREDATE>

<SAL>100</SAL>

<COMM>10</COMM>

<DEPTNO>10</DEPTNO>

</Tow>

</select>
</database>

We can now munge data out of an Oracle database, into XML format, but what
about going the other way? This is where XML::XPath comes in.

XML::XPath

The XML::Xpath module follows all of the XPath standards you may have seen with
other XML toolsets. This XML package is also from:

http://www.cpan.org/modules/by-module/XML
You can learn more about XPath at:
http://www.w3.0org/TR/xpath

We’re going to use XML::XPath to read XML file data and then pump it into the
database to reverse the munge direction from XML::Generator::DBI. There are other
ways of doing this—with XLST transformations for example—but we’ll use XML::
XPath because of its flexibility, its appropriateness for munge-style operations, and
its simplicity.

Follow these steps:

1. XML::XPath requires XML::Parser, as installed earlier, but nothing else:

$ gzip -d XML-XPath-1.12.tar.gz
$ tar xvf XML-XPath-1.12.tar

$ cd XML-XPath-1.12

$ perl Makefile.PL

$ make

562 | AppendixD: The Essential Guide to Perl Data Munging

2. You'll get lots of output, from 187 tests (we counted ’em) in version 1.12:

$ make test
$ make install

You may recall that there were two other Marx brothers in addition to the main
three: Zeppo, who appeared in most of the earlier films, and Gummo, who quit the
act while it was still on Broadway. However, we do rather coincidentally have their
information stored in an XML file, in Example D-11, nightopera.xml. We’ll show
how we feed XML into Oracle here.

Example D-11. Feeding XML into Oracle—nightopera.xml

<?xml version="1.0" encoding="UTF-8"?>
<database>
<select>
<row>
<EMPNO>1004</EMPNO>
<ENAME>Zeppo</ENAME >
<JOB>President</JOB>
<MGR>2</MGR>
<HIREDATE>04-JAN-01</HIREDATE>
<SAL>400</SAL>
<COMM>40< /COMM>
<DEPTNO>20</DEPTNO>
</rTow>
<row>
<EMPNO>1005</EMPNO>
<ENAME >Gummo< /ENAME >
<JOB>Tenor</J0B>
<MGR>1</MGR>
<HIREDATE>05-JAN-01</HIREDATE>
<SAL>500</SAL>
<COMM>50</COMM>
<DEPTNO>10</DEPTNO>
</row>
</select>
</database>

We uploaded it to EMP with the XML:XPath script in Example D-12. We've
worked through this script immediately following the example:

Example D-12. Feeding XML into Oracle—dbiXPATH.pl

#lperl -w

use strict;

use DBI;

use XML::XPath;

Step 1: Connect up to the sink database.

my $dbh = DBI->connect('dbi:Oracle:ORCL.WORLD', 'scott', 'tiger') ||
die $DBI::errstr;

Step 2: Locate the source XML data.

XMLModules | 563

Example D-12. Feeding XML into Oracle—dbiXPATH.pl (continued)
my $xpath = XML::XPath->new(filename => 'nightopera.xml');

Step 3: Prepare the insertion DML.
my $insert dml = qq{ INSERT

INTO emp (empno, ename,
job, mgr,
hiredate, sal,
comm, deptno)

VALUES (to_number(?), ?,

?, to_number (?),
to date(? , 'DD-MON-YY'), to_number (?),
to_number (?), to number (?)) };

my $sth = $dbh->prepare($insert dml);

Step 4: Extract the XML records one by one, through the loop,
and insert into database.
for my $row ($xpath->findnodes('/database/select/row')) {
Line sucked from the source.
my $empno = $row->find('EMPNO')->string_value;
my $ename = $row->find('ENAME')->string_value;
my $job = $row->find('IOB')->string value;
my $mgr = $row->find('MGR')->string value;
my $hiredate = $row->find('HIREDATE')->string_value;
my $sal = $row->find('SAL')->string value;
my $comm = $row->find('COMM')->string_value;
my $deptno = $row->find('DEPTNO')->string_value;
Line inserted into the sink.

$sth->execute($empno,
$ename,
$job,
$mgr,
$hiredate,
$sal,
$comm,
$deptno) || die $DBI::errstr;
}

Step 5: Clean up, and disconnect.
$dbh->disconnect;

Let’s see what’s going on here.

1. There are two parallel pathways moving through this script. The first is DBI-
based, and our first step with it is to open up a database connection.
2. In our second path, we locate the XML source input file, nightopera.xml.

3. Getting back to the first track, we prepare an INSERT statement.

564 | AppendixD: The Essential Guide to Perl Data Munging

4. The XML process then uses the findnodes() and find() methods, to whizz
through nightopera.xml, sucking out the relevant information before plugging it
straight down into the data sink.

5. Once through the loop, we disconnect and clean up (as per union rules).
We can see the results here, from the SCOTT.EMP table.

SQL> select * from emp where empno in (1004, 1005);

EMPNO ENAME JoB MCGR HIREDATE SAL COMM DEPTNO
1004 Zeppo President 1 04-JAN-32 400 40 20
1005 Gummo Tenor 1 05-JAN-33 500 50 10

A combination of XML::Generator::DBI and XML::XPath may be all you require to
carry out whatever munging operations you require, both to and from the Oracle
database, especially if you want access to all the other Perl modules at the same time.
However, as with all things in Perl, there is another way to do it.

XML::XMLtoDBMS

Let’s suppose that we want to extract data from our database into an XML file. We’d
like to then beam this across the galaxy to Betelgeuse, via the local StarGate at Vega,
and load it there into a Betelgeusian database. We’d like to do all this with a single
Perl module. Step forward XML::XMLtoDBMS, a module specially blended with DBI
to provide an all-purpose alternative. This module springs directly from its XML-
DBMS middleware parent project, which also provides a Java-based alternative.
Assuming that we’ve loaded every XML module discussed so far, except the optional
XML::LibXSLT, we have everything we need except for one last module, Graham
Barr’s TimeDate bundle:

http://www.cpan.org/authors/id/GBARR/

Once installed, we also have Date::Format and Date::Parse on board; these came
with TimeDate. We’re now ready for the green light.

The parent project, XML-DBMS, is Ronald Bourret’s Java-based middleware for
transferring data between XML documents and relational databases. It deals with
many of the coding inconveniences in-between and is ideal for data munging pur-
poses. Check it out at:

http://www.rpbourret.com/xmldbms/index.htm

From here you’ll be directed to the Perl download of XML::XMLtoDBMS, by Nick
Semenov. This is ported directly from Ronald Bourret’s XML-DBMS software, which
is itself written in Java. Before we install XML::XMLtoDBMS, however, let’s run
through a quick checklist of everything we need:

expat
XML::Parser

XML Modules | 565

XML::Parser::PerlSAX (via libxml-perl)
libxml2

XML::SAX

XML::LibXML

Date::Format (via TimeDate)
Date::Parse (via TimeDate)

Once you have these modules and the XML::XMLtoDBMS tarball, it’s time for that
new dance, the Chesapeake bay whirl:

$ gzip -d perl-xml-dbms-1.03.tgz

$ tar xvf perl-xml-dbms-1.03.tar

$ cd XML-DBMS

$ vi README
We really ought to read the README file this time, as XML::XMLtoDBMS can be
challenging to understand. But once we’ve got our head round it, the actual installa-
tion is straightforward. However, we do need one small adjustment.

To cope with the standard Oracle date format, DD-MON-YY, we’re going to intro-
duce a one-line adjustment to the XMLtoDBMS.pm module for the 1.03 version,
which is an open source product under constant development. (This may very well
have been amended in later versions.) Add the marked line to the convertFormat sub-
routine. We need this line because it will be difficult to re-insert XML date informa-
tion back into Oracle, via XML::XMLtoDBMS, if the data is not in DD-MON-YY
format:

sub convertFormat

{
my $formatString = shift;
$formatString =~ s/YYYY/%Y/g;
$formatString =~ s/YY/%y/g;
$formatString =~ s/MM/%m/g;
$formatString =~ s/MON/%b/g; # Typical Oracle month format.
$formatString =~ s/DD/%d/g;
$formatString =~ s/hh/%H/g;
$formatString =~ s/mm/%M/g;
$formatString =~ s/ss/%S/g;
return $formatString;

}

A small aside, for those who may think that the fact that this module expects a differ-
ent date format points out a conceptual weakness of open source software. We dis-
agree. This, we believe, is its greatest strength. If you find that something fails to
work exactly the way you expect, you can fix the source code directly, to make it do
what you want.

Once we’ve made this small adjustment, installation is routine:

$ perl Makefile.PL
$ make

566 | AppendixD: The Essential Guide to Perl Data Munging

$ make test
$ make install

Take a look at the eventual results in Figure D-7.

Earth Betelgeuse
EMP FORDPREFECTUS
EMPNO NUMBER(4) TIMELORD NUMBER(4)
ENAME VARCHAR2(10) ROLE VARCHAR2(10)
JOB VARCHAR2(9) H m, ‘ m, MISSION ~ VARCHAR2(9)
MASTER NUMBER(4
MGR NUMBER(4) ; S UMBER(4)
HIREDATE DATE . ! RIGIN ~ DATE
AL NUMBER(,) XML-DBMS XML-DBMS ALTAIRIANS NUMBER(7,2)
(OMM NUMBER(7,2) CREDITS ~ NUMBER(7,2)
DEPTNO NUMBER(2) QUADRANT NUMBER(2)
Quadrant

Figure D-7. One Perl XML module to munge them all

The target data-sink table, on Betelgeuse, was created many centuries ago with the
following statement:

SQL> create table FordPrefectus
2 (TimeLord number(4) not null,

Role varchar2(10),
Mission varchar2(9),
Master number (4),

Origin date,

Altairian$ number(7,2),
Credits number(7,2),
Quadrant number(2));

W oo~y oUW

Table created.

OK, it is rather remarkable that they have Oracle-type databases on Betelgeuse, but
Professor Hawking tells us it’s something to do with the infinite pathway effect of
those quantum-type particles which make black holes evaporate. The eagle-eyed
among you may have also noted that the FORDPREFECTUS table on Betelgeuse is
remarkably similar to SCOTT’s EMP table back here on Earth. This too is mere
quantum coincidence.

Even more fortuitously, the most popular entertainment stars on Betelgeuse are the
Marx Brothers, as televised transmissions of their films have only started reaching the
Betelgeusian quadrant in the last five years. They would therefore like more informa-
tion on these black-and-white magicians of the silver screen. As a consequence, we
recently received an XML-encoded 3-D message cube, asking us to send the requisite
details.

XMLModules | 567

Source mapping

We have agreed upon an XML mapping with the Betelgeusians to facilitate the
requested information transfer. At our end, we need a mapping file to construct the
XML output. We'll work through this following Example D-13.

R
s

The primary benefit for using XML-DBMS over other XML tools such
as XML::Generator::DBI and XML::XPath, is that it can treat XML
tit data as arbitrarily nested groups of tables. Other tools with less over-
head tend to treat everything as a single table, which can provide bot-
tlenecks with some of the necessarily complex data sets you may
encounter. In the extended example below, we’ve covered only a very
small segment of what is possible via the mapping facilities within
XML-DBMS. See Ronald Bourret’s web site (listed earlier) for much
more information on how XML-DBMS can help to solve your own
particular XML needs when other Perl XML modules are insufficient.

Example D-13. Source mapping for XML::XMLtoDBMS—emp.map

<?xml version="1.0" ?>
<XMLToDBMS Version="1.0">
<Options>
<DateTimeFormats><Patterns Date="DD-MON-YY"/>
</DateTimeFormats>
</Options>
<Maps>
<IgnoreRoot>
<ElementType Name="employees"/>
<PseudoRoot>
<ElementType Name="emp"/>
<CandidateKey Generate="No"><Column Name="empno"/>
</CandidateKey>
</PseudoRoot>
</IgnoreRoot>
<ClassMap>
<ElementType Name="emp"/>
<ToClassTable><Table Name="emp"/>
</ToClassTable>
<PropertyMap>
<ElementType Name="empno"/>
<ToColumn><Column Name="empno"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="ename"/>
<ToColumn><Column Name="ename"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="job"/>
<ToColumn><Column Name="job"/>
</ToColumn>

568 | AppendixD: The Essential Guide to Perl Data Munging

Example D-13. Source mapping for XML::XMLtoDBMS—emp.map (continued)

</PropertyMap>

<PropertyMap>
<ElementType Name="mgr"/>
<ToColumn><Column Name="mgr"/>
</ToColumn>

</PropertyMap>

<PropertyMap>
<ElementType Name="hiredate"/>
<ToColumn><Column Name="hiredate"/>
</ToColumn>

</PropertyMap>

<PropertyMap>
<ElementType Name="sal"/>
<ToColumn><Column Name="sal"/>
</ToColumn>

</PropertyMap>

<PropertyMap>
<ElementType Name="comm"/>
<ToColumn><Column Name="comm"/>
</ToColumn>

</PropertyMap>

<PropertyMap>
<ElementType Name="deptno"/>
<ToColumn><Column Name="deptno"/>
</ToColumn>

</PropertyMap>

</ClassMap>
</Maps>
</XMLToDBMS>

Let’s see what’s happening here:

1. There are four particularly interesting nodes within the emp.map XML file. The
first is the <Options> node, which details the date format we’re going to use,
DD-MON-YY, which is possible after our earlier code adjustment.

2. The second is the <IgnoreRoot> node, containing two important elements:

a. The first is the initial <ElementType>, which sets the conceptual name for
the whole XML-ised blob of information as employees.

b. The second, is the <CandidateKey> node, which tells us that the primary
key for emp is the <Column> value, empno.

3. The next important node grouping is the one marked by <ToClassTable>, which
contains the <Table> node, confirming to us that our table name is indeed emp.
This may seem to be duplication, but it’s important, as we’ll see later. Also
notice the <ClassMap> and <ElementType> mapping just above. The point here
is that we’ve chosen to map some elements to tables, with <ClassMap>, and
some other elements to columns, with <PropertyMap>.

XML Modules | 569

Download from Wow! eBook <www.wowebook.com>

4. The next node group, under <PropertyMap>, is significant. It gives us a concep-
tual name for each column, under <ElementType>, but supplies us with an
actual column name, under the <Column> node.

There are far more complex things possible with the mappings available in XML::
XMLtoDBMS—for example, table pairs with different primary and foreign key con-
straints, varying numbers of columns, date and time format differences, and much
more. You name it, it’s probably in the mapping language. As you can see from
Example D-13, however, even a relatively simple exchange of data can generate a
large mapping file. But once you’ve got the basic structure, the rest is just plugging in
the numbers.

You might wish to examine the DTD file, xmldbms.dtd, which comes with the down-
load, as well as visit the web pages:

Source output

Now that we have the mapping, we can generate the XML in Example D-14.

Example D-14. Creating our source data—outXMLDBMS.pl
#lperl -w

use strict;
use DBI;
use XML::XMLtoDBMS;

Step 1: Connect to Oracle, as usual.
Then use the database handle to feed XML::XMLtoDBMS.

my $dbh = DBI->connect('dbi:Oracle:ORCL.WORLD", 'scott', 'tiger') ||
die $DBI::errstr;

my $xmlToDbms = new XML::XMLtoDBMS($dbh);
$xmlToDbms->setMap('emp.map"');

Step 2: Get hold of the data. Use the primary keys of our
required rows, to isolate them.

my $xmlOut = $xmlToDbms->retrieveDocument(
"emp',
[['1001'],['1002'],['1003"],['1004'],['1005']]);
Step 3: Output the data to XML.

open (XML, ">emp.xml");

Prettify printing with format 1 line break

print XML $xmlOut->toString(1);

close XML;

Step 4: It's important to clean up the acquired DOM memory,
as well as disconnecting from the Oracle server.

570 | AppendixD: The Essential Guide to Perl Data Munging

Example D-14. Creating our source data—outXMLDBMS.pl (continued)

$xm1lToDbms->destroy;
$dbh->disconnect;

Let’s work through the code.

1. We acquire a database connection via DBI. Once this is done, we can forget
about DBI entirely, as XML:XMLtoDBMS takes the database handle and does
all the work, based on the emp.map instructions created earlier.

2. Once we have the appropriate handles in place, we retrieve the required data
from the SCOTT.EMP table using retrieveDocument(). Notice the use of the
EMPNO primary keys to get the five rows required. There are several other filter
techniques also available.

3. The next step is simple. We produce the emp.xml file we’ll be sending through
the Vegan StarGate.

4. Once we're done, we clean up, both destroying the memory used to create the
XML file and disconnecting from the database.

Let’s run the script:
$ perl outXMLDBMS.pl

A snippet of the resultant output file, emp.xml, is displayed here, with one of the
<emp> records:

<?xml version="1.0" encoding="UTF-8"?>
<employees>
<emp>
<mgr>1</mgr>
<sal>100¢</sal>
<ename>Groucho</ename>
<job>Professor</job>
<empno>1001</empno>
<deptno>10</deptno>
<comm>10</comm>
<hiredate>01-Jan-01</hiredate>
</emp>

</employees>

Notice that we have Groucho embedded, like a nugget of gold, within the XML.

Sink mapping

Once emp.xml is beamed across to Betelgeuse by hyperwave-relay, we’re going to
need another mapping file. This one will cope with the different column names in
FORDPREFECTUS. We've detailed this mapping in Example D-15.

XMLModules | 571

Example D-15. Mapping the data into the sink—timelord.map

<?xml version="1.0" ?><XMLToDBMS Version="1.0">
<Options>
<DateTimeFormats><Patterns Date="DD-MON-YY"/>
</DateTimeFormats>
</Options>
<Maps>
<IgnoreRoot>
<ElementType Name="employees"/>
<PseudoRoot>
<ElementType Name="emp"/>
<CandidateKey Generate="No"><Column Name="timelord"/>
</CandidateKey>
</PseudoRoot>
</IgnoreRoot>
<ClassMap>
<ElementType Name="emp"/>
<ToClassTable><Table Name="fordprefectus"/>
</ToClassTable>
<PropertyMap>
<ElementType Name="empno"/>
<ToColumn><Column Name="timeloxrd"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="ename"/>
<ToColumn><Column Name="role"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="job"/>
<ToColumn><Column Name="mission"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="mgr"/>
<ToColumn><Column Name="master"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="hiredate"/>
<ToColumn><Column Name="origin"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="sal"/>
<ToColumn><Column Name="altairian$"/>
</ToColumn>
</PropertyMap>
<PropertyMap>
<ElementType Name="comm"/>
<ToColumn><Column Name="credits"/>
</ToColumn>

572 | AppendixD: The Essential Guide to Perl Data Munging

Example D-15. Mapping the data into the sink—timelord.map (continued)

</PropertyMap>

<PropertyMap>
<ElementType Name="deptno"/>
<ToColumn><Column Name="quadrant"/>
</ToColumn>

</PropertyMap>

</ClassMap>
</Maps>
</XMLToDBMS>

Let’s see what’s going on in this example.

1. Notice the date format in the <Options> node near the start of the file.

2. Notice also that the <CandidateKey> column name for the primary key is
timelord.

3. The <ToClassTable> mapping also varies slightly. We have all the emp data
mapped to the table fordprefectus.

4. Within each <PropertyMap> node, we also have each <ElementType>, such as
empno, being mapped across to a new <Column> name value, such as timelord.
This pattern repeats throughout the mapping file.

Sink input

Meanwhile on Betelgeuse, the XML from Earth has arrived and our friends have the
requisite mapping file. All that needs to be done, in Example D-16, is to run a univer-
sal Perloid script, operating on the galactic standard Traalix operating system and
load it up into the database. Let’s go.

Example D-16. Inputting into the sink—inXMLDBMS.pl
#lperl -w

use strict;

use DBI;

use XML::XMLtoDBMS;

Step 1: Connect to our remote Oracle database on Betelgeuse :-)
Use the connection acquired to create our XML::XMLtoDBMS object.

my $dbh = DBI->connect('dbi:Oracle:BETELGEUSE.WORLD',
'zaphod', 'b33b13brox') || die $DBI::errstr;

my $xmlToDbms = new XML::XMLtoDBMS($dbh);
$xmlToDbms->setMap (' timelord.map");
Step 2: Acquire the XML file, and then store it in the datasink.

my $xmlIn =

XMLModules | 573

Example D-16. Inputting into the sink—inXMLDBMS.pl (continued)

$xm1lToDbms->storeDocument(Source => {File => "emp.xml"});
Step 3: Disconnect and clean up memory.

$xm1ToDbms->destroy;
$dbh->disconnect;

Here’s what’s happening;:

1. We open the database connection and use it to prime XML::XMLtoDBMS before
setting the configuration via timelord.map.

2. Using storeDocument(), we pump the emp.xml file into the data sink.

3. Finally, we wrap up the memory, disconnect, and exit.

Results
The table data folds neatly into FORDPREFECTUS. Mission accomplished:

SQL> select * from FordPrefectus ;

TIMELORD ROLE MISSION MASTER ORIGIN ALTAIRIAN$ CREDITS QUADRANT

1001 Groucho Professor 1 01-JAN-01 100 10 10
1002 Chico Minister 2 02-JAN-01 200 20 20
1003 Harpo Stowaway 3 03-JAN-01 300 30 30
1004 Zeppo President 1 04-JAN-01 400 40 20
1005 Gummo Tenor 1 05-JAN-01 500 50 10

What's Coming in XML::DBMS?
Features coming in Version 2.0 of XML-DBMS include the following:

* Updates and deletes, as well as further selection filters
* Heterogeneous joins

* Additional mapping language features, such as per-column formatting and
limited transformation

* The generation of map files from the database

* Support for database-generated keys

574 | AppendixD: The Essential Guide to Perl Data Munging

Symbols

<% ... %> (angle brackets-percent signs),
Perl in Embperl template, 174

Perl in Embperl template, 166
[-...-] (square brackets-hyphens), Perl in
Embperl template, 166
[+ ... +] (square brackets-plus signs), Perl in
Embperl template, 166
-> (arrow notation), Perl, 453
* (asterisk), Perl regex metacharacter, 495, 500
*? (asterisk-question mark), Perl regex
metacharacter, 502
@ (at sign), Perl variable notation, 453
~ (caret sign), Perl regex metacharacter, 496
$ (dollar sign)
Perl hashes, 445
Perl regex metacharacter, 496
Perl scalars, 442
Perl variable notation, 453
$# (dollar sign-number sign) Perl syntax, 444
$_ (dollar sign-underscore)
implicit use in regexes, 489
pronoun in Perl hashes, 445
. (dot character), Perl regex
metacharacter, 496, 498
=~ (equal sign-tilde), Perl pattern-binding
operator, 488
I~ (exclamation point-tilde), Perl
pattern-binding operator, 489
% (percent sign)
Perl in Mason template, 174
Perl variable notation, 453

Index

+ (plus sign), Perl regex metacharacter, 495,
500
+? (plus sign-question mark), Perl regex
metacharacter, 503
? (question mark), Perl regex
metacharacter, 496, 500
?? (question mark-question mark), Perl regex
metacharacter, 503
| (vertical bar), Perl regex metacharacter, 495
<> (angle brackets)
mucr8.pl file, 292
spdrvr.pl, 390
{} (curly braces)
Embperl, 167
idxr.pl, 304
() (parentheses), Perl regex
metacharacter, 495
[1 (square brackets), 167
Perl arrays, 444
Perl regex metacharacter, 495
[] (square brackets-caret sign), Perl regex
metacharacter, 495
/ (backslash), Perl regex metacharacter, 495

A

accounts
creating multiuser with mucr8.pl, 230,
290-295

creating single user
with create_user.pl, 282-288
with dup_user.pl, 288-290
with PDBA::DBA, 234

dropping, 230, 280, 296

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

575

accounts (continued)
duplicating with PDBA Toolkit
scripts, 230
granting privileges while creating, 283
managing, 229
with PDBA Toolkit scripts, 280-296
reports on users, 387
setting quotas while creating, 283
specifying tablespaces, 286
Active Server Pages (see ASP)
ActivePerl, 28
CGl scripts, 116
downloading latest build of, 36
installing Perl on Win32 and, 36
loading DBD::Chart for, 104
package for DDL::Oracle, 88
ActiveState, 28
date-related modules on, 534
AIX, installing Perl from prebuilt package, 31
alarmTime parameter (chkalert.pl), 333
alert log, 328
filename, 329
Karma email error notification, 133
location of, 329
monitoring, 230
with chkalert.pl, 329
PDBA Toolkit scripts, 230
with PDBA Toolkit scripts, 328-342
alertLevel parameter (dbup.conf), 358
alert_orcl.log, 329
algorithms
compression, lossless vs. lossy, 100
data munging, resources, 524
all method (PDBA::GQ), 245
retrieving all rows simultaneously, 246
ALTER INDEX REBUILD statement
(Oracle), 300
ANALYZE command (Oracle), 382
angle brackets (<>)
mucr8.pl file, 292
spdrvr.pl, 390
angle brackets-percent signs (<% . . . %>),
Perl in Embperl template, 174
angle brackets-percent signs (<%perl> . . .
</%perl>), 175
Apache, 111-118
building with Perl, 113
CGI scripts
ActivePerl and, 116
directory for, 114
configuring Mason for, 172-177

downloading, 112
Unix version, 112
Win32 version, 114
embedding Perl into (see mod_perl)
Embperl and, 162, 164
installing
on Unix, 112-114
on Win32, 114
interface with Storable.pm, 163
mod_perl modules, table of, 145
ORACLE_HOME variable and, 149
Perl and, 111
(see also mod_perl)
Perl modules, 144-151
running httpd servers as root, 113
server functions, rewriting CGI scripts
into, 144
using DBD::Chart with, 116-118
web resource for, 111
Apache AutoConf Interface (APACI), 113
Apache Run Time Configuration Directives,
web resource, 112
Apache Software Foundation (ASF), 112
APACHE variable, installing Mason, 170
Apache::AuthDBI, 148
Apache::DBI, 137, 145, 147-149
Apache::OWA and, 157
downloading, 148
Apache::OWA, 137, 155-160
Apache::DBI and, 157
configuring, 158-160
downloading, 158
installing
on Unix, 157
on Win32, 158
web resources for, 156
Apache::Registry, 136, 144, 145-147
“my” variables and, 146
Apache::Request, 157
Apache::Session, 163
Embperl and, 168
Apache::SessionX, 163
APACI (Apache AutoConf Interface), 113
applications
data warehouse, limiting resource
consumption, 305
described in this book, download sites, 17
Perl
open source, 15
servicing users/requests, 180
arguments, parsing command-line, 348

576 | Index

arrays
anonymous, in Perl, 455
fetching rows from, 469
generating, 475
generating references to, 475
Perl, 443
determining size of, 444
arrow notation (->), Perl, 453
ASF (Apache Software Foundation), 112
ASP (Active Server Pages), 7, 161
associative arrays (see hashes)
asterisk (), Perl regex metacharacter, 495, 500
asterisk-question mark (*?), Perl regex
metacharacter, 502
at sign (@), Perl variable notation, 453
@ARGV array (Perl), 448
@_ array (Perl), 448
@emailAddresses parameter
(maxext.conf), 315
attributes
in mucr8.msg file, 293
Perl DBI database handle, 462
@video_collection array (Perl), 443
Authen::ACE, 223
authentication, 252
AutoCommit attribute, connecting to Oracle
databases via PDBA::CM, 234
AUTOEXEC.BAT file, Orac and, 83
available_drivers method (Perl DBI), 464
AxKit, 176

B

backreferences, capturing, 505-509
backslash (/), Perl regex metacharacter, 495
bandwidth, Perl and, 7
baseline.pl, 231
command-line options, table of, 374
example output, 375
batch processor, DDL::Oracle as, 88
begin_work method (Perl DBI), 476
binary data, extracting with sqlunldr.pl, 320
binary large objects (BLOBs), fine-grained
access to, 181
bind_col method (Perl DBI), 474
bind_columns method (Perl DBI), 474
bind_param method (Perl DBI), 467
bind_param_inout method
(DBD::Oracle), 467
Bit::Vector, 536
bless command (Perl), 457
BLOBs (binary large objects), fine-grained
access to, 181

Blowfish, 123
boolean variable type, Perl and, 448
./boot test compilation errors, 188

C

C language
embedding Perl in, 203
files, scanning for constructs, 186
Oracle::OClI vs., 181
C libraries
connecting with, 184
Perl and, 202
caret sign ("), Perl regex metacharacter, 496
carriage return/line feed (see CR/LF)
case sensitivity
inline Perl in Mason, 175
Perl string-handling functions, 487
suffix for enabling regex match to
ignore, 510
CBO (cost-based optimizer), 382
CGI (Common Gateway Interface), 110
scripts (see CGI scripts)
CGlI environment variables, Apache::Registry
and, 147
CGI scripts, 110
with ActivePerl on Apache, 116
disadvantages of, 136
improving performance of, 136
(see also Apache::Registry)
managing (see Apache::Registry;
Apache::DBI)
mod_perl and, 137
Oracletool and, 111
rewriting into Apache server
functions, 144
web resources for, 138
cgi.pm resource, 111
character large objects (CLOBs), 317
charts, for performance statistics
(see DBD::Chart)
checksums, PDBA Toolkit scripts and, 397
chkalert.conf, 331-334
chkalert_NT.pl, 230
command-line options, table of, 342
installing on Win32, 337-342
Oracle_SID_AlertLogMon, testing, 340
starting monitoring service, 339
chkalert.pl, 230, 329
command-line option, table of, 337
configuring on Unix, 331-336
features of, 330
installing on Unix, 331-336

Index | 577

chkalert.pl (continued)
-kill option, 336
modifying configuration parameters, 333
on Win32 (see chkalert_NT.pl)
running, 334
testing, 336
Unix/Win32 versions, 331
chkalert_service.pl, 230
command-line options, 338
CLOBs (character large objects), 317
cm.conf, 266
overriding ignoring of by PDBA::CM, 267
column_diff_rpt, reporting changes to table
columns, 383, 386
column_info method (Perl DBI), 477
column_rpt, reporting on table columns, 386
command line, scanning for options intended
for password server, 250
(see also PDBA::OPT/PDBA::PWCQC)
command-line arguments, parsing, 348
commit method (Perl DBI), 476
Common Gateway Interface (see CGI)
Comprehensive Perl Archive Network
(see CPAN)
compression algorithms, lossless vs. lossy, 100
configuration files
adding passwords to, 420
creating for PDBA password client, 276
driving scripts, changing, 235
PDBA Unix, installing, 261
configuration variables, referring to by
package name, 240
configuring
Apache::OWA, 158-160
chkalert.pl on Unix, 331-336
dba_jobsm.pl, 405
dbup.pl on Unix, 354
dbup.pl/dbup_NT.pl, 353-361
setting DBA on call, 360
setting pager and email addresses, 359
upDays/upHours parameters, 358
uptime requirements, 357
Karma
on Unix, 130-133
on Win32, 134
kss.pl, 310
Mason for Apache, 172-177
mod_perl on Win32, 152
PDBA Toolkit, 265-278
password client, 275-278
password server, 268-275
PDBA module, 265
PDBA::CM, 266

connect method (Perl DBI), 460-464
connect PDBA role, 296
connect_cached method (Perl DBI), 464
connectlnterval parameter (dbup.conf), 356
Connection Manager (see PDBA::CM)
conversion data-munging modules, 544-552
Convert::Recode, 545
cost-based optimizer (CBO), 382
CPAN (Comprehensive Perl Archive
Network), 6
data-munging modules
conversion, 544-552
date, 534-544
mathematics, 533
numeric, 531-533
text conversion, 547-552
XML, 552-574
downloading source from, 34
CPAN module
installing Perl modules, 39-42
from command line, 41
interactive CPAN shell, 40
unreliability of, 42, 138
CPAN packages, LWP.pm and, 139
create method (PDBA::DBA), 235
create_user.conf, 283-286
create_user.pl, 230, 281-287
command-line options, table of, 286
creating
charts for performance statistics
(see DBD::Chart)
GUI-driven applications in Perl
(see Perl/Tk)
Internet Perl clients with LWP.pm, 138
log files, 248
multiuser accounts with
mucr8.pl, 290-295
objects, 235
with PDBA Toolkit, 229
oracle user from command line, 230
PROFILEs, 306
single user accounts
with create_user.pl, 281-287
with dup_user.pl, 288-290
statement handles, 466
tablespaces, PDBA repository
installation, 369
user accounts
with PDBA::DBA, 234
tablespaces and, 286
creating Internet Perl clients, 138
CR/LF (carriage return/line feed), 118
configuring dbup.pl/dbup_NT.pl, 354

578 | Index

Crypt::Beowulf, 223
Crypt::Blowfish, 123
Crypt::IDEA, 123
Crypt::RC4, 258, 264
PDBA password server and, 270
Crypt::SSLeay, 139
Crypt::Twofish2, 223
C::Scan, required by Oracle::OCI, 186
curly braces ({})
Embperl, 167
idxr.pl, 304
cursors, binding, 480
Cygwin, 28,51
downloading, 52
installing DBD::Oracle under, 57-61
accessing Oracle client libraries, 57, 60
installing Perl DBI under, 56
installing Perl under, 52-56
packages required, 54
security and, 56
web resource for, 52
CYGWIN variable, 56

D

DAD (Database Access Descriptor), 158
Data Definition Language (see DDL)
data dictionary, Oracle
loading baseline data into PDBA
repository, 374-376
PDBA repository and, 366
Data Manipulation Language (DML), 180
data munging, 522
components of, 523
conversion methods, 532
CPAN modules
conversion, 544-552
date, 534-544
mathematic, 533
numeric, 531-533
text conversion, 547-552
XML, 552-574
guide to, 521-574
how it works, 522
inter-database transfer
MySQL source, 526-528
Oracle target, 528-531
regexes and, 501
resource for further information, 522
data warehouse applications, limiting
resource consumption, 305

Database Access Descriptor (DAD), 158
database connectivity
monitoring with dbup.pl/dbup_
NT.pl, 343-365
%uptime hash parameters, 357
monitoring with PDBA Toolkit
scripts, 342-365
polling, 343
Database Driver for Oracle (see DBD::Oracle)
database handles
attributes, Per]l DBI, 462
Perl DBI
SQL and cleanup, 475-477
statement handle methods, 465-474
database repository, building with DBA
Toolkit, 366—402
database server, checking on, 466
databases
administering
cutting/pasting scripts, avoiding
(see DDL::Oracle)
with PDBA Toolkit scripts
(see PDBA Toolkit scripts)
Unix system administration and
(see StatsView)
(see also Oracletool)
automating administration tasks, 244
checking availability of, 230
connections
closing down, 476
pooling, 137
(see also Apache::DBI;
database connectivity)
monitoring, 111
with Oracletool, 125
with PDBA Toolkit scripts, 328-365
(see also Karma)
Oracle
limiting resource
consumption, 305-308
NULL values and, 425
space problems on, 297-300
Oracle DDL from Oracle8i,
reverse-engineering
(see DDL::Oracle)
relational, operations of (see OCI,
relational functions)
reporting status of jobs in, 231
schemas
comparing, 231
dumping, 318

Index | 579

databases, schemas (continued)
examining/saving
(see SchemaView-Plus)
(see also SchemaDiff; sqlunldr.pl)
targets, retrieving list of, 464
tracking changes to (see PDBA repository;
reports, of database changes)
transfering among
example of data munging, 526-531
MySQL source, 526-528
Oracle target, 528-531
Data::Dumper, required by Mason, 170
Data::Flow, required by Oracle::OCI, 186
data_sources method (Per] DBI), 464
datatypes, cookie manipulation, 157
Date::Calc, 536
Date-Calc 5.0 API
languages supplied with, 542
methods in, 536
system_clock method, figures provided
by, 540
Date::Calendar, 536
-dateformat option (sqlunldr.pl), 318
Date::Format, XML::XMLtoDBMS and, 565
Date::Manip, 344
installing
on Unix, 344
on Win32, 344-347
Manip.cnf, 344-347
Date::Parse, XML::XMLtoDBMS and, 565
date/time information
-dateformat option, 318
leap seconds in calendar, 540
modules, 534-544
Oracle date format, XML::XMLtoDBMS
and, 566
parsing, 258, 264, 344
PDBA repository reports, changing in, 373
date/time utilities, 156
dbaAddresses parameter (chkalert.pl), 333
dba_jobs.conf, 406
dba_jobsm.pl, 231, 405-419
configuring, 405
example report generated by, 406
functions/formats description, 417-419
modifying, 419-421
adding passwords to config file, 420
configuring parameters, 419
script description, 407—417
dba_jobs.pl, 231
DB_BLOCK_BUFFERS parameter
(Oracle), 379

DBD drivers, retrieving list of, 464
DBD::Chart, 66,95-104
downloading, 98
installing
on Unix, 98-103
on Win32, 103
libraries required, 99
loading for ActivePerl, 104
modules required, 98
preparing, 98
Unix downloads required, 99
using Apache with, 116-118
using Perl/Tk applications with, 102
dbdimp.c file, patching DBD::Oracle, 215
DBD::mysql driver, 526
DBD::Oracle, 11-13
architecture compared to Oracle::OCI, 179
cursors, binding, 480
documentation provided for, 441
downloading, 47, 56
extproc_perl and, 212-217
handling LOBs, 480
installing, 44-46
under Cygwin, 57-61
environment variables, 44
error hit list, 45
limitation of, 50
methods for Perl DBI, 478
online documentation for, 459
patch provided with extproc_perl
download, 211, 214
patching, 214-216
setting variables, 215
PDBA repository and, 374
Perl DBI and, 459
coding with Oracle::OCI, 194
relationship to Oracle::OCI, 181
versions of, xi, 58
(see also Perl DBI)
DBD::Proxy, 50
dbgextp.sql file, debugging external
procedure setup, 209
$dbh variable (Perl DBI), 460-463
dbignore.pl, 230
dbiproxy daemon, 44
running Perl DBI by proxy, 50
DBI::ProxyServer, 50
packages required, 51
dbish/dbishell programs, 96
DBMS_OUTPUT package, 478
dbms_output_enable method
(DBD::Oracle), 478

580 | Index

dbms_output_get method
(DBD::Oracle), 478
dbms_output_put method
DBD::Oracle), 478
dbup.conf, 354
DBA on-call schedule, 360
email addresses, 359
operational parameters, 355
test configuration, 362-365
dbup_NT.pl, 230
dbup.pl, 230
dbup.pl/dbup_NT.pl, 343-365
command-line options, table of, 365
configuring, 353-361
setting DBA on call, 360
setting pager and email addresses, 359
upDays/upHours parameters, 358
uptime requirements, 357
Date::Manip and, 344
password server and, 348
testing monitor, 362-365
dbup_service.pl, 230, 354
DDL (Data Definition Language)
extracting, 315-327
with ddl_oracle.pl, 323-327
generating, 229
Oracle and, 85
time boundaries and, 231
DDL::Oracle, 65, 84-90, 325
as batch and list processor, 88
download example scripts, table of, 88
downloading, 84

installing
on Win32, 88
on Unix, 85

mailing list, 85
using as batch and list processor,
defrag.pl, 89
using Orac with, 85-88
example program, 86

ddl_oracle.pl, 229, 323-327

command-line options, table of, 325

scripts generated by, table of, 326
DEBUG_EXTPROC package, 210
debugging

external procedure listeners, 209

gdb program and, 210

installing Oracle::OCI on Unix, 189

Per] GUI debuggers, 108

Perl GUI tools for, download sites, 21

Perl scripts, 109

setting tracing level, 464

defrag.pl command, 89
parameters, files created by, 90
scripts created by, 89
Deterministic Finite Automaton (DFA), 491
developer PDBA role, 296
DFA (Deterministic Finite Automaton), 491
Digest::MDS5, 139
directory paths
alert log, 329
create_user.conf, 283
creating to log files, 248
dba_jobsm.pl, 405
installing Perl on Unix, 29
for PDBA Toolkit
with configuration files on Win32, 262
scripts, 279
supporting modules/scripts on
Unix, 259
Win32 CGI scripts, 116
disconnect method (Perl DBI), 476
DJ Delorie’s GNU Programming Platform
(DJGPP), 61
DJGPP (D] Delorie’s GNU Programming
Platform), 61
DML (Data Manipulation Language), 180
DML statements, preparing, 466
do ... until loops, Embperl syntax, 167
do method (Perl DBI), 475
dollar sign ($)
Perl hashes, 445
Perl regex metacharacter, 496
Perl scalars, 442
Perl variable notation, 453
dollar sign-number sign ($#) Perl syntax, 444
dollar sign-underscore ($_)
implicit use in regexes, 489
pronoun in Perl, 445
dot character (.), Perl regex
metacharacter, 496, 498
downloading
ActivePerl, latest build, 36
Apache, 112
Unix version, 112
Win32 version, 114
Apache::DBI, 148
Apache::OWA, 158
Apache::Request, 157
Apache::Session, 163
Apache::SessionX, 163
Bit::Vector, 536
Crypt::Blowfish, 123
Crypt::IDEA, 123

Index | 581

downloading (continued)

Crypt::RC4, 258
C::Scan, 186
Cygwin, 52
Cygwin packages, 53
Data::Flow, 186
Date::Calc, 536
Date::Calendar, 536
Date::Manip, 344
DBD::Chart, 98
DBD::Oracle, 47, 56
DDL::Oracle, 84
expat program, 553
extproc_perl, 207
FreezeThaw, 170
Karma, 128
libapreq, 157
libnet library, 130
libxml2, 555
libxslt, 555
LWP.pm, 138
Mail::Sendmail, 258
Mason, 169
MIME::Base64, 560
MLDBM, 169
mod_perl, 140
Number::Format, 533
Open Perl IDE, 107
Orac, 82
ora_explain.PL, 73
Params::Validate, 170
PDBA Toolkit, 259
PDBA.ppd, 262
PDBAx, 422
Perl, 28
source from CPAN, 34
Perl DBI, 47, 56
Perl/Tk, 67
PNG, 77
recode library, 545
SchemaDiff, 90
Senora, 92
StatsView, 75-80
gnuplot installation, 79
PNG installation, 77-79
PNG, need for, 76
zlib installation, 76
Storable, 163, 170
TimeDate, 258
Time::HiRes, 169
Tk::GBARR, 75

Win32::Daemon, 264
XML::Dumper, 106
XML::LibXML, 555
XML::LibXSLT, 555
XML::Parser, 553
XML::SAX, 555
XML::XMLtoDBMS, 565
XML::XPath, 562
zlib, 76
drop method (PDBA::DBA), 235
drop_user.pl, 230, 296
-dryrun option (mucr8.pl), 295
dump_results method (Perl DBI), 474
dup_user.pl, 230, 288-290
dynamic SQL utilities, 156

E

ebugDBA parameter (chkalert.pl), 333
ed program, regular expressions and, 484
email
in Karma via MailTools.pm, 130
error notification, 132
Perl and, 201
sending from Perl scripts, 254, 256
email method (PDBA module), 254, 256
emailHome parameter (dbup.conf), 360
emailWork parameter (dbup.conf), 360
embedded web scripting, 161-177
web resources for, 176
(see also Embperl; Mason)
Embperl, 162-169
Apache and, 162
Apache::Session and, 168
deploying, 164-165
forms handling, 168
installing
on Unix, 162
on Win32, 163
latest release of, 162
modules required by, 162
syntax, 166—-168
controlling template-driven program
flow, 166
embedding Perl in Embperl
templates, 166
variable naming, 168
web resources for, 162
EMBPERL_DEBUG variable, 164
encryption
Oracletool security levels, 122
passwords (see password encryption)

| Index

Download from Wow! eBook <www.wowebook.com>

PDBA password server and, 270
Perl and, 201

%encryption data structure (pwd.conf), 270

<<END_DATE_PK>> tag (spdrvr.pl), 390
%ENV hash (Perl), 449
environment variables
cm.conf and, 266
Oracle
DBD::Oracle and, 44
predefining, 232
Perl scripts and, 449
specifying, 149
Win32
PPM and, 47
web resource for, 47
equal sign-tilde (=~), Perl pattern-binding
operator, 488
error conditions, PDBA Toolkit monitoring
scripts, 230
errorList parameter (chkalert.pl), 334
errors
./boot test compilation, avoiding when
installing Oracle::OCI, 188
insufficient privileges on underlying
objects and sxp.pl, 396
no password available and sxp.pl, 396
ORACLE not available, 188
unique constraint error and sxp.pl, 395
exclamation point-tilde (!~), Perl
pattern-binding operator, 489
execute method
PDBA::GQ, 246
Perl DBI, 469
expat program, 553
exp_exclude.conf, 324
Export utility (Oracle), 316
extensibility, Senora vs. SQL*Plus, 93
Extensible Markup Language (see XML)
Extensible Stylesheet Language
Transformations (XSLT), 556
extents
allocating in LMTs, 312
dictionary-managed, 230
managing usage of, 229, 312-315
(see also LMTs)
external procedures, 202
Oracle, resources, 204
setting up, 207-209
EXTPROC listener
PL/SQL broadcasts to, 206
restrictive privileges for, 208
tnsnames.ora entry for, 208

EXTPROC program, 204
case sensitivity when referring to, 209
directory for, 209
security alerts about, 205
extproc_perl, 204, 206-209
building Perl
new Perl, 210-212
(see also oracle user, building Perl for)
connecting to host database, 216
DBD::Oracle patch provided with, 211,
214
debugging external procedure listeners, 209
deploying, 220
destroying Perl interpreter and Perl
data, 220
downloading, 207
functions, 220
installing, 217-220
linking header files, 219
ora_perl_boot.pl, 217-219
obtaining version of, 220
Perl and DBD::Oracle, patching
DBD::Oracle, 214-216
Perl DBI and DBD::Oracle, 212-217
OCIExtProcContext, 213
setting up external procedures, 207-209
testing, 221
Win32 and, 206
extproc_plsql, connecting with, 184
ExtProc.pm, 204
extracting
binary data with sqlunldr.pl, 320
data with sqlunldr.pl, 316-323
DDL and data with PDBA Toolkit
scripts, 315-327
DDL with ddl_oracle.pl, 323-327
ExtUtils::Embed, 202

F

%fdat variable, 169
fetchall_arrayref method (Perl), 246
fetchall_arrayref method (Perl DBI), 471
fetchall_hashref method (Perl DBI), 471
fetchrow_array method (Perl DBI), 469
fetchrow_arrayref method (Perl DBI), 470
fetchrow_hashref method (Perl), 246
fetchrow_hashref method (Perl DBI), 470
Fibonaci numbers, 533
files
C language, scanning for constructs, 186
parameter, created by defrag.pl
command, 90

Index | 583

finish method (Perl DBI), 473
_flush function (extproc_perl), 220
FORCE_CONFIG attribute, overriding
ignoring of cm.conf, 267
foreach loops, Embperl syntax, 167
foreign_key_info method (Perl DBI), 477
FreeType, 101
FreezeThaw, required by Mason, 170
FreshMeat.net, Perl open source resource, 90
fromAddress parameter (dbup.conf), 356
function calls
extracting DDL from (see ddl_oracle.pl)
validating parameters, 170
functions
cookie manipulation, 157
OCI, 183-185
categories of, 184
one-to-one mapping with
Oracle::OCI, 183

G

gathering statistics (see StatsView)
gce compiler, Cygwin and, 52
gd library, DBD::Chart and, 100
gdb program, 210
GD.pm, DBD::Chart and, 98, 100
getColumns method (PDBA::GQ), 245
Getopt::Long, 348

configuring for pass-through mode, 351
getptrdef.h, 188
GNU recode library, 545
gnuplot program

gd and, 79

graphics formats and, 76

installing, 79

PATH variable and, 80

Statsview and, 74

web resources for, 79
grep program, Perl regexes and, 484
GUI extensions to Perl, 65-109
guides to

Perl, 439-458

Perl data munging, 521-574

Perl DBI, 459-481

regular expressions, 482-520

H

%Hash data structure (pwd.pl), attributes
of, 275
hash reference, retrieving, 245

hashes, 445
anonymous, 455
returning references to, 470
Hello World example, Perl DBI script, 48
hoursToPagelmmediate parameter
(dbup.conf), 356
HP-UX, installing Perl from from prebuilt
package, 32
HTF package, 156
HTML
generating via HTP, 156
image maps, manipulating, 156
utilities, 156
HTML::Mason (see Mason)
HTML::Parser, 139
HTML-SimpleParse, 139
HTML::Tagset, 139
HTML:: Template, 176
HTP package, 156
httpd.conf, 143
Apache::DBIl and, 148
Apache::Registry and, 146
configuring Apache::OWA, 158
configuring Mason for Apache, 173
configuring mod_perl on Win32, 152
environment variables, specifying, 149
HTTP_proxy/HTTP_proxy_* variables, PPM
and, 47

%idat variable, 169
IDE (integrated development
environment), 107
IDEA algorithm, 123
IDLE_TIME (Oracle), 305
idxr.conf
command-line options, table of, 303
fragmentation and, 302
parameters, 301
idxr.pl, 230, 300-304
testing, 303
tracking, 304
image maps
manipulating, 156
for statistics (see DBD::Chart)
Import utility (Oracle), 316
index function (Perl), 485
index_column_diff_rpt, reporting changes to
index columns, 386
index_column_rpt, reporting changes to
index columns, 386

584 | Index

indexes
analyzing via ANALYZE command, 382
checking/rebuilding, 230
determining whether rebuild required, 303
maintaining, 229
with PDBA Toolkit scripts, 297-304
rebuilding with idxr.pl, 300-304
tracking changes to (see PDBA repository;
reports, of database changes)
index_rpt, reporting on indexes, 386
info method (PDBA::DBA), 235
installing
Apache
on Unix, 112-114
on Win32, 114
Apache::OWA
on Unix, 157
on Win32, 158
chkalert_NT.pl on Win32, 337-342
chkalert.pl on Unix, 331-336
Date::Manip
on Unix, 344
on Win32, 344-347
DBD::Chart
on Unix, 98-103
on Win32, 103
DBD::Oracle, 44-46
under Cygwin, 57-61
environment variables, 44
error hit list, 45
DDL::Oracle, 325
on Win32, 88
on Unix, 85
Embperl
on Unix, 162
on Win32, 163
extproc_perl, 217-220
linking header files, 219
ora_perl_boot.pl, 217-219
gnuplot, 79
Karma
on Unix, 128-130
on Win32, 133
kss_NT.pl, 309
kss.pl, 308
MailTools.pm, 130
Mason
on Unix, 169-171
on Win32, 171
mod_perl
on Unix, 138-144
on Win32, 151

modules
via CPAN, 39-42
methods for, 38—43
traditional method for, 38, 42

modules on Win32, web resource for, 46

Open Perl IDE, 107
Orac, 82
Oracle::OCI
on Unix, 186189
on Win32, 185
Oracletool
on Unix, 119
on Win32, 120
PDBA repository, 369-374
access to

V$PARAMETER/VS$INSTANCE

parameters, 372
copying pdbarepq.conf, 373
editing pdba_tbs8i.sql, 369
tablespace creation, 369
PDBA Toolkit

on Unix, 257-261

on Win32, 261-265
PDBA Toolkit scripts, 229
PDBA Unix configuration files, 261
PDBAx, 422
Perl, 28-38

under Cygwin, 52-56

on Unix, 29-36

on Win32, 36
Perl DBI, 38-47

under Cygwin, 56

on Unix, 43-46

on Win32, 46—47
Perl/Tk

on Unix, 67

on Win32, 68
PNG, 77-79
recode library, 545
SchemaDiff, 90
SchemaView-Plus

on Unix, 105
on Win32, 106
Senora, 92

StatsView, 80-82

sv program, 80
TermReadKey.pm, 129
Tk::GBARR, 75
XML::Dumper, 106
XML::Generator::DBI on Unix, 560
XML::LibXML on Unix, 555
XML::LibXSLT, 555

Index

585

installing (continued)
XML::Parser, 553
XML::XMLtoDBMS on Unix, 566
zlib, 76
%instanceAuth data structure (pwd.conf), 271
integrated development environment
(IDE), 107
Internet, connecting to, Perl and, 201
Internet Perl clients, creating, 138
10::Socket::SSL, 140
IRIX, installing Perl from from prebuilt
package, 32

J

Java
Perl and, 7
Perl port of XML-DBMS from, 23
Java Server Pages (JSP), 161
JOB_QUEUE_PROCESSES parameter
(Oracle), 379
join function (Perl), 485
Joint Photographic Experts Group (see JPEG)
JPEG (Joint Photographic Experts Group), 76
DBD::Chart and, 99
JSP (Java Server Pages), 161

K

Kake Pad (Perl IDE), 108
Karma, 127-135
configuring
on Unix, 130-133
on Win32, 134
downloading, 128
installing
on Unix, 128-130
on Win32, 133
modules required by, 128
OS monitor agent, 131
running on Win32, 135
Perl modules, extra, 135
web resources for, 128
karmad program (see Win32, installing Karma)
KARMA_HOME variable, 129
-kill option (chkalert.pl), 336
Komodo (Per]l IDE), 108
kss.conf, 310
kss_NT.pl, 230
installing, 309
kss.pl, 230
avoiding running on databases using
MTS, 307
command-line options, table of, 309

configuring, 310

installing, 308

on Win32 (see kss_NT.pl)

running as owner of Oracle processes, 309
kss_service.pl, 230

L

large objects (LOBs), handling, 480
lc function (Perl), 485
Icfirst function (Perl), 486
LD_LIBRARY_PATH variable
DBD::Chart and, 101
Karma and, 129
running Perl scripts on Unix, 49
Lempel Ziv Welch (LZW) algorithm, 78
length function (Perl), 486
lexical variables, Perl, 450
libapreq library, 157
libnet library, 128
downloading, 130
modules in, 130
libnet module, 139
liboci.a file, installing DBD::Oracle under
Cygwin, 59
libperl, shared, determining whether running
Perl distribution with, 210
libperl.a archive, 203
libraries
C, Perl and, 202
ed, 100
GNU recode, 545
libxml2, 553
libxsle, 555
mod_perl Apache, specifying, 142-144
PERL_LIB, 220
libwww-perl, XML::Parser and, 553
libxml2 library
downloading, 555
interface to, 553
libxslt library, 555
line endings, 118
(see also CR/LF)
Linux
installing Perl from from prebuilt
package, 32
installing StatsView on
Solaris ps -ef command, 80
(see also StatsView, installing)
Red Hat Linux (see Red Hat Linux,
installing Apache::OWA)
(see also Unix)
Linux Red Hat 6, x

586 | Index

Linux SuSE 7.3, x
character sets, 545
installing Oracle::OCI on, ORACLE not
available errors with Oracle9i, 188
Oracletool connection options, 120
list processor, DDL::Oracle as, 88
defrag.pl, 89
lists in Perl, 448
LMTs (locally managed tablespaces), 312
advantages of, 369
LOBs (large objects), handling, 480
locally managed tablespaces (see LMTs)
locks, locking strategies, 156
log files
automating reading of, 244
creating, 248
independent of platforms, 249
creating path to, 248
peforming buffered/nonbuffered prints
to, 248
logfile parameter (dbup.conf), 357
logFile parameter (idxr.conf), 302
logging by PDBA Toolkit scripts, 248
lossless vs. lossy compression, 100
Is option (Senora DataDictionary plug-in), 94
Is() subroutine, as example of security
risk, 219
LWP Library for WWW access in Perl
(see LWP.pm)
LWP.pm, 138
CPAN packages used with, 139
Embperl and, 163
modules required by, 139
optional SSL modules used with, 139
required for mod_perl installation, 138
running make test in mod_perl
installation, 141
LZW (Lempel Ziv Welch) algorithm, 78

M

machine parameter (dbup.conf), 357
Mail::Sendmail, 258, 264
mailServer parameter (dbup.conf), 355
MailTools.pm, 128
error notification in Karma, 132
installing, 130
makepath method (PDBA::LogFile), 248
Manip.cnf, obtaining/configuring, 344-347
Mason, 161, 169-177
configuring for Apache, 172-177
downloading, 169

embedding Perl in template, 174
error browser reporting, 175
features, table of, 173
inline use of Perl, example program, 174
installing
on Unix, 169-171
on Win32, 171
modules required by, 169
performance of, 170
master_priv_rpt, reporting on database
privilege grants, 386
matching regular expressions, 488
mathematic operations, 533
maxConnectRetries parameter
(dbup.conf), 356
maxext.conf, 314
maxext.pl, 230, 313-315
command-line options, table of, 315
results from, 315
maxLogLines parameter (chkalert.pl), 333
maxRunTime parameter (idxr.conf), 301
%mdat variable, 169
metacharacters, 482, 488
regexes, 494-509
boundaries, 498
character class shortcuts, 496
escaped characters, 497
methods
accessing DBMS_OUTPUT package, 478
adding to PDBA module, 422-425
usage method, 422-425
PDBA module, 254-257
PDBA::LogFile, 248
Perl built-in string-handling, 485
Perl DBI, 459-465
metadata-related, 477
Oracle-specific, 478-481
used by PDBA Toolkit, 234
MIME::Base64, 139, 560
minExtentsCanExtend parameter
(maxext.conf), 314
minPctBlocksUnused parameter
(maxext.conf), 315
MLDBM (Multi-Level DBM), required by
Mason, 169
modifying
PDBA module, 422-425
adding usage method, 422-425
PDBA Toolkit modules, 421-435
PDBA Toolkit scripts, 404-421
dba_jobsm.pl, 419-421
PDBA::GQ, 428-435

Index | 587

mod_perl, 137-155

Apache mod_perl modules, table of, 145
build options, 140
CGI scripts and, 137
configuring on Win32, 152
downloading, 140
Embperl and, 162
independent distribution of, 151
installing

on Unix, 138-144

on Win32, 151
PL/SQL Web Toolkit and, 137
specifying mod_perl Apache

library, 142-144

testing on Win32, 152
web resources for, 137
writing modules, 153-155

modules

adding, 29
Apache mod_perl, table of, 145
Apache Perl, 144-151
combining with PDBA Toolkit, 227
CPAN
conversion, 544-552
date, 534-544
mathematics, 533
numeric, 531-533
text conversion, 547-552
XML, 552-574
for data munging, 521
described in this book, download sites, 17
evolution of, 6
installing
via CPAN, 39-42
methods for, 38-43
traditional method for, 38, 42
on Win32, web resource for, 46
in libnet library, 130
LWP.pm, required for mod_perl
installation, 138
PDBA Toolkit, 228, 231, 232-257
modifying, 421-435
password control, 250
PDBA module, 254-257
PDBA::CM, 232-234
PDBA::ConfigFile, 235-237
PDBA::Configload, 237-240
PDBA::Daemon, 240-245
PDBA::DBA, 234
PDBA::GQ, 245-248
PDBA::LogFile, 248-250
PDBA::OPT, 250

PDBA::PidFile, 251
PDBA::PWC, 254
PDBA::PWD, 252-254
PDBA::PWDNT, 254
Win32::Daemon, 240-245
required by DBD::Chart, 98
required by Embperl, 162
required by Karma, 128
required by LWP.pm, 139
required by Mason, 169
required by Oracle::OCI, 186
required by SchemaView-Plus, 105
required by XML::XMLtoDBMS, 565
required for PDBA Toolkit, 258
as tools for DBAs, 15
Tuning.pm, 95
upgrading, 29
writing Win32 Perl Apache, 153-155
mostRecentlyAnalyzed parameter
(idxr.conf), 301
MSI Microsoft Windows installer, 36
MTS (Multi-Threaded Server), avoiding
running kss.pl on databases
using, 307
mucr7.msg, 292
mucr8.conf, privileges in, 293
mucr8.msg, attributes, 293
mucr8.pl, 230, 290-295
command-line options, table of, 294
Multi-Level DBM (see MLDBM)
multilevel hashes, serializing, 169
Multi-Threaded Server (see MTS)
“my” variables, Apache::Registry and, 146
my_script.pl, 230
MySQL
transfering data from, 526-528
web resources for, 526

N

Net8 listener process, 204
Net::Daemon, 51
Net::SSLeay, 139
new method
PDBA::DBA, 235
PDBA::GQ, 245
PDBA::LogFile, 248
next method (PDBA::GQ), 245
Perl fetchrow_hashref method and, 246
NFA (Nondeterministic Finite
Automaton), 491
NLS_DATE_FORMAT parameter (dba_
jobsm.pl), modifying, 419

| Index

Nondeterministic Finite Automaton
(NFA), 491

NULL values

Oracle databases and, 425

testing use of, 425
null_test.pl, 231, 425
Number::Format, 532
numberFormat.pl, code example, 532
numeric operations, 531-533

0

object orientation, in Perl, 456—458
objects
creating, 235
with PDBA Toolkit script, 229
dropping, 235
examining space of with
maxext.pl, 313-315
gathering information about, 235
monitoring size/number of extents in, 230
QOCI (Oracle Call Interface), 13-15, 180
datatype mapping functions, 185
DML capabilities in, 180
features, 180
functions, 183-185
categories of, 184
one-to-one mapping with
Oracle::OCI, 183
table of, 14
installing Per] DBI and, 38
invoking with Oracle::OCI, 178-200
navigational functions, 184
Oracle::PLSQL, future availability, 198
Perl DBI and, code example illustrating
integration of, 195-198
procedure functions, 184
relational functions, 184
type functions, 184
Version 8.1 demonstration programs,
table of, 200
web resources for, 183
OCIExtProcContext, 213
using Perl DBI for host callbacks, 216
Open Perl IDE, 107
OpenBSD, installing Perl from from prebuilt
package, 32
OpenSSL program, 139
operating system commands, Perl and, 201
operating systems, X
operating systems documentation, regarding
Perl, 441
OPS$ Oracle accounts, security of, 252

OptiPerl (Perl IDE), 108
.ora files, configuration of, setting up external
procedures, 208
Orac, 65, 82-84
directories for storing personal options, 83
downloading, 82
installing, 82
personalizing, 83
running, 83
user options, table of, 84
using DDL::Oracle with, 85-88
example program, 86
orac_dba.pl program icon, 83
Oracle
client libraries, Cygwin installation under
DBD::Oracle installation, 57, 60
data dictionary
PDBA repository and, 366
tables in PDBA repository, 367
database server, connecting to (see OCI)
databases
limiting resource
consumption, 305-308
NULL values and, 425
space problems on, 297-300
transfering data to, 528-531
date format, XML::XMLtoDBMS and, 566
DDL and, 85
embedding Perl into, 204-223
environment variables
DBD::Oracle and, 44
predefining, 232
external procedures, resources, 204
schemas, comparing (see SchemaDiff)
server, parallel server management
(see OCI)
user privileges, Oracletool selection
reports, 122
versions of, x
XML and, 552
Oracle Call Interface (see OCI)
Oracle DDL from Oracle8i databases,
reverse-engineering
(see DDL::Oracle)
Oracle Enterprise database server
mapping datatypes (see OCI, datatype
mapping functions)
navigating between objects supplied by
(see OCI, navigational functions)
ORACLE not available errors, on Linux
SuSE 7.73 with Oracle9i, 188
Oracle Technology Network (OTN), 182

Index | 589

oracle user
building Perl for, 211
resetting PATH variable, 212
creating from command line, 230
HOME directory, 211
Oracle8, data dictionary tables, PDBA
repository and, 367
Oracle8i
editing pdba_tbs8i.sql, 369
LMTs in, 312
Oracle9i
installing Oracle::OCI on
./boot test compilation errors, 188
installing Oracle::OCI on Linux
SuSE 7.73, ORACLE not available
errors, 188
Oracletool connection options, 120
patching DBD::Oracle, 215
setting up external procedures with
PLExtProc, 209
Oracle9i Application HTTP Server (iAS), web
resource, 112
ORACLE_BASE variable, cm.conf and, 266
ORACLE_HOME variable
Apache and, 149
cm.conf and, 266
DBD::Oracle and, 215
Karma and, 129
Orac and, 83
Oracletool and, 120, 121
PDBA Toolkit and, 258
Per]l DBI Hello World example, 49
SchemaView-Plus and, 106
setting up external procedures, 209
OracleNet, 204
Oracle::OCI, 179
architecture compared to Perl
DBD::Oracle, 179
C language vs., 181
coding with, 190-198
mixing modules, code
example, 195-198
Per] DBI and DBD::Oracle code
example, 194
pure Oracle::OCI code
example, 190-194
requirement, 179
future of, 198-200
installation directories, 189
installing
on Unix, 186—189
on Win32, 185

invoking OCI with, 178-200
mail archive, 189
relationship to Perl DBD::Oracle, 181
resources for further information, 189
setting environment, 186
troubleshooting installation, 189
versions of, 187
Oracle::OCI Project, contributing to, 199
Oracle/Perl
architecture, 10-15
tools for DBAs, 15-24
Oracle::PLSQL, future availability, 198
ORACLE_SID variable
DBD::Oracle and, 215
Oracle::OCI and, 187
PDBA Toolkit and, 258
Oracle_SID_AlertLogMon, testing, 340
Oracletool, 118-127
adding SQL scripts to, 125
connection options, 120
initialization parameters, 121
installing
on Unix, 119
on Win32, 120
monitoring databases with, 125
Preferences/privileges, 122
security, 122-123
selection reports, Oracle user
privileges, 122
v2.0 features, 124-127
web resource for, 119, 123
ORACLE_USERID variable
DBD::Oracle and, 45, 215
Oracle::OCI and, 187
PDBA Toolkit installation, 260
OraExplain, 65,72
ora_explain.PL, 73
ora_module_name attribute (Per]l DBI), 464
oramon account, PDBA Toolkit
installation, 260
ora_oratab_orahome attribute (Perl DBI), 464
ora_perl_boot.pl bootstrap file, 204, 217-219
using after installation, 219
ora_session_mode attribute (Per] DBI), 463
oratabFile parameter (chkalert.pl), 333
orclALRT.log, 329
osname method (PDBA module), 254
OTN (Oracle Technology Network), 182
OWA package, 156
OWA_COOKIE package, 157
OWA_IMAGE package, 157
OWA_OPT_LOCK package, 156

590 | Index

OWA_PATTERN package, 157
OWA_TEXT package, 157
OWA_UTIL package, 156

P

package variables, Perl, 449
packages
ActivePerl for DDL::Oracle, 88
extracting DDL from (see dd]_oracle.pl)
Perl, 456
PPM ActivePerl, advantages of, 46
prebuilt, installing Perl on Unix from, 31
.gz suffix and, 32
required by Cygwin, 54
downloading, 53
pager parameter (dbup.conf), 360
parameter files, created by defrag.pl
command, 90
parameter_diff_rpt
example output, 379
reporting changes to initialization
parameters, 386
parameter_rpt, reporting on initialization
parameters, 386
parameters
binding to SQL statements, 467
configuring, 419
initialization, reporting changes to, 386
reporting changes to, 378-380
Params::Validate
installing on Win32, 171
Mason and, 170, 171
parentheses (()), Perl regex
metacharacter, 495
password encryption
via TCP socket, pwd.pl, 229
password server, 348-351
client module communicating with, 254
installing as Unix daemon or Win32
service, 229
installing kss_NT.pl, 309
loading parameters, 353
PDBA repository and, 375
PDBA (see PDBA password server)
scanning command line for options
intended for, 250
passwords
batch, problems with, 253
encrypted, retrieving, 229
encrypting
PDBA Toolkit scripts, 229
(see also password encryption)

generating in PDBA::DBA, 287
inherent problems with, 253
Karma security, TermReadKey.pm, 129
managing via pwd.pl, 252
Oracletool security levels, 122
PDBA Toolkit password-control
modules, 250
security of, 253
PATH variable
gnuplot and, 80
installing Perl and, 30
resetting when building Perl for oracle
user, 212
separator in, determining, 254
pathsep method (PDBA module), 254
PDBA Extensions (PDBAx), 422
PDBA module, 254-257
adding usage method to, 422-425
configuring, 265
methods, 254-257
PDBA password client
configuring, 275-278
creating configuration file for, 276
PDBA password server
configuring, 268-275
encrypting passwords, 270
securing pwd.conf, 272
setting passwords, 268
setting TCP port, 268
setting up password server users, 270
setting up per-account
authorization, 271
running on Unix, 273
running on Win32, 273-275
Windows NT 4.0/2000, 275
PDBA repository, 228
allotting storage space for, 370
changing date format in reports, 373
creating baseline for, 231
DBD::Oracle and, 374
installing, 369-374
access to
VS$PARAMETER/V$INSTANCE
parameters, 372
copying pdbarepq.conf, 373
editing pdba_tbs8i.sql, 369
tablespace creation, 369
loading with data, 374-376
Oracle data dictionary and, 366
tables in, 367
overhead, 366
password server and, 375

Index | 591

PDBA repository (continued)
specialized tables in, 368
table structure, 367-369
viewing data, 376
(see also reports, of database changes)
PDBA Toolkit (Perl DBA Toolkit), 228-232
building database repository
with, 366402
(see also PDBA repository)
configuring, 265-278
password client, 275-278
password server, 268-275
PDBA module, 265
PDBA::CM, 266
connection manager, 232
downloading, 259
example behaviors to modify, 403
extending, 231, 403-435
(see also PDBA::OPT; PDBA::PWC)
installing
on Unix, 257-261
on Win32, 261-265
methods (see PDBA::DBA)
modules, 228,231, 232-257
modifying, 421-435
PDBA module, 254-257
PDBA::CM, 232-234
PDBA::ConfigFile, 235-237
PDBA::Configl.oad, 237-240
PDBA::Daemon, 240-245
PDBA::DBA, 234
PDBA::GQ, 245-248
PDBA::LogFile, 248-250
PDBA::OPT, 250
PDBA::PidFile, 251
PDBA::PWC, 254
PDBA::PWD, 252-254
PDBA::PWDNT, 254
Win32::Daemon, 240-245
password client for NT (see
PDBA::PWDNT)
password client (see PDBA::PWC)
passwords, managing (see PDBA::PWD)
programs in, 228
repository (see PDBA repository)
required modules, directory for
on Unix, 259
security, script installation order, 229
utilities logging (see PDBA::LogFile)
utilities (see PDBA module)

PDBA Toolkit scripts, 227, 228-231

baseline.pl, collecting baseline data
dictionary data, 374
checksums and, 397
chkalert.pl, monitoring alert log with, 329
create_user.pl, 281-287
database administration, 229
dba_jobsm.pl, 405-419
configuring, 405
functions/formats description, 417—419
modifying, 419—-421
script description, 407-417
dbup.pl/dbup_NT.pl
monitoring database
connections, 343-365
testing monitor, 362-365
ddl_oracle.pl, 323-327
directory for on Unix, 259
directory paths for, 279
dropping user accounts, 296
dup_user.pl, 288-290
extending toolkit, 231
extracting DDL and data, 315-327
functions/formats, line-by-line description
of, 417-419
idxr.pl, rebuilding indexes, 300-304
installing, 229
killing sniped sessions, 305-311
kss.pl
installing on Unix, 308
installing on Win32, 309
line-by-line description of, 407-417
logging by, 248
maintaining indexes, 297-304
managing extent usage, 312-315
managing user accounts, 280-296
maxext.pl, 313-315
modifying, 404-421
monitoring, 230
monitoring alert log with, 328-342
monitoring database connections, 342-365
monitoring databases, 328-365
mucr8.pl, 290-295
password encryption, 229
pdba_tbs8i.sql, 369
repository, 231
spdrvr.pl
command-line options, 387-389
implementation of, 384-392
options and tags, 390-392

592 | Index

parameters, 379
PDBA-generated SQL used with, 380
predefined reports, 385-387

reporting parameter changes, 378-380

viewing repository data, 376
sqlunldr.pl, 316-323
SXP, 393
sxpcmp.pl, 400
example output, 401
sxp.pl, 394-396
command-line options, 395
password/privilege messages, 396
unique constraint error, 395
sxprpt.pl, 396
tablespace creation, 369
PDBA::CM, 232-234
configuration file (see cm.conf)
configuring, 266
RaiseError/AutoCommit, 234
SYSDBA/SYSOPER, login cases for, 233
pdba.conf, 265
PDBA::ConfigFile, 235-237
simplifying configuration, 235-237
PDBA::Configload, 237-240
loading script configuration files, 239
referring to config variables by package
name, 240
PDBA::Daemon, 240-245
creating Unix daemon in Perl, 240-242
using Unix daemons in Perl, 244
PDBA::DBA, 234
creating user accounts, 234
generating passwords in, 287
PDBA::GQ, 245-248
modifying, 428-435
pdbaHome method (PDBA module), 254
code example, 255
PDBA_HOME variable
PDBA Toolkit and, 257
default on Unix, 256
installing on Win32, 261
Unix configuration files, 261
retrieving value of, 254
code example, 255
setting from command line, 257
PDBA::LogFile, 248-250
methods, 248
PERMS attribute, 250
PDBA::OPT, 230, 250, 347-353
command-line overrides for, 353
password server and, 348-351
PDBA::PidFile, 251

PDBA.ppd, 262
PDBA::PWC, 254, 347-353

password server and, 348-351

using in Perl scripts, 278

on Win32 (see PDBA::PWDNT)
PDBA::PWD, 252-254

PDBA password server and, 270
PDBA::PWDNT, 254
pdbarep_create.log, 373
pdbarep_create.sql, 372
pdbarepg.conf, 373, 380
pdba_tbs8i.sql, 369
PDBAx (PDBA Extensions), 422
percent sign (%)

Perl in Mason template, 174

Perl variable notation, 453
performance

Apache::DBI and, 147

Apache::Registry and, 146

CGlI scripts, 136

(see also Apache::Registry)

limiting resource consumption, 305

Mason and, 170

Perl and, 202

perl_mod, 136

sniped sessions and, 230, 305

statistics, reporting via DBD::Chart, 95
Perl, 4

advantages of, 7-10

Apache and, 111

(see also mod_perl)

applications, servicing users/requests, 180

arrays, 443

determining size of, 444
boolean variable type and, 448
built-in functions, 441
built-in string-handling functions, 485
communicating with PL/SQL, 202
connectivity with PL/SQL, 198
contexts, 446

list, 448

scalar, 448

void, 447
corporate world and, 7
creating Unix daemon, 240-242
creating Win32 daemon, 242-244, 264
data munging (see data munging)
data parsing (see SchemaView-Plus)
data structures, converting to/from

strings, 170

debuggers, 108

Index | 593

Perl (continued) scripts (see Perl scripts)

distribution with shared libperl, security, web resource for modules, 223
determining whether running, 210 source, installing Perl on Unix
documentation from, 33-36
perldoc command, 439 storing data structures in, 162
resources, 24-26 tools for DBAs, 15-24
downloading, 28 connectivity tools, 16
from CPAN, 34 modules and applications, 15
driver for SQL*Plus, 231 scripts, 16
embedding into table of, 17-24
Apache (see mod_perl) upgrading, 30
C, 203 "use strict" line in, 449
Embperl templates, 166 using Unix daemons, 244
Mason template, 174 using Win32 services, 244
Oracle, 204-223 versions of, x
PL/SQL, 201-223 web access in (see LWP.pm)
FAQ documents, 440 web extensions, 110-135
finding installation of, 30 on Win32, 6
GUI extensions, 65-109 writing ad hoc SQL reports, 384
guide to, 439-458 XML and, 552
(see also Perl scripts, XML parsers, 553-559
program/subroutine parameters) <%perl> . .. </%perl> (angle
hash structures, saving in brackets-percent signs), 175
platform-independent files, 170 Perl C library, calling, 203
hashes, 445 Perl Database Interface (see Perl DBI)
installing, 28-38 Perl DBA Toolkit (see PDBA Toolkit)
under Cygwin, 52-56 Perl DBI (Database Interface), 11-13
on Unix, 29-36 API, 12
on Win32, 36 class methods, 459465
limitations of, 384 combining with Perl/Tk, 68-72
manpage documents, 440 connecting to
modules (see modules) Oracle, 460-464
object orientation in, 456—458 as SYSDBA/SYSOPER, 233
obtaining online information, 439-442 database handles
operating system documentation, 441 SQL and cleanup, 475-477
origins of, 4 statement handle methods, 465-474
references, 451-456 DBD::Oracle and, 459
anonymous arrays/hashes, 455 coding with Oracle::OCI, 194
arrow notation, 453 documentation, 26
ref operator, 453 downloading, 47, 56
regexes extproc_perl and, 212-217
alternation/memory, 505-509 functions, table of, 12
delimiters in, 489 guide to, 459-481
greediness of, 500-502 installing, 38-47
grep vs., 484 under Cygwin, 56
history of, 484 on Unix, 43-46
interpolated strings, 503 on Win32, 46-47
metacharacters, 495 limitations of, 178
scalar/list context results, 504 methods
string-handling functions and, 485 metadata-related, 477
(see also regular expressions) Oracle-specific, 478—481
resources for futher information, 24 OCI and, code example illustrating
scalars, 442 integration of, 195-198

594 | Index

Download from Wow! eBook <www.wowebook.com>

OCIExtProcContext and, 216
online documentation for, 459
origins of, 11
running
Hello World example, 48
by proxy, 50
using in loop-back mode, 212
variable naming conventions, 459
versions of, xi
Perl IDEs (integrated development
environments), web resources
for, 108
Perl integrated development environments
(IDEs), web resources for, 108
Perl Interactive Query Tool (PIQT), 96
perl -MCPAN command
interactive CPAN shell, 40
loading LWP-related modules, 138
loading mod_perl and related
modules, 138
PDBA Toolkit, installing modules
required by, 259
perl orac_dbal.pl command, 83
Perl Package Description (see PPD)
Perl Package Manager (see PPM)
Perl scripts
calling subroutines, 448
debugging, 109
environment variables, 449
lexical, 450
package, 449
package main, 448
PDBA Toolkit and, 259
program/subroutine parameters, 448-451
running, 442
on Unix, 49
on Win32, 50
sending email from, 254, 256
taint mode, 450
using PDBA::PWCin, 278
perl -v command, 30
perldbgui program, 109
perldoc command, accessing Perl
documentation, 439
perldoc ExtUtils::MakeMaker
command, 260
PerlFreshRestart option, 143
PERL_LIB library, creating during extproc_
perl deployment, 220
Perl/Oracle
architecture, 10-15
use by DBAs, 15-24

Perl/Oracle architecture, 10-15
DBD::Oracle, 11-13
OCI, 13-15
functions, table of, 14
Perl DBI, 11-13
Perl/Tk, 66-72
combining with Per] DBI, 68-72
downloading, 67
example programs, 68,71

installing
on Unix, 67
on Win32, 68

programs, basic structure of, 69
resources for further information, 66
PERMS attribute (PDBA::LogFile), 250
persistent connections, 148
pie charts, for performance statistics
(see DBD::Chart)
ping method (Perl DBI), 466
PIQT (Perl Interactive Query Tool), 96
PIRPC package, 51
platforms
Apache runs on, 111
creating log files independent of, 249
for Perl/Oracle, x
porting Unix applications to Win32
(see Cygwin)
retrieving types of, 254
PLSExtProc
alternative use of for database context, 217
patching DBD::Oracle, 215
PL/SQL
advantages of Perl, 201
communicating with Perl, 202
connectivity with Perl, 198
embedding Perl into, 201-223
features, 201
limitations of, 201
(see also Perl, embedding into PL/SQL)
PL/SQL Runtime Engine, 204
PL/SQL Server Pages (PSPs), 162
PL/SQL Web Toolkit
mod_perl and, 137
packages in, 156
(see also Apache::OWA)
plsql_errstr method (DBD::Oracle), 478
PluginMgr register command (Senora), 95
plug-ins, Senora
DataDictionary, Is option, 94
SQL*Plus vs., 93
table of, 94

Index | 595

plus sign (+), Perl regex metacharacter, 495,
500
plus sign-question mark (+?), Perl regex
metacharacter, 503
PNG (Portable Network Graphics), 76
DBD::Chart and, 99
installing, 77-79
StatsView and, 76
$port data structure (pwd.conf), 268
portability, exporting/importing objects into
Oracle databases, 316
Portable Network Graphics (see PNG)
POSIX commands, Mason and, 169
PPD (Perl Package Description), 46
obtaining latest files, 47
ppm command, 47
PPM (Perl Package Manager), 46
Perl DBI and, 46
running, 46
ppm utility, 46
(see also PPM)
prepare method
PDBA::GQ, 246
Perl DBI, 466
prepare_cached method (Perl DBI), 466
primary_key method (Perl DBI), 477
primary_key_info method (Perl DBI), 477
print method (PDBA::LogFile), 248
printflush method (PDBA::LogFile), 248, 250
printif method (PDBA::LogFile), 250
privileges
developer account, 285
granting while creating user accounts, 283
in mucr8.conf file, 293
reporting on database privilege grants, 386
system, reporting on changes to, 386
procedures
calling with OUT parameters, 467
cookie manipulation, 157
extracting DDL from (see dd]_oracle.pl)
profile_rpt, reporting on profiles, 386
PROFILEs
creating, 306
setting RESOURCE_LIMIT parameter
(Oracle), 308
PROFILEs (Oracle), 305
programs
background (see PDBA::Daemon;
Win32::Daemon)
concurrent, preventing running of, 251
Perl scripts, 448-451
PSPs (PL/SQL Server Pages), 162

ptkdb program, 109
pwc.pl, 229,254

command-line options for, 276

(see also PDBA password client)
%pwd data structure (pwd.conf), 268
pwd.conf

data structures, 268

securing, 272

(see also PDBA password server)
pwd.pl, 229

password management in, 252
pwd_service.pl, 229

locating on Win32, 274

Q

ged program, regular expressions and, 484
queries, generic (see PDBA::GQ)
question mark (?), Perl regex
metacharacter, 496, 500
question mark-question mark (??), Perl regex
metacharacter, 503
quotas, setting while creating user
accounts, 283
quote method (Perl DBI), 466

R

RaiseError attribute, connecting to Oracle
databases via PDBA::CM, 234
recode library, 545
Red Hat Linux, installing
Apache::OWA, 157
ref operator in Perl, 453
main return values of, 454
regexes (see regular expressions)
registry, PDBA settings, 262
regular expressions, 156, 482
altering operation of, 509-520
architectures, 491-492
capturing backreferences, 505-509
concepts, 487-492
data munging and, 501
guide to, 482-520
history of, 483—485
implicit use of $_, 489
input, 488
left-to-right assumption, 490-491
match suffixes, 509520
matching/substituting/translating, 488
metacharacters, 494-509
boundaries, 498
character class shortcuts, 496
escaped characters, 497

596 | Index

Perl and, 202
PL/SQL Web Toolkit, 202
qed/ed/vi, 484
resource for further information, 482
split operator, 519
-report_list option (spdrvr.pl), 389
reports
comparing SQL execution plans, 397-402
of database changes, 377-392
predefined in spdrvr.pl, 385-387
performance statistics via DBD::Chart, 95
writing SQL, comparing Perl and
SQL*Plus, 385
-rep_report parameter_diff_rpt
command, 378
-rep_start_date/-rep_end_date switches, 378
reverse function (Perl), 486
rindex (Perl), 486
role_privs_diff_rpt, reporting on changes to
privileges, 386
role_privs_rpt, reporting on privileges, 386
role_rpt, reporting on roles, 386
roles, reports on, 386
rollback method (Perl DBI), 476
rows
fetching from arrays, 469
retrieving, 245
rows method (Perl DBI), 474
RPC::PIClient, 51
RPC::PlServer, 51

S

scalability, mod_perl, 137
scalar values, in Perl, 442, 448
scheduled jobs, checking on, 405-419
SchemaDiff, 66, 90-92
downloading, 90
installing, 90
running, 91
schemas
comparing/generating
(see also SchemaDiff)
, 231
dumping, example of, 318
(see also sqlunldr.pl)
examining/saving (see SchemaView-Plus)
tracking changes to (see PDBA repository;
reports, of database changes)
SchemaView-Plus, 66, 104-106
installing on Unix, 105
installing on Win32, 106

scripts
CGI (see CGI scripts)
configuration files
changing (see PDBA::Configload;
PDBA::ConfigFile)
loading, 237,239
locating, 237
created by defrag.pl command, 89
for DBA tasks, avoiding cutting/pasting
(see DDL::Oracle)
PDBA Toolkit (see PDBA Toolkit scripts)
Perl (see Perl scripts)
web (see embedded web scripting)
Secure Sockets Layer (SSL), modules used
with LWP.pm, 139
security
batch job passwords and, 253
Cygwin and, 56
EXTPROC and, 205
Is() subroutine as example of risk, 219
OPSS$ Oracle accounts, 252
Oracletool, 119, 122-123
passwords and, 253
PDBA password server and, 270
PDBA Toolkit, script installation order, 229
Perl, web resource for security
modules, 223
pwd.conf, 272
%instanceAuth data structure, 271
(see also passwords)
SELECT statements (Oracle), 471
selectall_arrayref method (Perl DBI), 475
selectall_hashref method (Perl DBI), 476
selectcol_arrayref method (Perl DBI), 476
selectrow_array method (Perl DBI), 475
Senora, 66, 92-95
DataDictionary plug-in, ls option, 94
downloading, 92
flexibility of, 94
installing, 92
options, Unix-style, 93
plug-ins, table of, 94
running, 94-95
SQL*Plus and, 93
sequence_rpt, reporting on sequences, 386
serverName parameter (chkalert.pl), 334
sessions
limiting resource consumption, 305
sniped, killing, 230
with PDBA Toolkit scripts, 305-311
SHARED_POOL_SIZE parameter
(Oracle), 379

Index | 597

sleepTime parameter (kss.conf), 310
Solaris
installing Perl from prebuilt package, 31
installing StatsView on, ps -ef
command, 80
(see also StatsView, installing)
Solaris 8, x
installing Apache::OWA, 157
SourceForge.net, Perl open source resource, 90
spdrvr.pl, 231
command-line options, 387-389
date options, 390
options and tags, 390-392
-report_list option, 389
report-specific options, 388
text options, 391
implementation of, 384-392
parameters, 379
PDBA-generated SQL used with, example
of, 380
predefined reports, 385-387
reporting parameter changes, 378-380
viewing repository data, 376
split function (Perl), 486
split operator (regex), 519
sprintf function (Perl), 486
formats for, 487
SPX report, comparing execution
plans, 397-402
SQL
cache, warning about excursions into, 395
collecting for PDBA repository, 394-396
execution plans (see SQL execution plans)
execution, troubleshooting
slowdown, 368, 393
scripts (see SQL scripts)
statements (see SQL statements)
tracking in V$SQLTEXT data dictionary
view, 368,393
SQL execution plans
and cache examination (see OraExplain)
comparing, 231
reporting on, 231, 392-402
SQL explain plan (see SXP)
SQL Query Tool, 96
SQL scripts
adding to Oracletool, 125
created by defrag.pl command, 90
repository of (see Orac)
SQL statements
binding parameters to, 467
collecting/storing from data dictionary, 231

examining, 231, 393
generating XML files from, 560-562
number of rows processed by, 474
SQL*Loader, 180
SQL"Net, 204
SQL*Plus
alternative to (see Senora)
dropping user accounts, limitations of, 296
Perl compared to, 384
Perl DBI tools, 96
Perl driver for, 231
Senora and, 93
writing ad hoc SQL reports, 384
SQL*Plus Driver (see spdrvr.pl)
sqlunldr.pl, 229, 316-323
command-line options, table of, 317
features of, 316
square brackets ([]), 167
Perl, 444
Perl regex metacharacter, 495
square brackets-caret sign ([]), Perl regex
metacharacter, 495

Perl in Embperl template, 166
square brackets-hyphens ([- . . . -]), Perl in
Embperl template, 166
square brackets-plus signs ([+ . . . +]), Perl in
Embperl template, 166
SSL (Secure Sockets Layer), modules used
with LWP.pm, 139
<<START_DATE_PK>> tag (spdrvr.pl), 390
STARTUP_EXTPROC_AGENT, debugging
external procedures setup, 210
statement handle metadata, Perl DBI, 477
statement handles, creating, 466
statistics, gathering (see StatsView)
StatsView, 65, 74-82
downloading, 75-80
gnuplot installation, 79
PNG installation, 77-79
PNG, need for, 76
zlib installation, 76
installing, 80-82
ps -ef command, 80
sv program, 80
installing Tk::GBARR, 75
Storable
downloading, 163
Storable package, 51, 139
required by Mason, 170

598 | Index

Storable.pm
Embperl on Unix, storing data structures
in Perl, 162
interface with Apache, 163
strings
functions for handling in Perl, 485
interpolated in Perl regexes, 503
subroutines, Perl scripts, 448—451
substitution operator, regexes, 488
substr function (Perl), 486
suffixes of regexes, 482
sv program (StatsView), 80
svplus program, 106
SXP (SQL explain plan)
repository tables, 369
scripts, 393
sxpcmp.pl, 231,393, 400
example output, 401
sxp.pl, 231,393, 394-396
command-line options, 395
password/privilege messages, 396
unique constraint error, 395
sxprpt.pl, 231, 393, 396
SYSDBA/SYSOPER, login cases for with
PDBA::CM, 233
sys_privs_diff_rpt, reporting on changes to
system privileges, 386
sys_privs_rpt, system privileges, 386

T

table_info method (Perl DBI), 477
table_privs_diff_rpt, reporting changes to
table privileges, 384, 386
table_privs_rpt, reporting on table
privileges, 387

table_rpt, reporting on tables, 382, 387
tables

analyzing via ANALYZE command, 382

dumping several (see sqlunldr.pl)

indexes on (see indexes)

in PDBA repository, structure of, 367-369

Oracle data dictionary tables, 367
reporting on, 382, 387
(see also reports, of database changes)

SXP repository, 369

tracking changes to (see PDBA repository)
tables method (Perl DBI), 477
tablespace_rpt, reporting on tablespaces, 387
tablespaces, 286

creating, PDBA repository installation, 369

locally managed, 312

reporting on, 387

taint mode in Perl scripts, 450
Template Toolkit, 176
templating (see embedded web scripting)
TermReadKey.pm, 128
installing, 129
testing
extproc_perl, 221
mod_perl on Win32, 152
text processing, modules for, 547-552
Text::Abbrev, 548
Text::ParseWords, 549
Text::Soundex, 550
throttleDelaySeconds parameter
(chkalert.pl), 334
time/date information
-dateformat option, 318
leap seconds in calendar, 540
modules, 534544
parsing, 258, 264, 344
PDBA repository reports, changing
in, 373
TimeDate module, 258, 264
XML::XMLtoDBMS and, 565
time/date utilities, 156
Time::HiRes, required by Mason, 169
Tk::GBARR, installing, 75
Tk::JPEG
DBD::Chart installation, 103
using Perl/Tk canvas applications with, 99
Tk::PNG, DBD::Chart installation, 103
TNS_ADMIN variable
cm.conf and, 266
Oracletool and, 120, 121
PDBA Toolkit and, 258
tnsnames.ora, setting up external
procedures, 208
trace method (Perl DBI), 464
tracing levels, table of, 464
translate operator, regular expressions, 488
troubleshooting
developer PDBA role/connect PDBA
role, 296
SQL execution slowdown, 368
(see also debugging)
Tuning.pm module, 95
TWO_TASK variable
Oracle::OCI and, 188
PDBA Toolkit and, 258
type_info method (Perl DBI), 477
type_info_all method (Perl DBI), 477
TZ variable, Date::Manip and, 344-347

Index | 599

U

uc/ucfirst functions (Perl), 487
%udat variable, 169
UltraEdit (Perl IDE), 108
Unix
administering (see StatsView)
alert log on, 329
background programs, 240
configuring chkalert.pl on, 331-336
configuring dbup.pl on, 354
configuring Karma on, 130-133
Karma OS monitor agent, 131
daemons
creating in Perl, 240-242
resource for further information, 241
using in Perl, 244
directory for PDBA Toolkit scripts, 279
installing Apache on, 112-114
APACI installation, 113
directory for CGI scripts, 114
installing Apache::OWA on, 157
installing chkalert.pl on, 331-336
locating/updating
chkalert.conf, 331-334
installing Date::Manip on, 344
installing DBD::Chart on, 98-103
gd library and, 100
GD.pm, 101
JPEG and, 99
required downloads, 99
required libraries, 99
required modules, 98
Tk::JPEG, 103
Tk::PNG, 103
installing DDL::Oracle on, 85, 325
installing Embperl on, 162
LWP.pm installation, 163
modules required, 162
installing Karma on, 128-130
MailTools.pm installation, 130
TermReadKey.pm installation, 129
installing kss.pl on, 308
installing Mason on, 169-171
modules required, 169
installing mod_perl on, 138-144
build options, 140
include paths, 140
LWP.pm, 138
modules required by LWP.pm, 139
optional SSL modules, 139

preinstallation security measure, 140
specifying mod_perl Apache
library, 142-144
installing Oracle::OCl on, 186-189
errors in build, troubleshooting, 189
installing Oracletool on, 119
installing password server as daemon, 229
installing PDBA Toolkit on, 257-261
account to install from, 258
Perl modules/scripts
installation, 258-261
setting PDBA environment, 257
installing PDBAx on, 422
installing Perl DBl on, 43-46
installing Perl on, 29-36
from prebuilt package, 31
from source, 33-36
installing Perl/Tk on, 67
X Windows server access, 68
installing SchemaView-Plus on, 105
installing XML::Generator::DBI on, 560
installing XML::LibXML on, 555
installing XML::Parser on, 553
installing XML::XMLtoDBMS on, 566
running PDBA password server on, 273
running Perl scripts on, 49
shared objects, 202
upDays parameter (dbup.conf), 357
upHours parameter (dbup.conf), 358
URI module, 139
XML::Parser and, 553
"use strict" line in Perl code, 449
user accounts (see accounts)
username parameter (dbup.conf), 358
user_rpt, reporting on users, 387
%users data structure (pwd.conf), 270
utilities
development (see Oracletool)
in PDBA Toolkit (see PDBA module)

v

variables

CGI environment, Apache::Registry
and, 147

config, referring to by package name, 240

naming, Embperl syntax, 168

Perl DBI naming conventions, 459

Perl hash, 168

uninitialized lexical, Apache::Registry
and, 146

600 | Index

version control system, reporting database
changes and, 378
_version function (extproc_perl), 220

vertical bar (]), Perl regex metacharacter, 495

vi program, regular expressions and, 484

V$INSTANCE parameter (pdbarep_
grants.sql), 372

V$PARAMETER parameter (pdbarep_
grants.sql), 372

V$SQLTEXT data dictionary table, tracking

SQL in, 368

w

wantarray function (Perl), 505
watchdogLength/Time parameter
(chkalert.pl), 334
web data, storing persistent, 163
web extensions to Perl, 110-135
web forms
handling via Embperl, 168
storing data associated with, 169
web servers (see Apache)
web sites for downloading Perl, modules,
tarballs, and items related to this
book (see downloading)
while loops, Embperl syntax, 167
Win32
alert log on, 329
background programs, 240
CGlI scripts, 116
configuring dbup_NT.pl on, 354
configuring Karma on, 134
configuring mod_perl on, 152
creating daemon in Perl, 242-244, 264
DDLs, 202
directory for PDBA Toolkit scripts, 279
environment variables
PPM and, 47
web resource for, 47
extproc_perl and, 206
installing Apache on, 114
directory for CGI scripts, 115
running Apache as console
application, 115
installing Apache::OWA on, 158
installing chkalert_NT.pl on, 337-342
installing Date::Manip on, 344-347
TZ variable, 344-347
installing DBD::Chart on, 103
loading DBD::Chart for
ActivePerl, 104
installing DDL::Oracle on, 88

installing Embperl on, 163
installing Karma on, 133
installing kss_NT.pl on, 309
installing Mason on, 171
installing mod_perl on, 151
installing Number::Format on, 533
installing Oracle::OCI on, 185
ORACLE not available errors on Linux
SuSE 7.3, 188
precursor modules required, 186
installing Oracletool on, 120
securing oracletool.pl, 121
installing password server as service, 229
installing PDBA Toolkit on, 261-265
additional Perl modules
installation, 263-265
registry settings, 262
installing PDBAx on, 422
installing Per] DBI on, 46—47
installing Perl on, 36
local drives, 37
installing Perl/Tk on, 68
installing SchemaView-Plus on, 106
Perl and, 6
Perl Apache modules, writing, 153-155
porting Unix applications to (see Cygwin)
running Karma on, 135
Perl modules, extra, 135
running PDBA password server, 273-275
running PDBA password server on
Windows NT 4.0/2000, 275
running Perl on, Cygwin and, 52
running Perl scripts on, 50
service control application, Perl
services, 242
sniped sessions, killing, 230
testing mod_perl on, 152
using services in Perl, 244
web resource for Apache, 112

Win32::Daemon, 240-245, 264

chkalert_NT.pl and, 337

creating Win32 daemon in Perl, 242-244
PDBA password server and, 273

using Win32 services in Perl, 244

Windows 2000, x

installing kss_NT.pl on, 309

PDBA password server on, 275

starting alert log monitoring service, 339
starting kill sniped session service on, 309

Windows 95/98

MSI Microsoft Windows program
installer, 37

Index | 601

Windows NT
MSI Microsoft Windows program
installer, 37
starting alert log monitoring service, 339
starting kill sniped session service, 309
Windows NT 4.0, x
PDBA password server, 275

X

X PixMap (XPM), support for, 101
X Windows server, Perl/Tk Unix installation
and, 68
XML (Extensible Markup Language)
data parsing (see SchemaView-Plus)
database facilities, 559574
modules, 552-574
database facilities, 559-574
parsers, 553-559
XML::XMLtoDBMS (see
XML::XMLtoDBMS)
XML-DBMS Version 2.0, forthcoming
features, 574
XML::Dumper
downloading, 106
installing, 106

xmlGenDBLpl, 561
XML::Generator::DBI, 560-562
installing on Unix, 560
XML::Handler::YAWTiter, 560
XML::LibXML, 553
installing on Unix, 555
XML::LibXSLT, 555
XML::Parser, 553
XML::Parser::PerlSAX, 560
XML:: XMLtoDBMS, 565-574
installing on Unix, 566
modules required by, 565
Oracle date format and, 566
XML sink input, 573
XML sink mapping, 571
XML source mapping, 568-570
XML source output, 570
XML::XPath, 562-565
XPM (X PixMap), support for, 101
XSLT (Extensible Stylesheet Language
Transformations), 556

Z

zlib program, 76
DBD::Chart and, 99

602 | Index

About the Authors

Andy Duncan is the coauthor of Oracle & Open Source (O’Reilly, 2001), as well as
Perl for Oracle DBAs (O’Reilly, 2002). The first book arose after Andy's creation, in
1998, of the Orac Perl/Tk tool for Oracle DBAs. Since then, he has worked mainly as
an independent development and DBA consultant, and has counted both Oracle
Corporation and Sun Microsystems among his long-term clients. In addition to
performing Oracle, Perl, and Java consultancy work, Andy teaches as a senior
instructor for Learning Tree International, covering both introductory and advanced
Perl courses. He lives in Oxfordshire, England, and can be reached via
andy_j_duncan@yahoo.com.

Jared Still has been an Oracle DBA in health insurance and manufacturing environ-
ments since 1994 (and version 7.0.13 of Oracle). He first began dabbling with Perl in
1993 and it was love at first sight. Perl became an integral part of his Oracle toolkit
when it was used to rapidly prototype and implement complex reporting based on
data in Oracle databases. Jared has been working with databases of various ilks since
1988, and along the way has also worked as a Unix system administrator. When not
riding herd on the databases at the OK Corral, he likes to spend time tinkering on his
car, fly fishing, or sitting on the deck in the backyard at his home doing absolutely
nothing. He can be reached at jkstill@cybcon.com.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Perl for Oracle DBAs are thread-winged lacewings.
Lacewings can be found all over the world, primarily in warmer climates. They live
mostly in sheltered, sandy areas such as wooded dunes, forest floors, and river-
banks, until they reach adult form, at which time their wings enable them to roam
more freely.

In their larvae state, lacewings prey voraciously on such unsuspecting victims as
aphids, mites, and scale insects. They hide under pieces of wood or debris, wait for
insects to pass, then attack with their pincer-like mandibles.

Lacewings undergo full metamorphosis throughout their lives. The adult form is
characterized by two sets of wings, a long, slender abdomen, and clubbed antennae.
Lacewings are one type of many nerve-winged insects because of the intricate pattern
of lines (nerves) running through their transparent wings.

Darren Kelly was the production editor for Perl for Oracle DBAs. Nancy Crumpton
provided production services and wrote the index. Jan Fehler was the copyeditor.
Tatiana Apandi Diaz and Claire Cloutier provided quality control.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from The Riverside Natural
History: Volume 2. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls,
and Mike Sierra that uses Perl and XML technologies. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is Lucas-
Font’s TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Linley Dolby.

	Table of Contents
	Preface
	Audience for This Book
	Which Platform and Version?
	Structure of This Book
	About the Perl DBA Toolkit and Examples
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments
	From Andy
	From Jared

	Part I
	Perl Meets Oracle
	What is Perl?
	The Origins of Perl
	Perl on Win32
	CPAN (the Comprehensive Perl Archive Network)
	Perl and the corporate world

	The Perl Advantage
	Flat learning curve
	Expression
	There’s more than one way to do it (TMTOWTDI)
	Flexibility
	Ambiguity
	Acceptance of the real world
	Simplicity
	Cooperation and divergence

	The Perl/Oracle Architecture
	Perl DBI and DBD::Oracle
	The origins of Perl DBI
	The Perl DBI API

	The Oracle Call Interface

	Perl for Oracle DBAs
	For Further Information
	Further Information on Perl
	Perl web sites
	Perl mailing lists
	Perl books

	Further Information on Perl DBI
	Perl DBI web sites
	Perl DBI mailing lists
	Perl DBI books

	Installing Perl
	Installing Perl
	Installing Perl on Unix
	Finding Perl already installed on your system
	Installing Perl from a prebuilt package
	Installing Perl from source

	Installing Perl on Win32

	Installing Perl DBI
	Methods for Installing Perl Modules
	The traditional method
	The CPAN method
	The interactive CPAN shell
	CPAN from the command line
	The traditional method

	Installing Perl DBI on Unix
	Installing Perl DBI
	Installing DBD::Oracle

	Installing Perl DBI on Win32
	Running PPM
	Getting the latest PPD files

	Running Perl DBI
	Running a Perl Script on Unix
	Running a Perl Script on Win32
	DBI by Proxy

	Installing Cygwin
	Installing Perl under Cygwin
	Installing Perl DBI under Cygwin
	Installing DBD::Oracle under Cygwin

	Part II
	Perl GUI Extensions
	Perl/Tk
	Installing Perl/Tk under Unix
	Installing Perl/Tk on Win32
	Combining Perl/Tk and Perl DBI

	OraExplain
	StatsView
	Installing Tk::GBARR
	Downloading StatsView
	The need for PNG
	Installing zlib
	Installing PNG
	Installing gnuplot
	Installing StatsView

	Orac
	Installing Orac
	Installing Orac on Unix
	Installing Orac on Win32

	Personalizing Orac
	Running Orac

	DDL::Oracle
	Installing DDL::Oracle on Unix
	Using DDL::Oracle with Orac

	Installing DDL::Oracle on Win32
	Using DDL::Oracle as a Batch and List Processor
	defrag.pl

	SchemaDiff
	Installing SchemaDiff
	Running SchemaDiff

	Senora
	Installing Senora
	Senora and SQL*Plus
	Running Senora

	DBD::Chart
	Preparing DBD::Chart
	Installing DBD::Chart on Unix
	JPEG
	The gd library
	GD.pm
	Completing the DBD::Chart installation
	Tk::PNG
	Tk::JPEG

	Installing DBD::Chart on Win32
	Loading DBD::Chart for ActivePerl

	SchemaView-Plus
	Installing SchemaView-Plus on Unix
	Installing SchemaView-Plus on Win32

	Open Source Perl IDEs
	Open Source Perl GUI Debuggers

	Perl Web Extensions
	Apache
	Installing Apache on Unix
	Installing Apache on Win32
	Using DBD::Chart with Apache

	Oracletool
	Installing Oracletool
	Installing Oracletool on Unix
	Installing Oracletool on Win32
	Preferences and privileges
	Enhanced security

	Using Oracletool
	My Oracletool
	Oracletool monitoring

	Karma
	Installing Karma on Unix
	Installing TermReadKey.pm
	Installing MailTools.pm
	Configuring Karma

	Installing Karma on Win32
	Configuring Karma on Win32
	Running Karma on Win32
	Extra Perl modules for Win32

	Embedding Perl into Apache with mod_perl
	mod_perl
	Installing mod_perl on Unix
	LWP-Library for WWW access in Perl
	SSL—Secure Sockets Layer
	Installing mod_perl
	Specifying the mod_perl Apache library

	Apache Perl Modules
	Apache::Registry
	Apache::DBI
	Apache and ORACLE_HOME

	Installing mod_perl on Win32
	Configuring Apache on Win32
	Testing on Win32
	HelloWin32.pm

	Apache::OWA
	Installing Apache::OWA on Unix
	Installing Apache::OWA on Win32
	Configuring Apache::OWA

	Embedded Perl Web Scripting
	Embperl
	Installing Embperl on Unix
	Installing Embperl on Win32
	Deploying HTML::Embperl
	Looking at Embperl Syntax
	Controlling template-driven program flow
	Strict variable naming
	Useful table tricks

	Embperl Forms Handling and Apache::Session

	Mason
	Installing Mason on Unix
	Installing Mason on Win32
	Installing Params::Validate

	Configuring Mason for Apache

	Invoking the Oracle Call Interface with Oracle::OCI
	What is Oracle::OCI?
	What Is OCI?
	Why Oracle::OCI Instead of C?
	For More Information on OCI
	OCI Functions

	Installing Oracle::OCI
	Installing Oracle::OCI on Win32
	Precursor Modules
	Setting the Oracle::OCI Environment
	Installing Oracle::OCI on Unix
	For Further Help with Oracle::OCI

	Coding with Oracle::OCI
	Pure Oracle::OCI Code
	Pure Perl DBI and DBD::Oracle
	Mixing and Matching Oracle::OCI, Perl DBI, and DBD::Oracle

	The Future of Oracle::OCI
	Oracle::PLSQL
	Contributing to the Oracle::OCI Project
	Demo Programs

	Embedding Perl into PL/SQL
	Communication Between Perl and PL/SQL
	What are External Procedures?
	Embedding Perl in C
	Calling the Embedded Perl C Library from PL/SQL

	Embedding Perl Within Oracle
	EXTPROC security
	extproc_perl and Win32
	A Detailed Look at extproc_perl
	Downloading extproc_perl
	Setting Up External Procedures
	Debugging External Procedure Listeners
	Building a New Perl
	The need for a shared libperl
	Building Perl for the oracle user

	Perl DBI and DBD::Oracle
	The importance of OCIExtProcContext
	Patching DBD::Oracle
	Connecting back to the host database

	Installing extproc_perl
	ora_perl_boot.pl
	Installation steps

	Deploying extproc_perl
	Testing extproc_perl

	Part III
	Installing the PDBA Toolkit
	Introducing the PDBA Toolkit
	Supporting Modules

	Toolkit Modules
	PDBA::CM (Connection Manager)
	Special login cases for SYSDBA and SYSOPER
	RaiseError and AutoCommit

	PDBA::DBA (DBA Methods)
	Creating user accounts

	PDBA::ConfigFile (Configuration File Handler)
	Simplifying configuration
	Automatic file searching

	PDBA::ConfigLoad (Configuration File Loader)
	Loading a Perl configuration script
	Referring to configuration variables by package name

	PDBA::Daemon and Win32::Daemon (Background Programs)
	PDBA::Daemon: Creating a Unix daemon process in Perl
	Win32::Daemon: Creating a Win32 daemon in Perl
	Using Unix Daemons and Win32 services in Perl

	PDBA::GQ (Generic Query)
	PDBA::LogFile (Logfile Handler)
	PERMS attribute

	PDBA::OPT (Option Handler)
	PDBA::PidFile (Program Id Handler)
	PDBA::PWD (Password Daemon)
	Batch job password problems

	PDBA::PWC (Password Client)
	PDBA::PWDNT (Password Client for NT)
	PDBA (PDBA Utilities)
	pathsep
	osname
	pdbaHome
	email

	Installing the PDBA Toolkit for Unix
	Setting the PDBA Environment
	Setting PDBA_HOME from the command line

	Installing the PDBA Perl Modules and Scripts
	Installing additional modules
	Determining installation locations for Perl modules
	Determining installation locations for Perl scripts
	INSTALLSITELIB
	Ready to install

	Installing PDBA Unix Configuration Files

	Installing the PDBA Toolkit for Win32
	PDBA Registry Settings
	Installing Additional Perl Modules

	Configuring the PDBA Toolkit
	PDBA Module Configuration
	PDBA::CM Module Configuration
	Password Server Configuration
	$port: Setting the TCP port for the password server
	%pwd: Setting the passwords for password server
	%users: Setting up password server users
	%encryption: Encrypting passwords
	%instanceAuth: Setting up per-account authorization
	Securing pwd.conf
	Running the password server on Unix
	Running the password server on Win32
	Starting the service

	Password Client Configuration
	Using PDBA::PWC in your own Perl scripts

	Performing Routine DBA Tasks with the PDBA Toolkit
	Managing User Accounts
	Creating Accounts the Old Way
	Creating a Single Account with create_user.pl
	Scenario #1
	Scenario #2
	The create_user.conf configuration file
	Tablespaces
	create_user.pl

	Creating a Single Account With dup_user.pl
	Creating Multiple Accounts with mucr8.pl
	mucr8.msg
	Running mucr8.pl
	Account creation dry run

	Dropping Oracle Accounts

	Maintaining Indexes
	Looking at Oracle Space Problems
	Rebuilding Indexes with idxr.pl
	Fragmentation
	Testing idxr.pl
	Tracking

	Killing Sniped Sessions
	Limiting Resource Consumption
	Installing kss.pl on Unix
	Installing kss_NT.pl on Win32
	Configuring kss.pl

	Managing Extent Usage
	Locally Managed Tablespaces (LMTs)
	Examining Object Space with maxext.pl

	Extracting DDL and Data
	Extracting Data With sqlunldr.pl
	Dumping and reloading SCOTT’s schema
	Dumping binary data

	Extracting DDL with ddl_oracle.pl

	Monitoring the Database with the PDBA Toolkit
	Monitoring the Alert Log
	Where is the Alert Log?
	Monitoring with chkalert.pl
	Installing and Configuring chkalert on Unix
	chkalert.conf
	Running chkalert.pl
	Testing with a real alert log

	Installing and Configuring chkalert_NT.pl for Win32
	Starting the service
	Testing Oracle_SID_AlertLogMon

	Monitoring the Databases
	Monitoring Database Connectivity with dbup.pl and dbpu_NT.pl
	Installing Additional Modules
	Installing Date::Manip on Unix
	Installing Date::Manip on Win32
	TZ—Time Zones

	Using the PDBA::OPT and PDBA::PWC Modules
	The password server
	Configuring Getopt::Long for pass-through mode
	Loading the password client parameters

	Configuring dbup.pl and dbup_NT.pl
	Win32 preparation
	Unix preparation
	Configuration on both platforms
	Examining uptime requirements
	Looking at upDays and upHours parameters
	Setting up pager and email addresses
	Who’s on Third?

	Running the Connectivity Monitor
	Testing the monitor
	Command-line options

	Building a Database Repository with the PDBA Toolkit
	Repository Table Structure
	Tables from the Oracle Data Dictionary
	Specialized Repository Tables

	Installing the Repository
	Loading the Repository with Data
	Collecting Baseline Data
	Viewing Repository Data

	Reporting on Database Changes
	Database Changes
	Reporting on Parameter Changes with spdrvr.pl
	More Report Examples
	spdrvr.pl Implementation
	Predefined spdrvr.pl Reports
	Command-line Options for spdrvr.pl
	Common command-line options
	Report-specific command-line options
	Using the -report_list option

	Options and Tags
	Date options
	Text options

	Reporting on SQL Execution Plans
	SXP (SQL EXecution Plan) Scripts and Tables
	SXP Limitations
	Collecting SQL with sxp.pl
	Unique constraint error
	Password and privilege messages

	Reporting Execution Plans
	Checksums
	Example SPX Report
	Comparing execution plans
	Looking at the output

	Extending the PDBA Toolkit
	Modifying a Script in the Toolkit
	The Standard Approach
	Checking on Scheduled Jobs with the dba_jobsm.pl Script
	Configuring dba_jobsm.pl
	dba_jobsm.pl: A walkthrough of the main script
	dba_jobsm.pl: A walkthrough of functions and formats

	Modifying the dba_jobsm.pl Script
	Configuring parameters
	Adding passwords to the configuration file

	Modifying a Module in the Toolkit
	Modifying the PDBA Module to Add a Method
	Installing PDBAx on Unix
	Installing PDBAx on Win32

	Adding a Usage Method
	Modifying the PDBA::GQ Module to Deal with NULL Columns
	Oracle and NULL values
	Testing the use of NULLs
	Considering changes to the script
	Modifying the PDBA::GQ module
	Taking one more step

	Part IV
	The Essential Guide to Perl
	Obtaining Online Information
	Running Perl Scripts
	Perl Variable Types: Scalars, Arrays, and Hashes
	Scalars
	Arrays
	Hashes
	Array and Hash Array Slices

	Perl Contexts: Void, Scalar, List, and Boolean
	Void
	Scalar
	List
	Boolean

	Program and Subroutine Parameters
	Environmental Variable Access
	Variable Types
	Taint Mode

	Perl References
	Arrow Notation
	The ref Operator
	Anonymous Arrays and Hashes

	Perl’s Object Orientation
	Packages
	Bless this Object

	The Essential Guide to Perl DBI
	DBI Class Methods
	connect
	Looking inside the $dbh variable
	Alternative Oracle connection scenarios
	Oracle-specific connection attributes

	connect_cached
	available_drivers
	data_sources
	trace

	Database Handles—Preparation
	ping
	prepare
	prepare_cached
	quote

	Statement Handle Methods
	bind_param
	bind_param_inout
	execute
	fetchrow_array
	fetchrow_arrayref
	fetchrow_hashref
	fetchall_arrayref
	fetchall_hashref
	finish
	rows
	bind_col
	bind_columns
	dump_results

	Database Handles—SQL and Cleanup
	do
	selectrow_array
	selectall_arrayref
	selectall_hashref
	selectcol_arrayref
	commit
	rollback
	begin_work
	disconnect

	Metadata
	Statement Handle Metadata

	Oracle-Specific Methods
	DBMS_OUTPUT Methods
	Handling LOBs
	Binding Cursors

	The Essential Guide to Regular Expressions
	The Origins of Regular Expressions
	The Early History
	qed, ed, and vi
	Enter Perl
	Perl vs. grep

	Built-in String Handling Functions
	Regular Expression Concepts
	Matching, Substitution, and Translation
	Regular expression input
	The implicit use of $_

	The Implicit Left-to-Right Assumption
	Regular Expression Architectures

	Metacharacters
	Character Class Shortcuts
	Boundaries
	Greediness
	Interpolated Strings
	Scalar or List Context Results
	Alternation and Memory
	Capturing backreferences

	Match Suffixes
	/i—Ignore Case
	/g—Global Matching
	/s & /m—Single- and Multiple-Line Matching
	/o—Compile Only Once
	/e—Evaluations
	/x—The Expressive Modifier

	The Essential Guide to Perl Data Munging
	What Is Data Munging?
	How Data Munging Works
	The Art of Algorithms
	Enter the Real World

	Data-Munging Example: An Inter-Database Transfer
	The MySQL Source
	The Oracle Sink

	Numeric Modules
	Number::Format
	Mathematics Modules

	Date Modules
	Date::Calc and Date::Calendar
	The Date-Calc-5.0 API

	Conversion Modules
	Convert::Recode and GNU recode
	Text Conversion Modules
	Text::Abbrev
	Text::ParseWords
	Text::Soundex

	XML Modules
	General Perl XML Parsers
	XML::Parser
	XML::LibXML
	XML::LibXSLT

	XML Database Facilities
	XML::Generator::DBI
	XML::XPath
	XML::XMLtoDBMS
	Source mapping
	Source output
	Sink mapping
	Sink input
	Results

	Index

