|
Exploring Concepts and Curriculum with Ruby

N Qq
\N\ \ \
3 NI,

omputer

LRI

cience
rogramming
asics in Ruby

: . Ophir Frieder, Gideon Frieder
O’REILLY & David Grossman

Computer Science Programming Basics in Ruby

If you know basic high-school math, you can quickly learn and apply the
core concepts of computer science with this concise, hands-on book. Led
by a team of experts, you'll quickly understand the difference between
computer science and computer programming, and you'll learn how
algorithms help you solve computing problems.

Each chapter builds on material introduced earlier in the book, so you
can master one core building block before moving on to the next. You'll
explore fundamental topics such as loops, arrays, objects, and classes,
using the easy-to-learn Ruby programming language. Then you’ll put
everything together in the last chapter by programming a simple game
of tic-tac-toe.

Learn how to write algorithms to solve real-world problems
Understand the basics of computer architecture

Examine the basic tools of a programming language

Explore sequential, conditional, and loop programming structures
Understand how the array data structure organizes storage

Use searching techniques and comparison-based sorting algorithms
Learn about objects, including how to build your own

Discover how objects can be created from other objects

Manipulate files and use their data in your software

Purchase the ebook edition of this O'Reilly title at oreilly.com and get
free updates for the life of the edition. Our ebooks are optimized for
several electronic formats, including PDF, EPUB, Mobi, and DAISY—all
DRM-free.

Twitter: @oreillymedia
facebook.com/oreilly

M g..ﬁE'LLY

US $24.99 CAN $26.99
ISBN: 978-1-449-35597-5

7814491355975

Computer Science Programming
Basics with Ruby

Ophir Frieder, Gideon Frieder, and David Grossman

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Computer Science Programming Basics with Ruby
by Ophir Frieder, Gideon Frieder, and David Grossman

Copyright © 2013 Ophir Frieder, Gideon Frieder, and David Grossman. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette Cover Designer: Randy Comer

Production Editor: Holly Bauer Interior Designer: David Futato

Copyeditor: Audrey Doyle lllustrators: Rebecca Demarest and Kara Ebrahim
Proofreader: Julie Van Keuren

April 2013: First Edition

Revision History for the First Edition:

2013-04-15: First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449355975 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Computer Science Programming Basics in Ruby, the image of a common Creeper, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35597-5
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449355975

Preface

1.

Table of Contents

Introduction to Computer Science...........coovviiiiiiiiiiiininnn

1.1 Introduction
1.2 Application Development
Step 1: Understand the Problem
Step 2: Write Out the Solution in Plain Language
Step 3: Translate the Language into Code
Step 4: Test the Code in the Computer
1.3 Algorithms
1.3.1 Algorithm Efficiency
1.4 Summary
1.4.1 Key Concepts
1.4.2 Key Definitions
1.5 Exercises

2.1 Introduction

2.2 Basic Nomenclature and Components of a Computer System

2.3 Scales of Magnitude
2.4 Instruction Execution—Speed and Timing Scales
2.5 Bit Strings and Their Meaning
2.6 The Interpreter Process and Ruby
2.7 Summary
2.7.1 Key Concepts
2.7.2 Key Definitions
2.8 Exercises

Core Programming Elements............ccoviiiiiiiiiiiiiennennns

ooooooooooooo

NN OV Gl b W W N

11
11
14
16
17
19
21
21
22
22

3.1 Introduction
3.2 Getting Started
How to Install Ruby
How to Save Programs
3.3 What Is a Variable?
Constants: Variables That Never Change
Data Types
Integer
Float
Strings
Booleans
3.4 Basic Arithmetic Operators
3.5 Input and Output
Output Using Variables
Display User Input
Basic Programs
Step 1: Understanding the Problem
Step 2: Write Out the Problem in Plain Language
Step 3: Rewrite the Plain Language into Code
Step 4: Test the Code in the Computer
3.6 Common Programming Errors
Syntax Errors
Logic Errors
3.7 Mixing Data Types
3.8 Summary
3.8.1 Key Concepts
3.8.2 Key Definitions
3.9 Exercises

Conditional STrUCTUIES. . o vvvv ittt iii i i ineenennes

4.1 Introduction

4.2 Flow of Execution
Logic Flow

4.3 Conditional Control
Control Flow

4.4 If-Then-Else Statements
Testing Conditional Flow
Elsif Statements

4.5 Case Statements

4.6 Debugging
4.6.1 Alternative Styles of Debugging

4.7 Summary

23
24
24
24
24
26
26
27
27
28
28
28
31
31
32
32
32
33
33
34
34
34
35
36
36
36
37
38

4
41
41
41
42
45
46
48
49
51
52
54
55

iv

| Table of Contents

4.7.1 Key Concepts
4.7.2 Key Definitions
4.8 Exercises

. Loop Structures.........ccovviiiiiiiiinninniennes

5.1 Introduction
5.2 While Loops
5.3 Until Loops
5.4 For Loops and Nested Loops
For Loops
Nested Loops
5.5 Infinite Loops
5.6 Example: Finding Prime Numbers
5.7 Summary
5.7.1 Key Concepts
5.7.2 Key Definitions
5.8 Exercises

6.1 Introduction
6.2 Array Types
6.2.1 One-Dimensional Arrays
Example: Find the Max
6.2.2 Multidimensional Arrays
Example: Find the Max—Modified
6.3 Hashes
Example: Hash
Example: Accessing a Hash
Example: Find the Max—Hash
6.4 Summary
6.4.1 Key Concepts
6.4.2 Key Definitions
6.5 Exercises

. Sortingand Searching...............ccooiiiiiiinan,

7.1 Introduction
7.1.1 Selection Sort
7.1.2 Insertion Sort
7.1.3 Bubble Sort
7.1.4 Radix Sort

7.2 Complexity Analysis

7.3 Searching

56
56
56

.......................... 59

59
59
62
63
63
64
65
66
69
70
70
70

......................... 73

73
73
73
76
77
79
81
82
82
83
84
84
84
84

......................... 87

87
88
91
93
95
99
101

Table of Contents | v

10.

7.3.1 Linear Search

7.3.2 Binary Search
7.4 Summary

7.4.1 Key Concepts

7.4.2 Key Definitions
7.5 Exercises

Using Objects. .. ovovevieeiin it iie i rineennnes

8.1 Introduction
8.2 Objects and Built-in Objects
8.2.1 Objects
8.2.2 Built-in Objects
8.2.3 Parameter Passing
8.3 Summary
8.3.1 Key Concepts
8.3.2 Key Definitions
8.4 Exercises

Defining Classes and Creating Objects......................

9.1 Introduction
9.2 Instantiating Objects from Classes
9.3 Data and Methods
9.3.1 Grouping Data and Methods
9.3.2 Implementing Methods
9.4 Summary
9.4.1 Key Concepts
9.4.2 Key Definitions
9.5 Exercises

Object Inheritance...........coooiiiiiiiiiiiiiiiiinennnn.

10.1 Introduction
10.2 Inheritance
10.3 Basic Method Overriding
10.4 Accessing the Superclass
10.5 Applications
10.5.1 Person Database
10.5.2 Grocery Store
10.5.3 Video Games
10.6 Summary
10.6.1 Key Concepts
10.6.2 Key Definitions

102
104
107
108
108
109

m
111
111
112
113
115
117
118
118
118

121
121
121
123
124
125
128
129
129
129

131
131
131
134
135
136
136
137
137
138
138
138

vi

| Table of Contents

10.7 Exercises

138

1. FileInput/Output.covviiiiii i i 141
11.1 Introduction 141
11.2 File Access: Reading and Writing 141

11.2.1 File Reader Class 143
11.2.2 FileWriter Class 144
11.2.3 File Reader/Writer Example 145
11.3 Summary 146
11.3.1 Key Concepts 146
11.3.2 Key Definitions 147
11.4 Exercises 147

12. Putting It All Together: TiG-Tac-Toe. . ..o v ovvvnieeiii it iiii i eieeenns 149
12.1 Introduction 149
12.2 Programming Approach 150
12.3 Tic-Tac-Toe 150
12.4 Tic-Tac-Toe Revised 159
12.5 Summary 161
12.6 Exercises 162

A. Recommended Additional Reading.coovvviiiiiiiiiiiiiiiiniinnnnss 165
B. Installing Ruby.ovvuniiiiiiii i i i i 167
C. Writing CodeforRuby.covuiiiiiiiiiiiiii i iiiii e ieeeennns 169
)T 1T T 17

Table of Contents | vii

Preface

Computer science introductory texts are often unnecessarily long. Many exceed 500
pages, laboriously describing every nuance of whatever programming language they are
using to introduce the concepts.

There is a better way: a programming language that has a low entry barrier. Preferably,
thelanguage selected should be areal, widely used language with a subset that is powerful
and useful, yet mercifully small. Such a choice should arm the readers with marketable
tools. The esoteric details of the programming language, however, should be ignored
but with pointers for future investigation provided.

Ruby is a programming language well suited to this task. It is object-oriented, inter-
preted, and relatively straightforward. More so, instead of being purely educationally
oriented, its popularity in industry is steadfastly growing.

Our book should be covered in sequential fashion. Each chapter assumes that the ma-
terial from the preceding chapters has been mastered. To focus the discussion, we ignore
gory details, such as user interface design and development issues, that we believe are
ancillary to the core of computer science. Such issues should be, and are, covered in
depth in a variety of subsequent courses.

Our target audience is students and practitioners who wish to learn computer science
using Ruby rather than just how to program in a given language. This book consistently
emphasizes why computer science is different from computer programming. Students
and practitioners must understand what an algorithm is and what differentiates differ-
ing algorithms for the same task. Although we are living in an era of growing compu-
tational resources, we are also living in a world of growing data sets. Data amass every
day; thus, efficient algorithms are needed to process these data.

Students and practitioners completing a course using this book possess foundational
knowledge in the basics of computer science and are prepared to master abstract and
advanced concepts. Second semester courses should rely on languages other than Ruby,
furthering the understanding that programming languages are just interchangeable,

expressive tools. We know, however, that many students and practitioners may not take
another computer science course. If that is the case, this book provides them with an
overview of the field and an understanding of at least one popular programming lan-
guage that happens to be useful from both a practical and a pedagogical standpoint.

Concepts taught in this book provide students and practitioners with a sufficient foun-
dation to later learn more complex algorithms, advanced data structures, and new pro-
gramming languages.

Finally, we hope to instill a core appreciation for algorithms and problem solving so
students and practitioners will solve problems with elegance and inspiration rather than
simply plowing ahead with brute force.

Thesslides corresponding to this book and the source code listed in the book are available
at http://ir.cs.georgetown.edu/Computer_Science_Programming_Basics_with_Ruby.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context

N
“ This icon signifies a tip, suggestion, or general note
.\
w o
Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling or

x | Preface

http://ir.cs.georgetown.edu/Computer_Science_Programming_Basics_with_Ruby

distributing a CD-ROM of examples from O’Reilly books does require permission. An-
swering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Computer Science Programming Basics in
Rubyby Ophir Frieder, Gideon Frieder, and David Grossman (O'Reilly). Copyright 2013
Ophir Frieder, Gideon Frieder, and David Grossman, 978-1-449-35597-5”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand
Safa "l digital library that delivers expert content in both book and video

Bocksontine form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/comp_sci_basics_ruby.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Gone are the days where one needs to set the stage with “computers are everywhere” or
“computers are a commodity.” Clearly, computers are everywhere, are used by everyone,
and permeate every daily function and activity. Unfortunately, the majority of society
can only use ready-made computer applications; they cannot program computers. With
this book, we intend to change that!

In authoring this book, a five-year process, we benefited from and are grateful for the
help of many; here we name but a few and apologize to those whose help we inadver-
tently forgot to acknowledge by name.

We thank all the students who persevered through the many instantiations of this text,
from those who read the initial chapters over and over and over again as part of IIT’s
offerings. Their comments, suggestions, and criticisms guided our corrections through
the iterations.

The entire production of this book, from the first partial drafts to the final version
delivered to O’Reilly, was managed by two students, initially by Yacin Nadji (a doctoral
student at Georgia Tech) and more recently by Andrew Yates (a doctoral student at
Georgetown University). Without their help, we would have stumbled over one another,
and we would have given up the effort many times over.

We use and envision others will use our book in the classroom. To aid instruction, we
provide corresponding slides that would not exist without the help of two Georgetown
University students, Candice Penelton and Sarah Chang.

xii | Preface

http://oreil.ly/comp_sci_basics_ruby
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

We benefited from many editorial remarks; we thank the editorial changes suggested
by Becca Page, the anonymous reviewers, and most notably, Mike Fitzgerald, who not
only reviewed the book word by word, but also tested our code. We also thank Jason
Soo for his periodic assistance with the Ruby source code and Abdur Chowdhury for
his general guidance and assistance. Likewise, we thank the entire O'Reilly production

team, who went way beyond what could be expected and significantly improved this
book.

Finally and foremost, we thank our family members whose support and tolerance helped
us through our jointly endured struggles (for David: Mary Catherine, Isaac, and Joseph;
for Gideon: Dalia; and for Ophir: Nazli).

Preface | xiii

CHAPTER 1
Introduction to Computer Science

In This Chapter

« Defining computer science
o Programming techniques

o Algorithms and algorithm efficiency

1.1 Introduction

Introductory students often confuse programming with computer science, but pro-
gramming is merely a strategy to implement computer science concepts. We introduce
the basics of computer science using the Ruby programming language. Given our goal,
we intentionally forgo many of the intricacies of the language.

Computer scienceis never tied to a programming language; it is tied to the task of solving
problems efficiently using a computer. A computer comes with some resources, which
will be discussed in Chapter 2, such as internal memory for short-term storage, pro-
cessing capability, and long-term storage devices. A complete program is a set of in-
structions that use the computer to solve a real problem. The tool for producing these
instructions is called a programming language. The goal is to develop solutions that use
these resources efficiently to solve real problems.

Programming languages come and go, but the essence of computer science stays the
same. If we need to sort a sequence of numbers, for example, it is immaterial if we sort
them using programming language A or B. The steps the program will follow, commonly
referred to as the algorithm, will remain the same. Hence, the core goal of computer
science is to study algorithms that solve real problems. Computer scientists strive to

create a correct sequence of steps that minimize resource demands, operate in a timely
fashion, and yield correct results.

Algorithms are typically specified using pseudocode. Pseudocode, which may itself be
simply written in plain language, specifies the logical, conceptual steps that must occur
without specifying the necessary details needed to actually execute each step. However,
we think that a properly selected subset of Ruby is sufficiently simple to introduce the
algorithms. So, instead of creating an algorithm by writing it in plain language, gener-
ating equivalent pseudocode, and transforming it into a programming language, we go
straight from the plain-language definition of an algorithm to Ruby code.

1.2 Application Development

When writing a program, it is important to keep in mind that the computer will do
exactly what you tell it to do. It cannot think as a human would, so you must provide
clear instructions for every step.

When giving instructions to others, people will often fill in blanks in logic without even
realizing it. For example, if you instruct someone to “go to the bank,” you may not say
what mode of transportation should be used. A computer, however, does not have the
ability to “fill in the blanks” A computer will only do exactly what you tell it to do.

Imagine, for example, explaining to a person and to a computer how to make a peanut
butter and jelly sandwich. To the person, all you might need to say is, “Spread the peanut
butter on one slice of bread, the jelly on the other slice of bread, and then put the pieces
of bread together.” If these instructions were given to a computer, however, the computer
would not know where to start. Implied in these instructions are many logical steps that
a human can automatically infer and the computer cannot. For example, the human
would know that the jar must first be opened to scoop peanut butter out before you can
spread it onto a slice of bread. The computer might try to spread the actual jar across
the bread, without taking the peanut butter or jelly out—assuming it could even find
them!

Computer science is ultimately about problem solving. The following is a basic approach
to solving problems:

Step 1: Understand the problem.

Step 2: Write out a solution in plain language.
Step 3: Translate the language into code.

Step 4: Test the code in the computer.

Step 1: Understand the Problem

During this step, you try to answer all questions about the problem at hand. For example,
you may be asked to create a program that stores a list of names, like a directory. Instead

2 | Chapter 1: Introduction to Computer Science

of just creating this program with little forethought, it is important to know all the details
of the problem. Here are some examples:

« How many names will be stored?
o Do first and last names need to be stored separately?
 Are middle names needed?

o What is the maximum length that a name can be?

Step 2: Write Out the Solution in Plain Language

Once the problem is understood, the next step is to write an outline of how you will
solve it. An example of the process of storing a name might look like a sequence of
sentences:

Ask for the first name.

Store the first name.
Ask for the last name.

Store the last name.
Optionally, ask for the middle initial.

Store the middle initial.

Step 3: Translate the Language into Code

Once the plain-language version is written, it is time to translate it into actual code. The
Ruby code for the preceding example is shown in Example 1-1, but you are certainly
not expected to understand it yet.

Note the pound sign (#) on the righthand side. This sign means that the remainder of
the line is a comment. A comment is not part of the instructions given to the computer.
That is, a comment is a nonexecutable segment of code. Typically, comments are used
to explain what the code does. Not only is it critical to comment code for the sake of
readability and understanding, but using comments is considered good programming
style, and the liberal use of comments is essential. Always remember that you (or some-
one else) may have to fix errors—colloquially referred to as bugs—years after you write
a program; comments will help you understand what your code does years after you
initially wrote it.

1.2 Application Development | 3

Gem of Wisdom

Algorlthms are the core of computer science. Correct and efficient algorithms
guarantee that the computer works smart rather than only hard. Thus, think
about the problem, come up with a good algorithm, and then determine how
many steps the computer needs to complete the task.

Example 1-1. Plain language — Ruby code

1 puts "Enter first name: " # Ask for the first name

2 first_name = gets # Store the first name

3 puts "Enter last name: " # Ask for the last name

4 last_name = gets # Store the last name

5 puts "Enter middle initial: " # Ask for the middle initial
6 middle_initial = gets # Store the middle initial

Step 4: Test the Code in the Computer

This step entails running the program you created and seeing that it runs properly. It is
best to test portions of your code as you write them, instead of writing an entire program
only to find out that none of it works.

1.3 Algorithms

Algorithms are step-by-step methods of solving problems. The process of reading in
names previously described is an example of an algorithm, though a very simple one.
Some are extremely complicated, and many vary their execution depending on input.
Often algorithms take input and generate output, but not always. However, all algo-
rithms have something in common: they all do something.

Imagine a website like Google Maps, which has an algorithm to get directions from one
point to another in either North America or Europe. It typically requires two inputs: a
source and a destination. It also gives two outputs: the narrative directions to get from
the source to the destination, and a map of the route.

The directions produced are also an algorithm; they accomplish the task of getting from
the source to the destination. Imagine getting the directions to your friend’s house
shown on the map in Figure 1-1.

Start going south on River Road.

Turn left (east) on Main Street.

Take a right (south) on Ruby Lane.

Turn left (east) toward Algorithm Circle.

ok »h e

Continue until you come to 345 Algorithm Circle (your friend’s house).

4 | Chapter 1: Introduction to Computer Science

Start

Main Street

AN

End

House 345
Algorithm Circle

peoy Iy
aue1Aqny

Figure 1-1. Directions “algorithm”

First notice that the directions are numbered; each step happens in sequential order.
Additionally, it describes general steps like, “Turn left (east) on Main Street” It does not
say, “Turn on your left turn signal and wait for the light to turn green, and then turn left
on Main Street” That is not the point of an algorithm. An algorithm does not need to
write out every single detail, but it needs to have all the important parts.

1.3.1 Algorithm Efficiency

Different algorithms may accomplish the same task, but some will do it much faster
than others. Consider the algorithm just described for going to your friend’s house,
which certainly is not the only route to her or his home. Instead of getting on Ruby
Lane, you could have hopped on the expressway, gone to the airport, and then taken a
cab from the airport to your friend’s house—but that would be extremely inefficient.
Likewise, there may be a more efficient route to your friend’s house than the one de-
scribed. Just because you have created an algorithm does not make it efficient, and being
able to create efficient algorithms is one of the factors that distinguishes a good computer
scientist. For example, imagine receiving the following set of directions to your friend’s
house instead of the ones shown in the previous section, illustrated on the map in
Figure 1-2:

1. Start going south on River Road.

1.3 Algorithms | 5

2. Turn left (east) one block south of Main Street onto Algorithm Circle.

3. Continue until you come to 345 Algorithm Circle (your friend’s house).

[|
Start
Main Street
_ End
House 345

- Algorithm Circle

—_— =

3 g

g &

o m

Figure 1-2. Directions “efficient algorithm”

Here we use a different algorithm that accomplishes the same task, and it does so slightly
more efficiently. That is, fewer turns are involved.

1.4 Summary

You now understand the core foundations of computer science, namely the use of al-
gorithms to solve real-world problems. Ruby, as used throughout the remainder of the
book, is a powerful, yet relatively easy to understand, programming language that can
be used to implement these algorithms. It is, however, critical to remember that inde-
pendent of the programming language used, without a good algorithm, your solution
will be ineffective.

1.4.1 Key Concepts

o The essence of computer science is problem solving. Computer science involves
using the computer as a tool to model or solve various problems, from storing names
in a database to finding efficient directions to a friend’s house.

6 | Chapter 1: Introduction to Computer Science

Gem of Wisdom
. Once we have an algorithm, we can compare it to other algorithms and pick the
- best one for the job. Once the algorithm is done, we can write a program to
implement it.

aqs
[N
N

o When programming, it is important to understand that the computer is never
wrong. It is merely following the directions you have given it.

o The following are basic steps for solving a computer science problem:

Step 1: Understand the problem.

Step 2: Write out a solution in plain language.
Step 3: Translate the language into code.

Step 4: Test the code in the computer.

o Algorithms are step-by-step methods for solving problems. When writing an al-
gorithm, it is important to keep in mind the algorithms efficiency.

1.4.2 Key Definitions

o Algorithm: A step-by-step method for solving problems.

o Algorithm efficiency: A measurement that determines how efficient one algorithm
is compared with another.

1.5 Exercises

1. Imagine that youare creating a pocket calculator. You have created the functionality
for all the buttons except x% the button that squares a number, and exp, which allows
you to calculate base®°™, where exponent is an integer. You may use any other
functionality a calculator would normally have: for example, (+, -, ¥, /, =).

a. Create the functionality for the x* button.
b. Create the functionality for the exp button.

2. In the third-grade math class of French mathematician Carl Gauss, the teacher
needed to give the students some busywork. She asked the class to compute the sum
of the first 100 numbers (1 to 100). Long before the rest of the class had finished.
Carl raised his hand and told his teacher that he had the answer: 5,050.

1.5 Exercises | 7

a. Craft an algorithm that will sum the first n numbers (assuming n > 1). How
many steps does your algorithm take to complete when n = 100? How many
steps does it take when #n = 1,000?

b. Can you create an algorithm like Gauss’s where the number of steps does not
depend on n?

. A palindrome is a word or phrase that reads the same way forward and backward,

like “racecar” Describe a sequence of steps that determines if a word or phrase is a
palindrome.

. Consider the three mazes shown in Figure 1-3. Describe two different algorithms

for solving a maze. Discuss advantages and disadvantages of each algorithm. Then
look at the maze and predict which algorithm will complete first. See if your pre-
dictions were correct by applying your algorithms to the mazes.

_:I;: B

1S

—>‘|—{> —_[

Figure 1-3. Three mazes for Exercise 4

. Figure 1-4 shows an alternative way to represent an algorithm. (Note: we introduce

this construct in detail later on. If it looks too intimidating, skip it until after you've
read Chapter 4.)

a. Starting at the circle labeled “Start” work your way through the figure. What is
the purpose of this algorithm?

b. Translate the figure into simple language. Note that a diamond in the figure
represents a condition that may be true or false.

8

Chapter 1: Introduction to Computer Science

Given cost and Change Cdue to :
monef' paidto [customer is —> g'!eg_d?"&;
clerk C= (money paid) — cost = :

false

Give 0.25 dollar
(=(-025

false

Give 0.10 dollar
(=C-0.10

false

Give 0.05 dollar
(=C-0.05
true

false

Give 0.01 dollar
(=C-0.01
true
false

Figure 1-4. Alternative representation of an algorithm for Exercise 5

. A cable company must use cables to connect 15 homes together so that every home
is reachable by every other home. The company has estimated the costs of different
cable routes (Figure 1-5 shows the numbers associated with each link). One engi-
neer provides an algorithm, shown in Figure 1-5, that will find the cheapest set of
routes to pick. Does the engineer’s algorithm work for this case? Why or why not?

1.5 Exercises | 9

Figure 1-5. Cable company dilemma for Exercise 6

Engineer’s Algorithm:
a. Pick one cable route with the lowest cost not already picked. Add this route to
the set of cheapest routes.

b. Check if every house is connected to every other house through any series of
cables. If it isn’t, go back to step 1. If every house is connected, then the cheapest
set of routes has been found.

10 | Chapter1: Introduction to Computer Science

CHAPTER 2
How Does the Computer Really Work?

In This Chapter

o Basic nomenclature and components of a computer system

« Bit strings and their meaning

2.1 Introduction

This book is about the basics of computer science in which algorithms are expressed by
software; it is not about computer hardware. However, as software is the tool by which
we use the computer, a rudimentary knowledge of the properties of computers is de-
sirable to understand the attributes, properties, limitations, and sometimes idiosyn-
crasies, of software.

2.2 Basic Nomenclature and Components of a
Computer System

It may be argued that this brief introduction to hardware is unnecessary. The computer
has become a utilitarian device, to be used by people who are nontechnical—the same
way that a car can be used by all people, without any need to understand the workings
of the engine, the various support systems, and the energy management of the car. This
is true, but only partially.

Consider a hybrid car, such as the Toyota Prius. It is designed to be just like any other
car: drivable without the intricate understanding needed to grasp the concept of the
synergy drive of a car where multiple modes of propulsion cooperate to optimize the
energy usage of this essentially electric car. However, the actual energy consumption

n

differs between drivers. Those who understand the working of this car will get better
energy efficiency than the casual driver—in our experience sometimes as high asa 15%
difference.

We argue that the same concept is true for software. Understanding the underlying
machinery (the computer system) enables more efficient software development. This
may not be important for small tasks, but it may be crucial for very large ones.

A digital computer—and we limit ourselves to these only—is a device that has three
main parts: at least one processing unit, called the central processing unit or CPU, at
least one memory unit, and a control unit. A computer system has, in addition to a
computer, a set of peripheral devices that can be roughly divided into three categories:
user interface devices, mass storage devices, and communication devices.

Most of the computers today are based on the Von Neumann model of computing,
which is as follows: the memory holds computer programs and all the data values that
are necessary for the computer program. A computer program is built from instructions
that are executed in a logical sequence. The computer operates by causing the control
unit to select an instruction from memory. That instruction causes the control unit to
fetch data from the memory to the processing unit. There may be one data item, more
than one, or none. The processing unit then performs the function implied by the in-
struction, and the control unit saves the result in memory and selects the next instruc-
tion to be fetched from memory.

This is the gist of the Von Neumann model. In reality, there are various types of memory,
very complex control units, and optionally multiple processing units that can deal with
many instructions in parallel. There are many other optimizations, but no matter how
complex, logically, there is a strict serialization imposed by this model, and the instruc-
tions seem to be performing serially.

The memory stores all its contents, be it instructions or data, as numbers. The repre-
sentation of numbers that we use is called the radix or positional representation. To
create such a representation, we choose a radix (sometimes called the base) of the rep-
resentation, say, . We select » symbols that have the values of 0 through r — 1. Numbers
are then represented by a sequence of these symbols. Each position in the sequence has
an ordinal (sequence position number), counted from right to left. Thus, the rightmost
position has the ordinal 0, the next one has ordinal 1, and so on. The value of the
represented number is then computed by multiplying the value of the symbol in position
n by the weight or the factor of that position, that is, ", and adding all values together.

In our familiar decimal system, the radix is 10. The 10 symbols that we use are 0, 1, 2,
3,4,5,6,7, 8, and 9. We call these symbols digits, carrying the values from zero to r -
I which is 9. For example, to see what is represented by a three-digit number, say, 123,
we compute the weight of each position. Position 0 will have the factor 10°, which is 1,

12 | Chapter2: How Does the Computer Really Work?

Gem of Wisdom
. Acomputer system has two types of memory: short-term random access memory
22 (RAM) that is fast but limited (usually measured in gigabytes with access times
in nanoseconds) and long-term that is thousands of times slower but far more
vast (often measured in terabytes with access times in milliseconds). Additionally,
a computer has a few small brains or central processing units (CPUs) that execute
instructions, input and output mediums, and a network connection to support

the exchange of information between machines.

qs
[N
N
(]

the second position has the factor 10!, which is 10, and the third has the factor 10%, which
is 100. The value of the number is thus 3 x 1 + 2 x 10 + 1 x 100 = 123, as expected.

Assume now radix 4—that is, the base of our positional system is 4, usually called the
quaternary system. We need four symbols that we choose to be 0, 1, 2, and 3, with the
obvious values. These are our quaternary numerals.

What is the (decimal) value of our three-digit number 123,, where the subscript denotes
that it is in base 4? The positions now have weights (factors) of 4°=1,4' =4, and 4* =
16. The decimal value of our numberisnow 3 x 1 + 2 x4 + 1 x 16, which is, in decimal,
27.

Another quaternary system, used heavily in genetics, uses the symbols A, C, G, and T,
expressing the sequence of DNA nucleotides (A C G T) as a quaternary number, some-
times using its decimal value.

The prevalent numerical form used in our computers is based on the radix 2, and is
called binary. In the binary system, every binary digit, called a bit, has one of two possible
values, 0 or 1. The number stored in the memory is thus composed from a string of bits,
each having a value of zero or one. The meaning of the string is decided by the way it
is used; it may be interpreted in many ways, to be discussed later in this chapter.

Memory is built from cells, and each cell has its own unique address. Most computers
use consecutive natural numbers, starting from zero, as addresses, sometimes called
locations. In most computers, the addresses refer to cells that can hold eight bits—we
refer to these cells as bytes. These bytes can be accessed in an arbitrary order, that is, the
computer can select any address to read from or write into. For this reason, these mem-
ories are referred to as random access memories or RAM.

Bytes can be grouped into larger strings and accessed as an ordered string of bits, as will
be apparent throughout this book. Modern computers have memories that hold billions
of bytes (we will discuss sizes in the following section).

The peripheral devices that complement the computer to create a computer system are,
as already mentioned, of three different categories. We sometimes also subdivide each
category into input (to the computer), output (from the computer), or input/output or
I/O devices.

2.2 Basic Nomenclature and Components of a Computer System | 13

The user interface devices used for input are, for example, keyboards, touch screens,
microphones, and various sensors. Examples of output devices in this category are
printers, screens, drawing and typing devices, light and audio devices, and various sig-
naling devices.

Mass storage devices are designed to hold information many orders of magnitude larger
than memories. They include various types of magnetic devices, such as disks, tapes,
and memory cards, optical devices such as CD or DVD drives, and electromagnetic
devices such as mass memories. Almost all of these fall in the I/O category, although
many may be input only, such as nonwritable CDs and DVDs or read-only memories
(referred to as ROM). The properties of all these devices are dramatically different from
RAM.

The development of new manufacturing technologies that enable large, low-power-
consumption, solid-state memories, and the parallel development of novel, high-
capacity batteries, is creating a shift in the structure of computer systems. The new
solid-state memories are slowly replacing the traditional, magnetic-memory-based,
mechanically powered disks and the optically based CD and DVD memory devices. As
of 2012, tablets, mobile devices, and even laptop computers have no mechanical com-
ponents, and thus no disk, DVD, or CD devices; all such devices are replaced by solid-
state large memories. There are, however, external disk, CD, and DVD drives that can
be connected to these new computing devices, thus providing both a transition path
and backup capabilities for the computing devices. These drives are powered through
the computer system itself (via their data connection interface—currently the USB);
therefore, they do not require power connections of their own.

Communication devices are typically I/O devices that connect the computer to a net-
work, beitlocalin a room, or global. These may be without a physical connecting device
(wireless, line-of-sight microwave, light of various spectrum, sound wave activator, or
sensor) or wired (copper cable, fiber optics, or sound conduit).

The peripheral devices are controlled by the I/O part of the control unit and require
quite a sophisticated set of software programs to make them useful. The reader is re-
ferred to any basic book about operating systems to complement her or his knowledge
of this subject. For a list of suggested reading, see Appendix A.

2.3 Scales of Magnitude

Mass storage devices and memories are very large and thus measured with units that
have names different from those used in everyday life. While we use the colloquial word
grand torefer to $1,000, for amounts greater than $1,000 we use the names of the decimal
system, such as million. These are not universally used—in the United States, one thou-
sand million is called billion; in Europe it is called milliard. There is, however, an agreed
upon nomenclature for powers of 10 so that one thousand is called kilo, one million is

14 | Chapter2: How Does the Computer Really Work?

called Mega, and so on (see Table 2-1). Note the lowercase in kilo, the uppercase in Mega,
and all that follow. This comes from the fact that the letter K is reserved, in the decimal
nomenclature, for the designation of the absolute temperature measure (degrees in
Kelvin).!

Table 2-1. Scales of magnitude

Units Actual size (bytes) Other names Real-world quantities

Megabyte (MB) 1,000,000 Million, 106 The King James version of the Bible contains
approximately 5 million characters.

Mebibyte (MiB) 1,048,576 pL The speed of light is 300 million meters/second.

Gigabyte (GB) 1,000,000,000 Billion, 10° At 5% interest, $1 billion would return $50,000,000/
year.

Gibibyte (GiB) 1,073,741,824 230 Abillion $1 bills, end to end, would wrap the Earth at
the equator 4.5 times.

Terabyte (TB) 1,000,000,000,000 Trillion, 10" The U.S. GDP for 2006 was $13 trillion.

Tebibyte (TiB) 1,099,511,627,776 20 Global GDP in 2006 was estimated by the World Bank to
be $46 trillion.

Petabyte (PB) 1,000,000,000,000,000 Quadrillion, 10 108 x 10" meters is the distance to the nearest star
(excluding the sun), Alpha Centauri.

Pebibyte (PiB) 2% Large multinational enterprises and massive scientific
databases are in this neighborhood of storage.

Exabyte (EB) 10'8 Quintillion The oceans on the Earth contain about 326 quintillion
gallons of water.

Exbibyte (EiB) 260
Zettabyte (ZB) 104 Sextillion
Zebibyte (ZiB) 270

The computer is not based on the radix 10; it is based on the radix 2. Inasmuch as 2"
equals 1,024, which is close to 10°, it became customary in the past to refer to 2'° as
kilo. Thus, one kilobyte was approximately one thousand bytes, and the discrepancy
was small. When we move from a kilobyte to a megabyte, which now stands for 2% bytes,
the discrepancy between 10° and 2% is significant, as 10° = 1,000,000 and 2% =
1,048,576. This is not a small difference and cannot be ignored. Obviously, as we move
toward larger scales, the discrepancy in sizes expressed as decimal names for binary-
based quantities is increased, causing confusion and inconsistency in reporting sizes.

For that reason, as of 2005, there is a standard that introduces new names for quantities
expressed as powers of 2 and retains the familiar names for quantities expressed as
powers of 10. Table 2-1 has names, sizes, and observations about the real meaning of

1. http://en.wikipedia.org/wiki/Kelvin

2.3 Scales of Magnitude | 15

http://en.wikipedia.org/wiki/Kelvin

the sizes, starting with megabyte for the decimal meaning of the size in bytes and me-
bibytes for the binary meaning. As of the time of this writing (2013), sizes of mass storage
devices are usually quoted in the decimal meanings, and sizes of RAM are quoted in the
binary meaning, both using the decimal nomenclature. This confusion, well exploited
inadvertising, will hopefully disappear as the binary nomenclature becomes better used,
or if the community will decide to report correctly when decimal nomenclature is used.

Please refer to Table 2-1 to make sense of what you just read. The binary prefixes were
first proposed by the IEC (International Electrotechnical Commission) in January 1999
and expanded in 2005 to include all binary equivalents to the accepted decimal prefixes.
All binary prefixes and names were codified by the IEEE (Institute of Electrical and
Electronics Engineers) as a standard in 2005 (IEEE 1541-2002).

2.4 Instruction Execution—Speed and Timing Scales

As explained earlier, programs operate by the control unit causing the central processing
unit to execute instructions in a logically sequential manner. It is immaterial how many
instructions are in a different execution phase at any point in time; their effect is trans-
mitted in a serial fashion, one instruction at a time.

Instructions are executed in phases that take time, each controlled by a timing mecha-
nism called a clock. In reality, there may be several clocks, but suffice it to say that clocks
operate in various frequencies that define the basic time step of the instruction execution
phases. Clock speeds are measured in Hertz (Hz), where 1 Hz is one clock cycle per
second.

The scales of time and frequency are summarized in Table 2-2. It is important to realize
the meaning of the scales represented there.

Modern computers (in 2013) operate on a clock that is typically somewhere between 2
GHz and 1 THz. The way that clock speed translates into instructions executed per
second is not trivial and depends heavily on the design and cost of the computer. Again,
that is not the topic of this book. Here we just state that while there is a link between
the clock speed and the instruction execution rate, it should not be inferred that com-
puter A with a clock rate double that of computer B will perform at twice the speed of
B. The complication arises partially from overlap between phases of instruction execu-
tion and from the fact that different instructions typically take a different number of
clock steps to execute.

To get a better handle on computer speeds, we measure them by the instruction rate
rather than the time each instruction takes. These ratings are sometimes expressed in
MIPS (Millions of Instructions Per Second) or FLOPS (FLoating-point Operations Per
Second), and by multiples of these units such as MegaFLOPS or TeraFLOPS. To deter-
mine computer speeds, specially crafted programs are run and their execution times

16 | Chapter2: How Does the Computer Really Work?

are recorded. This measures speed more realistically than simply using the processor’s
clock speed.

Table 2-2. Scales of time and frequency

Units Fraction of asecond Symbol Real-world quantities

Second 1 sec The speed of light is 300 million meters/sec.

Hertz 1 Hz

Millisecond 103 msec A high-speed disk rotates once in 10 msec.

Kilohertz 103 KHz

Microsecond 1076 psec A typical laptop performs about 8,000 basic instructions in about one
microsecond (Intel Core 2 Duo).

Megahertz 106 MHz

Nanosecond 107° nsec Light traverses only 30 cm in one nanosecond.

Gigahertz 10° GHz Aniinstruction on a computer is done in several nanoseconds.

Picosecond 10" psec

Terahertz 102 THz

Femtosecond 1071 fsec

As supercomputers increase in size and speed, the complexity of problems solved by
them increases to a point that the access of data in memory dominates the speed of
execution. This necessitates new approaches to speed evaluations. As an example, one
of the newer approaches (in 2011) introduced a measure called gigateps, a billion trav-
ersed edges per second, based on the speed of solving an analysis of the connections, or
edges, between points in a graph.

Timing considerations are important not only for instruction execution, but also for
the operation of peripheral devices and communication devices. These considerations,
as with the previous ones relating to instruction speed, are beyond the scope of this
book. Suffice it to say that the rotational speed of disks, measured in microseconds, is
many orders of magnitude slower than the execution rate of instructions. Significant
portions of operating systems are devoted to mitigate this difference so that the speed
of execution will be minimally impacted by the slowness of the peripheral devices.

2.5 Bit Strings and Their Meaning

As discussed before, the contents of the memory consist of strings of bits. Most com-
puters have these stored in individually addressable units of eight bits, called bytes. The
bytes in turn can be strung together to form longer strings. For historical reasons, a
group of two consecutive bytes is called a half word, four bytes (32 bits) are called a
word, and 64 bytes are called a double or long word.

2.5Bit Strings and Their Meaning | 17

The meaning of the strings of bits is just that—a string of bits. The interpretation of the
meaning, however, is dependent on the usage of the string. One important usage is to
code an instruction and its parameters. There are many types of instructions: numerical,
like add and multiply, logical, control, program flow, and others. Again, this book is not
devoted to hardware details, so we do not elaborate. Simply said, a string of bits can be
interpreted as an instruction, and given the address of the proper byte in this string, the
control unit will try to decode and execute that instruction. The instruction itself will
cause the control unit to find the next instruction, and so on.

Bit strings also can represent data. Here we have a wide variety of possibilities, so we
restrict ourselves to the most prevalent data coding.

The simplest one is the integer. In this interpretation, the bit string represents a positive
numerical value in radix 2. This means that each string represents a binary number,
where each digit is weighed by the proper power of two, starting from zero on the
extreme right (end of the string) and proceeding to the left. Thus, the string 01011101
will have the meaning 1 X 2° + 0 x 2!+ 1 x 22+ 1Xx 2%+ 1 x2*+0x2°+ 1 x2°+ 0 x 2/,
where x is the multiplication sign. Evaluating this expression, the string 01011101 has
the valueof 1 + 0+ 4 + 8 + 16 + 0 + 64 + 0 or 93. We do not discuss here how negative
values are represented, but they are available.

Integer values are limited by the length of their string representations. Ruby recognizes
two types of integers: regular and long. We discuss those (and other numeric represen-
tations) and their properties in a forthcoming chapter.

To alleviate the limitation of size imposed on integers, a very important representation
of data is available. It is called floating point or real. The former name is older and used
primarily in discussing hardware concepts.

In this interpretation, numbers are represented in scientific form, that is, as x x 2. Thus,
part of the string is used to hold the value of x and part is used to hold the value of y.
Both x and y are expressed by their binary values, derived in the same way that we
presented in our discussion of integers, or in a complex form as negative values intro-
duce additional difficulties. As you will see, there are different types of real numbers.

The last interpretation that we discuss is that of characters.

Character representation follows an international standard, codified under the name
Unicode. The standard provides for a representation of both character and
noncharacter-based texts (such as, for example, Far East languages) and for the repre-
sentation of other items (such as, for example, mathematical symbols, control charac-
ters, etc.). The Unicode representation uses one to four bytes per item. The first 256
characters, digits, symbols, and codes are contained in one byte and are identical to the
previous standard known as ASCII (American Standard for Character Information
Interchange). Almost all English-based texts files belong to this category, so it is cus-
tomary to state that characters are single bytes.

18 | Chapter2: How Does the Computer Really Work?

Gem of Wisdom
. Programs in Ruby or any other programming language are strictly human-
*£%" readable. However, a computer only understands only instructions that are en-
coded as a sequence of 1s and 0s (binary digits). Thus, we use another program
called an interpreter (done one step at a time) or a compiler (done for all steps)
that translates the English-like programming language to binary machine in-
struction codes.

aqs
[N
N

For in-depth information on this important topic, the voluminous Unicode standard
description (currently more than 600 pages) contains tables, descriptions, rules, and
explanations for dozens of different scripts, languages, symbols, and so on.

Thereisa difference between character representations and their meaning. For example,
the character “9” is not the number 9. The number 9 is represented by the character “9
This distinction will be very important in future chapters as we have input programs
that read characters, but we wish to use them as numbers. In our former example, we
have seen that the number 93 is stored as the string 01011101, but the character string
“93” will be stored in a completely different way. To obtain the number 93 from the
character string “93,” we need a process of conversion from the character to the nu-
merical representation. Ruby provides such a process, as do all programming languages.

These are the most important but by no means the only types of interpretations of bit
strings. Some others may represent different types of data, be they components of colors
for the display, controls for various devices, amplitudes for sound presentation, and
SO on.

2.6 The Interpreter Process and Ruby

We now have covered the general concepts of computer systems embodied in a Von
Neumann-style machine. We stated that programs and the data used by them reside in
central memory, which can be replenished by various peripheral devices. We also stated
that the memory stores its content in bits—binary digits consisting of 1’s and 0.

In the following chapters we will introduce various algorithms or processes designed to
solve problems. Among all possible ways to introduce and express the algorithms, we
have chosen the Ruby programming language. This language, and other programming
languages, express the algorithms via sequences of unambiguous sentences called state-
ments. These are written using the Latin character set, digits in decimal notation, and
special symbols, such as =, ,, >, and others. Clearly, these are not binary digits, so these
are not programs that can be directly executed by a computer. What procedure is used
to accept programs written in a language like Ruby and causes them to be performed
or, as we say, executed, by a computer?

2.6 The Interpreter Processand Ruby | 19

There are several methods to accomplish this task. We will dwell on two of these:
compilation and interpretation. In the interpretation process, we will use two different
approaches, so one can claim that we will introduce three methods.

To begin, we will assume that the program to be executed is contained in a file produced,
say, by a word processor such as Microsoft Word or a similar one. As a matter of fact,
in this book we will advocate using a word processor that is directly geared toward
writing Ruby programs, as opposed to a general-purpose word processor.

It is important to bear in mind that this book does not intend to cover the areas of
compilation and interpretation. All we do here is introduce the concepts so that the rest
of this book will be better understood.

Compilation is a process that analyzes a program statement by statement, and for each
statement produces the instructions that execute the algorithm steps implied by that
statement. Once all the statements are analyzed and the instructions produced, the
compilation process will create a file containing the executable code for that program.
That file, in turn, is loaded into the memory to be executed.

The compilation process is performed by a program called a compiler. Simply put, a
compiler translates instructions written in a given computer language, call it X, to a
format that can execute on a particular computer type, call it Y. Examples of X include
C++, Java, and Ruby. Examples of Y include Intel’s Core 2, Motorola’s 68060, and NEC’s
V20. So formally, a compiler for language X for a computer Y is typically (but not always)
a program that is written in instructions executable on Y and, while executing and
residing in the memory of Y, accepts as input a file containing statements in the language
X and producing a file containing instructions for execution on computer Y.

A modern computer system will typically have several compilers for several languages.

Interpretation is a horse of a different color. In this process, statements are analyzed one
by one and executed as they are encountered. In the pure case of interpretation (there
are variants not discussed here) no instructions for the computer are produced—only
the effect of the statements is evident. There is, therefore, a program called an inter-
preter for language X (written for computer Y) that accepts, as input, statements in
language X and executes them.

There are essentially two main ways to do interpretation, and both are supported by the
Ruby interpreter. The first one is called the interactive mode. In this mode, the pro-
grammer is prompted by the interpreter to enter one statement at a time, and the in-
terpreter executes it. It can be viewed as a glorified calculator. It is very useful for such
tasks as short programs, concept evaluation, and experimenting with options. It also is
a good way to check and see if a statement does what you think it will do. It is often a
good idea to try something out in the interactive interpreter before you put it in a
program.

20 | Chapter2: How Does the Computer Really Work?

The second mode is the so-called batch mode (the name has historical roots; do not
worry about what it means). In this mode, the program is prepared the same way it is
in compilation; it is prepared in its entirety and stored in a file. The file containing the
program is used as the input to the interpreter that analyzes the file statement by state-
ment and executes the statements one by one.

Ruby is an interpretive language. It is beyond the scope of this book to say more on this
subject, but as you dive into the language, and in particular as you run programs, how
it all works will become increasingly evident.

2.7 Summary

While algorithm design typically abstracts away the underlying target computer archi-
tecture, completely ignoring architecture in introductory computer science books un-
necessarily limits the understanding of readers. Understanding computer architecture
basics and accounting for such basics in the design of algorithms often reduces the
running time of the algorithm on the target computer. Thus, in this chapter, the fun-
damental aspects of computer architecture were introduced. We described the basic
components of a computer, the fundamentals of data representation, and various unit
determinations.

2.7.1 Key Concepts

o The Von Neumann model of computing is the prevalent model in the architecture
(structure) of computers, the one followed in this book.

o A computer consists of a single or several central processing unit(s), memory(ies),
and a control unit.

« Both instructions and data reside in the memory.

o Instructions are followed in a sequential manner, with some instructions capable
of causing changes in the sequence.

« A computer system includes a computer and peripheral devices of various types.

o Peripheral devices, sometimes called input/output devices, are divided into user/
computer interface (including sensors), communication, and mass memory
devices.

o All data are stored in binary form, but the interpretation of those data depends on
their usage.

« Two means to execute instructions are compilation and interpretation.

2.7Summary | 21

2.7.2 Key Definitions

Central Processing Unit (CPU): The part of a computer that executes instructions.

Random Access Memory (RAM): The main memory of the computer (there are also
RAM units available as peripheral devices). RAM contents can be modified.

Read-Only Memory (ROM): Memory whose contents cannot be modified by com-
puter instructions.

Radix (base): The base of a positional system.
Integer: Interpretation of memory contents as a whole number of limited range.

Real (floating-point) number: Interpretation of memory contents as containing two
parts, man (mantissa) and exp (exponent), so that the number is expressed
asman x 2%,

Character: Interpretation of memory contents as a literal (letter, number, symbol,
etc.).

Compilation: Translation of instructions written in a given language to the language
of instruction for the target machine.

Interpretation: Step-by-step execution of the specified instructions.

2.8 Exercises

1. Write 208 in binary and in ternary (base 3). Hint: what are the ternary digits?

2. Theoctal system (base 8) uses the digits 0 through 7. The representation of the letter

A in the ASCII encoding scheme is 1000001 in binary. What is it in octal?

. Color pictures are built of pixels, each represented by three bytes of information.

Each byte represents the intensity of the primary colors red, green, and blue (or
RGB values). How many gigabytes of storage are required for a 1028 x 1028-pixel
color picture?

. A communication device has the capacity to transfer one megabit of data per sec-

ond. A 90-minute movie is recorded at 25 frames per second, each frame consisting
of 720 x 600 pixels. How long would it take to transfer this movie across the pre-
viously described communication device? Would someone be able to stream the
video over this communication device without experiencing jittery playback? Ex-
plain why or why not.

22

| Chapter 2: How Does the Computer Really Work?

CHAPTER 3
Core Programming Elements

In This Chapter

o How to install Ruby and save files
o Defining variables
o Data classes (types):
— Integer
— Float
— String
— Boolean
o Input and output

« Common programming errors

3.1 Introduction

The first chapter introduced computer science basics, focusing on the concept of algo-
rithms. The second chapter discussed the basic components of a computer. Now it is
time to introduce core programming elements, the most basic tools of programming
languages. We will show examples of this using the Ruby programming language. These
include constants and variables of various data types and the process of input and out-
put. Also, we will explain common programming errors encountered when using the
information covered in this chapter.

23

Gem of Wisdom
. Plain text files (sometimes seen with the extension .txt) are stored as a simple
‘f‘i sequence of characters in memory. For example, files created with Notepad on
Windows are plain text files. Try to open a Microsoft Word document in Notepad
and observe the results. Non-plain text files are commonly called binary files.

oY

3.2 Getting Started
How to Install Ruby

The time has come for you to begin writing simple programs. Before you can do that,
you need to install Ruby. This is explained in Appendix B at the back of the book.

How to Save Programs

The next thing to learn is how to save your work. When writing a computer program
(informally called code), it is often important to be able to save it as a plain text file,
which can be opened and used later.

To save a program, you must first open a piece of software that allows you to create,
save, and edit text files. These programs are called text editors, and examples include
Notepad, Scite (included in the one-click installation of Ruby), and many others we
discuss in Appendix C. For more advanced editors, you may want to look into vim and
emacs. There is also a version of the integrated development environment (IDE) Eclipse
that works with Ruby. Eclipse includes a plain text editor. Once a text editor is open, be
sure it is set to save as an unformatted text file (FileName.txt). Most word processors,
such as Word, add special characters for document formatting, so these should not be
used for writing programs. If special characters are turned off by saving the document
as a plain text file (.txt), you can use various word processing programs, such as Word.

Now you are ready to write and save programs.

3.3 What Is a Variable?

Avariableisapiece of data attached to aname. In algebra, a variable like x in the equation
x =y + 2 indicates that x and y can take on many different values. In most programming
languages, variables are defined just as in algebra and can be assigned different values
at different times. In a computer, they refer to a location in memory. Although this is a
simple concept, variables are the heart of almost every program you write. The Pytha-
gorean theorem is shown in Figure 3-1, and it uses three variables: A, B, and C.

24 | Chapter3: Core Programming Elements

A+ B =C?

Figure 3-1. Pythagorean theorem

A, B,and Care the variable names, and they each represent a number. To create a variable
in Ruby, simply use the format variable_name = value, where variable_nameis the name
of your variable and value is the value you would like it to have. The equal sign (=)
behaves differently in Ruby from the way it does in algebra. In Ruby, = means “assign
the RHS (righthand side) to the variables in the (LHS) lefthand side” The code snippet
y = X + 2 means compute the value of x + 2 and store the result into the variable y.
In algebra, y = x + 2 simply explains a relationship between variables x and y.

An easy way to test things in Ruby is with irb (once Ruby is properly installed), the
Interactive Ruby Shell. Enter irb from a command prompt; you can see that it is very
easy to create variables. The following example shows several variables being created
and assigned values.

irb(main):001:0> a = 4
= 4
irb(main):002:0> b = 3
=> 3
irb(main):003:0> c = 5
= 5

This example creates three variables named a, b, and ¢ and initializes their data to 4, 3,
and 5, respectively. While these variables were given simple names, variables can be
given almost any name you wish. However, it is poor style to create variable names that
are unclear (e.g., xI, x2, zxy). Variable names should explain the data they represent.
When naming variables, avoid special characters (%, $, #, @, etc.) because these char-
acters often carry specific meaning. Also note that variables cannot begin with integers.
Ruby is case-sensitive, so myName is different from myname. Variable names should start
with a lowercase letter, while constants (to be explained shortly) start with an uppercase
letter. Additionally, people who write programs tend to be concerned about readability.
Ruby users tend to name long variables with underscores (_). For example, instead of
naming a variable primenumber or primeNumber, in Ruby it is named prime_number,
although the former are both acceptable. This is simply a stylistic pattern, not a
requirement.

3.3WhatlsaVariable? | 25

A variable refers to a section of memory that has been set aside to hold whatever data
you specify. Every location in memory has an address that can be accessed by a program.
Instead of asking you to write a program to store the value xx into memory location
yy, most programming languages allow you to identify a variable and assign a value to
it. The picture in Figure 3-2 further illustrates the concept of variables and memory.
variable_1hasa value of 5 stored at location 10, while variable_2 is stored at location
20 with a value of 8.

variable_1 variable_2

5 8
T Memory T

Location 10 Location 20

Figure 3-2. Memory diagram

Variables store different types of data, not just numbers. They can hold user-created
data, words, numbers, and more. Depending on what type of data the variable is holding,
it will have a different data type.

Constants: Variables That Never Change

If a variable does not change, it is called a constant. For example, 3.14159 is commonly
understood as 7 or simply pi. By creating a variable called PI and never changing it, that
is, making the variable into a constant, one can use PI throughout the program instead
of repeatedly typing the numeral string. By following this convention, fewer errors are
likely to occur as this value is only entered one time, namely when the constant value
is assigned. Typing the value of 7 multiple times might lead to typing errors. Further-
more, readability is enhanced. For example, it is far more intuitive to describe an algo-
rithm that computes the area of a circle as one that squares the radius and multiplies
the result by PI than one that squares the radius and multiplies by 3.14159. As noted
before, constant names start with a capital letter, and by convention are all uppercase.

Data Types

Data types indicate the nature of the variable and the range of valid values for that
variable. Data types also indicate how much memory to allocate for each type of data.
It is important to know that specific types of data have specific sizes in memory. As will
be evident later, data types also define the meanings of allowed operators.

26 | Chapter3: Core Programming Elements

Gem of Wisdom
. Ruby (along with many other programming languages) does not allow commas
*£%" in numbers. Underscores, however, can be used in their place. Use an underscore
in place of a comma if you need to mark your thousands so that larger numbers
are more readable.

aqs
[N
N

Ruby refers to data types as classes. In Ruby, as in other object-oriented languages, a
class is a description of objects. A detailed discussion of objects takes place in Chap-
ter 9. For now, the relevant Ruby classes are Fixnum, Bignum, Float, Boolean, and String.

Integer

An integer is defined as any natural number (0, 1, 2, . . .) or its negative (0, -1,-2,...).
The integer data type is simply a subset of the infinite mathematical integers. In a 32-
bit system, integers range in value from -2,147,483,648 to 2,147,483,647. Note that if
the number of bits used differs, so will the range.

Consider the following:

irb(main):01:0> x = 5

=> 5
When we type in x = 5, we are doing two things. First, we are creating a variable x that
stores an integer of the class Fixnum. Second, we are assigning the value of 5 to x. In
some languages, variables must be explicitly assigned to a type before they are used. In
Ruby, the class of the variable is either explicitly stated or inferred in every assignment
of the variable. In this case, Ruby infers the Fixnum class.

Imagine creating a huge number, out of the range of supported integers:

irb(main):02:0> x = 1_000_000_000_000_000
=> 1000000000000000

The Bignum class is used by Ruby for very large integers not contained within the
previously stated integer range. This class enables the creation of integers outside the
range of those possible in Fixnum.

Float

Simply put, a float is a decimal number. In Ruby, floats can be defined either with num-
bers containing a decimal place or in scientific notation.

irb(main):001:0> x = 5.0
=> 5.0
irb(main):002:0> x
=> -3,14159
irb(main):003:0> x = 3.5e2
=> 350.0

-3.14159

3.3WhatlsaVariable? | 27

Similar to the integers example, when we execute x = 3.14159, we create a variable x
that stores a float. We then assign the value 0f 3.14159 to x. Negative values are expressed
with a leading negative sign (-).

For scientific notation, values are expressed in powers of 10 following the symbol e.
Hence, 3.5¢2 indicates 3.5 x 10* = 350. Very small numbers can be represented as neg-
ative powers of 10. You may find that the designation real is used in other languages to
denote float.

Strings

Strings are simply one or more characters surrounded by quotes. Both double quotes
(") and single quotes (') can be used, but if you need to use a single quote inside your
string, you must bound your string with double quotes (e.g., “The computer said, ‘Hello
World!””).

irb(main):001:0> x = "hello world"

=> hello world

irb(main):002:0> y = "hello, 'world'"

=> hello, 'world'
To store characters (such as letters and symbols), a character encoding scheme, as dis-
cussed in Chapter 2, is used. For example, to encode the English alphabet, we need to
represent 26 uppercase letters, 26 lowercase letters, and a variety of special characters.
Using eight bits (one byte) per character allows us to encode 256 characters, a number
more than sufficient to represent English. Each character is assigned a unique number
from 0 to 255.

Booleans

Booleans can hold only two different values: true and false. They are sometimes re-
ferred to as flags.

irb(main):001:0> x = true

=> true

irb(main):002:0> y = false

=> false

3.4 Basic Arithmetic Operators

Now that some of the classes that define various data types have been introduced, what
can you do with them? Like all other programming languages, Ruby is able to perform
many mathematical operations. In Table 3-1, we illustrate how to use Ruby as a
calculator.

28 | Chapter3: Core Programming Elements

Table 3-1. Basic arithmetic operators

Symbol Operation Example

+ Addition X =6+ 2

[==]

- Subtraction x =3 - 2
1

* Multiplication x = 5 * 2
10

/ Division x = 16/8
2

% Modulus X=5%3
2

*% Power X = 2 *¥*% 4
16

All of the operators listed are binary operators, meaning the operator has two operands.
For example, the command A + B is a binary operation, where A and B are the two
operands and + is the operator.

When typing mathematical operations in the Ruby interpreter, the order of operations
is taken into account. To change the order of operations, use parentheses. Try typing
the following in the command line:

irb(main):001:0> x = 10 + 4 / 2
What result did you get? Now try entering the following into the prompt:
irb(main):001:0> x = (10 + 4) / 2

Most of the operators should look familiar. The one that might not is the modulus
operator (%). The purpose of this operator is to find the remainder produced by dividing
two numbers. For example, 4 modulo 2, abbreviated 4 mod 2, would produce the result
0. This is because 4 / 2 is exactly 2. On the other hand, 2 mod 4 produces a result of 2.
This is because 2 / 4 is 0, with a remainder of 2. Let’s try to solve a few easy problems
using the modulus operator.

1. Using the mod operator, determine if a number is even. This should be fairly easy.
We know that # is even if, when divided by 2, it produces a remainder of 0. So, if n
mod 2 equals 0, then # is even.

irb(main):001:0> x = 5%2
=1
irb(main):002:0> x = 6%2
= 0

2. Given a number as input, determine if the number is prime. That is, the given

number must not have any factors other than 1 and itself. For example, 1, 3, 5, and

3.4 Basic Arithmetic Operators | 29

N
Gem of Wisdom
. Components of a mathematical expression can usually be broken into operands
3 and operators. For example, in the expression 2 + 3, 2 and 3 are operands, and +
is the operator. Operands are usually values, and operators are the actions to be
performed.

aqs
[N
N

7 are prime numbers. The number 2 is the only even prime number since all other
even numbers have 2 as a factor. Likewise, for example, the number 9 is also not
prime since 3 divides it evenly. As an aside, finding prime numbers is one of the
classic problems used to teach any programming language. Furthermore, prime
numbers play a significant role in information security. For example, SSL (Secure
Sockets Layer), which is what you use when you go to a website and type “https’,
uses an algorithm called public key encryption. This algorithm relies heavily on
prime numbers. The intuition behind the use of prime numbers is that for long
numbers (those that comprise hundreds of digits) it takes a computer a very long
time to determine their factors. Thus, it is safe to publicly present these numbers.

Although we may not be able to program this yet, we can come up with an algorithm
to solve this problem. Namely, we can do the following:

If n is equal to 2, then # is prime. Otherwise, take each number x in the range 2 to
n - 1.1f n mod x is equal to 0 for any of these numbers x, then the number # is not
prime. If n mod x is not equal to 0 for every number in the range 2 to n - 1, then
the number # is prime.

Note that this is not an efficient algorithm, but it is correct. Can you think of a more
efficient approach? Hint: Do we really need to check all the way up to n - 12

Now that we have discussed the basics, we will describe some slightly more advanced
operations. Ruby has many built-in modules; a module is simply a group of methods for
a particular domain. There are methods that accomplish many different tasks. We will
discuss methods in great detail starting with Chapter 8. For example, Ruby has a built-
in module for mathematics, the Math module. Table 3-2 lists some of the more advanced

mathematical functions in Ruby. These functions are referred to as methods.

Table 3-2. Advanced arithmetic operations

Method Operation Example Result
sqrt() Square root X = Math.sqrt(9) 3.0
sin() Sine x = Math.sin(0) 0.0
cos() Cosine X = Math.cos(0) 1.0
tan() Tangent X = Math.tan(0.7854) 1.0
log() Natural log (In) X = Math.log(5) 1.609
log10() Log (base 10) X = Math.log10(10) 1.0

30 | Chapter3: Core Programming Elements

Gem of Wisdom
. Ruby comes with many built-in functions called methods to make your life easier.
%" Table 3-2 shows a few of them. Without a square root (i.e., sqrt()) function you
would need to write a program to compute the square root by repeated division.
For any programming language, make sure you learn about all the built-in func-

tions, as they can save you significant time.

aqs
[N
N

When trying to perform these operations, we specify the Math module, followed by a
period (.), then the method (type of operation). For example, to find the square root of
16, type:

irb(main):001:0> x = Math.sqrt(16)
=> 4.0

To appreciate the power of the Math module and understand the order of operations in
Ruby, try creating a program that performs the following operation:

5+J§

2

X =

The result should look similar to this:

irb(main):001:0> x = (5 + Math.sqrt(9)) / 2

= 4.0
Make sure you obtain 4.0 as a result. If you do not, try again. With computers there is
no point in repeating failure precisely. Often, novice programmers state: “Well, I tried
it 500 times!” If no input was changed, rest assured that no output will change either.
So change something and then try again! Be patient, check things carefully, and keep
working until the result is 4.0. If you obtained 4.0 the first time, try some variations
(e.g., misspell the word Math), and become familiar with some error messages. It is
important to start being methodical about implementing programs on a computer on
the very first day. Take your time, go slowly, and think about everything you enter.
Sometimes with programming languages even the smallest detail can be the difference
between success and failure.

3.5 Input and Qutput
Output Using Variables

Displaying text in Ruby is simple. Try entering the following at the command prompt:

irb(main):001:0> puts "Hello World"

3.5Inputand Output | 31

The puts method (short for outPUT a String) simply displays a string on the screen.
Notice the string is contained in quotation marks; otherwise, both Hello and World
would be interpreted as variables. Variables are displayed on the screen using similar
syntax, except without quotation marks:

irb(main):002:0> text = "Hello World"

=> "Hello World"

irb(main):003:0> puts text

=> Hello World
This example stores the string “Hello World” in a variable named text and then dis-
plays the value stored in the text variable using the puts method. This method is not
limited to strings and can be used with other classes including integers, floats, and
Booleans.

The use of classes to define data types means a variety of methods can be done for each
type. For example, x. length indicates the size of a string when x is defined as a string.

Display User Input
Displaying user input in Ruby is almost as easy as displaying output. Try entering the
following in the command prompt:

irb(main):001:0> age_input = gets

The gets method (short for GET a String from the user) stops the program and waits
for the user to type some text and then press Enter. The text typed by the user will be
stored as a string in a variable called age_1input. Due to the nature of the gets method,
the value stored in age_input will be a string, but you need an integer if you wish to
mathematically manipulate it. We create another variable age and set it equal to the
integer value of the user’s input by converting the string age_input to an integer. This
is done by issuing the following command:

irb(main):002:0> age = age_input.to_i

The method to_1 converts age_input to an integer.

Basic Programs

Now that you have learned how to display text and request user input, you can develop
a program that calculates the area of a rectangle. Try using the problem-solving ap-
proach discussed in Chapter 1 to create this program.

Step 1: Understanding the Problem
Ask yourself key questions that must be answered to properly design the program:

« How do you find the area of a rectangle?

32 | Chapter3: Core Programming Elements

» How many variables do you need to represent that area?

o What data type do the variables need to be?

Step 2: Write Out the Problem in Plain Language

Before writing out the problem, remember that the input method stores user input as
strings, so we need to convert the lengths (which are stored as strings) to integers before
performing mathematical operations with them.

Ask for the length.

Store the length.

Ask for the width.

Store the width.

Convert the length to an integer.

Convert the width to an integer.

Calculate rectangle area (area = length x width).

®© N SN

Display area.

The equation for the area of a rectangle is the product of its length and width. Although
it does not affect this equation, remember that the rules for order of operations apply
in Ruby. To change the order of operations, use parentheses.

Step 3: Rewrite the Plain Language into Code

See Example 3-1. In the figure, as with all other program illustrations, the line numbers
are not part of the code; they are added strictly for explanatory purposes. In line 8, we
are printing an integer represented in the variable area. This differs from the printing
of character strings in lines 1 and 3. Ruby automatically determines the data type, if it
can. This is called dynamic or “duck” typing. This functionality is helpful; however, as
you will see, automatic type determination can introduce problems. In this example,
though, it helps in that puts area is mapped to puts area.to_s. Note that generally
speaking, the .to_* method is a type conversion operation where the target type is
represented by the * (a wildcard). For example, you have now seen conversion to integer
(to_1) and to string (to_s).

3.5Inputand Output | 33

Gem of Wisdom
. When you get an error message, do not just try the program again. This may
% work with your toaster, where you just unplug it and plug it back in, but with
software development, it rarely, if ever, works. Figure out the problem, make a
correction, and then see if it works.

aqs
[N
N

Example 3-1. Code with comments

puts "What is the length?" # Ask for the length
length_input = gets # Stores the length

puts "What is the width?" # Ask for the width

width_input = gets # Stores the width

length = length_input.to_1 # Convert length to integer
width = width_input.to_i # Convert width to integer

area = length * width # Calculate rectangle area

puts area # Display area

0NV A WN R

Step 4: Test the Code in the Computer

Similarly those who are adventurous can type the code lines from step 3 into a file and
run the code from there. For those who are unsure, no worries; we address files later
on. For now, simply see if you get the desired results; if not, make sure you typed
everything correctly.

If it works, congratulations! You have just created a program that calculates the area of
a rectangle.

3.6 Common Programming Errors

Syntax Errors

As a programmer, it is important for you to become comfortable with error messages.
Even the most experienced computer programmers will have a typo or forgeta quotation
mark regularly. When you first start, error messages will seem incomprehensible. Later,
they will help you fix the problem quickly.

Try the following command in irb:

irb(main):001:0> x = 1 + "hello"

TypeError: String can't be coerced into Fixnum
from (irb):1:1n '+
from (irb):1

1

Syntax errors refer to code that Ruby cannot actually execute. Since it does not make
sense for Ruby to add an integer to a string, it stops execution and informs you of the
location where it had to stop.

34 | Chapter3: Core Programming Elements

Gem of Wisdom
.. Truncation refers to limiting the number of significant digits by discarding extra
4 digits. Unlike rounding, truncation simply throws the extra digits away.

aqs
[N
N

Let’s move on to a more realistic example. When entering strings, we are likely to forget
quotes once in a while.

irb(main):002:0> x = hello

NameError: undefined local variable or method 'hello' for

main:Object

from (irb):2
Wait! Why does the Ruby interpreter not just tell us that we forgot quotes? Ruby must
guess what we intended. All Ruby knows is that we tried assigning hello to x. Since any
string not contained in quotes is the name of a variable or a command, Ruby tries to
find the value stored in a variable named hello. Since Ruby cannot find any variable
named hello, it prints an error. It is important to start viewing code in terms of how
Ruby might interpret it, but this is a skill that will take time to develop. Meanwhile,
realize that errors will happen, and expect to be learning from them.

Logic Errors

Errors that Ruby cannot catch are logic errors. They are problems with a program that
cause it to return the wrong or undesired result. For example, if you are trying to find
the area of a rectangle, but you multiplied the height by itself instead of by the width,
that would be a logic error.

The Ruby interpreter, the program that executes the Ruby instructions input by the user,
does not try to guess that we meant to use a different variable. Logic errors are often
much harder to trace than syntax errors because of this. To avoid them, it is often useful
to look at your program and “play computer” That is, pretend that you are the Ruby
interpreter, and follow the steps that will be implemented as the program is executed.
From this point on, we’ll use the words Ruby and Ruby interpreter interchangeably.

A more common error involves integer division. Arithmetic expressions that operate
on integers will always evaluate to integer form. This happens even with division, where
the result would otherwise be a decimal. Ruby does this by truncating the arithmetic
result (chopping off the decimal place and all the digits to the right of it). For example,
5 divided by 2 will evaluate to 2 instead of to 2.5.

irb(main):003:0> 5 / 2

=> 2
If you get a wrong value using this computation in a program, then your final result will
likely be erroneous, too.

3.6 Common Programming Errors | 35

3.7 Mixing Data Types

Ruby will always try to remain in the same data type as its operands. For example, if the
integers 2 and 3 are added in Ruby, the result will also be an integer.

irb(main):001:0> 2 + 3
=> 5

Likewise, when adding two floats, the result will also be a float.

irb(main):002:0> 2.0 + 3.0

=> 5.0
When Ruby encounters two operands of different data types, it will convert them to
match where possible.

irb(main):003:0> 2 + 3.0

=> 5.0
The issue of dividing integers like 5/ 2 can finally be resolved. We are able to force Ruby
to convert integer expressions into float expressions. Simply throw a float into the mix.

irb(main):004:0> 1.0 * 5 / 2

= 2.5
Of course, it is sometimes impossible to convert the data types to match. In this case,
Ruby will output a TypeError.

irb(main):005:0> x = 1 + "hello"

TypeError: String can't be coerced into Fixnum

from (irb):4:in '+'
from (irb):4

3.8 Summary

We discussed classes, variables, constants, and key data types such as strings and inte-
gers. At this point, you should know how to create a variable in Ruby and how to assign
values to your newly created variable.

3.8.1 Key Concepts

» Ruby programs can be created/edited in any text editor (as defined previously), so
long as the editor can save files as plain text. It is highly recommended that you use
an editor suited for writing programs.

o When naming variables, it is a common practice to separate each word in a variable
name with an underscore ().

o Programminglanguages use various data types to perform various operations. Ruby
uses many data types, including integer (Fixnum and Bignum), float, string, and
Boolean.

36 | Chapter3: Core Programming Elements

o It is important to understand the syntax behind simple mathematical operators.
Mathematical operators will often be used when programming. Pay attention to the
order of operation.

« To output information onto the screen, use the puts command. To input informa-
tion from the user, use the gets command.

o The three types of programming errors are syntax errors, logic errors, and type
errors. Type errors often arise from mixing data types that cannot be mixed, such
as integers and strings.

o Conversion errors are a subset of type errors.

3.8.2 Key Definitions

o Variable: A piece of data attached to a name, class, and memory location.

o Instantiate: In this simple initial presentation, creating a variable. See Chapter 9 for
more information.

 Constant: A variable that is set once and never changed.
o Initialize: To assign a value to a variable when the variable is created.

o Data class: Information about the variable that defines the possible values a variable
can have and what operations can be performed using it. A more complete de-
scription is presented in Chapter 8.

o Integer: A class that defines a whole number. Ruby recognizes two classes:

— Fixnum: An integer with a limited range. In 32-bit systems, the range
-2,147,483,648 to 2,147,483,647.

— Bignum: An integer outside the range of Fixnum.
o Float: A class that defines a decimal number.
o String: A class that defines a sequence of characters.
+ Boolean: A class that defines a value of either true or false.
o Syntax errors: Errors produced by incorrect syntax for the programming language.
o Logic errors: Errors produced by bad logic.

o Type errors: Errors produced by mixing data types that cannot be mixed.

3.8Summary | 37

3.9 Exercises

1. You saw that Ruby does not allow addition of floats and strings. For example:

irb(main):005:0> 1.1 + "string"

TypeError: String can't be coerced into Float
from /Users/leland/.irbrc:73(irb):1:in '+'
from (irb):14

What type combinations does Ruby allow to be added?

2. Using irb, initialize three variables, x, y, and z, each to some number less than 10.
Design an equation with these variables using at least one multiplication, one di-
vision, and one addition or subtraction element. Have the computer do it once

without parentheses, and then add parentheses to the equation and try it again. Are
the answers the same? If not, why not?

3. Earlier in the chapter, we saw the following:

irb(main):001:0> 1.0 * 5 / 2
= 2.5

Now, try typing the following code into irb:
irb(main):002:0> 5 / 2*1.0
This should have produced a value of 2.0. Why does it produce the value 2.0, and
not 2.5, like we saw earlier?
4. Write the expected value of x after both lines are executed.

a. irb(main):001:0> x = 9
irb(main):002:0> x = x/2

9
x/2.0

b. irb(main):003:0> x
irb(main):004:0> x

5. What is the expected result of c for each code group?

a. irb(main):001:0> a = Math.sqrt(9)
irb(main):002:0> b = 2
irb(main):003:0> c = a/b

b. irb(main):001:0> a = 5
irb(main):002:0> b = 2
irb(main):003:0> c = a/b

6. Suppose a program finds the average temperature for a given year. A user of the
program is prompted to enter the average temperature values for each season of

the year: winter, spring, summer, and fall. The program stores these values as floats
invariables temp_winter, temp_spring, temp_summer,and temp_fall, respectively.

38 | Chapter3: Core Programming Elements

The final result is stored in the variable avg_temp. The program calculates the aver-
age temperature with the following line:

avg_temp = temp_winter + temp_spring + temp_summer + temp_f/4

However, when the program runs, the value of avg_temp is always incorrect. Briefly
describe what is wrong with this line and what changes you would make to correct
this error.

7. What is the difference between logic and syntax errors? Give an example of each.

3.9 Exercises | 39

CHAPTER 4
Conditional Structures

In This Chapter

» Flow of execution

o If-Then-Else statements
o Elsif statements

o Case statements

o Debugging

4.1 Introduction

The preceding chapter introduced core programming elements, including variables of
various data types and the process of input and output. Now it is time to use these
concepts within a new context: conditional structures. This chapter explains the logic
of conditional structures and presents the tools that allow them to work. These tools
include the if statement, the elsif statement, and the case statement. We will also
address debugging.

4.2 Flow of Execution

Logic Flow

Every algorithm has some type of logic flow. It is very easy to demonstrate logic flow
using a flowchart. Let’s revisit the algorithm for driving from Chapter 1 but this time
illustrate it using the flowchart in Figure 4-1.

4

Start going south on River Road

v

Go east on Main Street

v

Turn south onto Ruby Lane

v

Turn east onto Algorithm Circle

v

Stop at 345 Algorithm Circle

Figure 4-1. Flowchart directions of Figure 1-1

To properly move through the flowchart, start in the box that has the word Start in it,
perform the step in that box, and then follow the arrow to the next box. Continue this
process until there is nowhere else to go in the chart. If you walked through this flow-
chart, you would see that each step is performed once before moving on to the next step.
This is known as one-directional flow. Algorithms with a one-directional logic flow do
not really warrant a flowchart. However, not all algorithms are that simple, and not all
flow is in one direction; that is, multiple possible execution flows exist. For example,
Figure 4-2 shows a non-one-directional logical flow that models a choice between the
two directions presented in Figures 1-1 and 1-2 found in Chapter 1.

To move through the flowchart in Figure 4-2, start in the uppermost box and follow the
arrow to the next box. In this box, there is a condition and two arrows, but you pick
one based on the outcome of the condition. After this, move on to the next box, and
the rest of this diagram is one-directional. This type of flow, where a certain condition
must be met to carry out the next step, is called conditional flow. We will talk about this
in more detail later in the chapter. Also, later in the chapter, we refine the flowchart
structure.

4.3 Conditional Control

When more than one flow option exists in the control flow, it is called a conditional
control flow. Whenever a certain condition is met, its respective flow option is followed.
A condition is an expression defined using relational and Boolean operators that

42 | Chapter4: Conditional Structures

Start going south on River Road

v

If Main Street is under construction, take River Road.
If it is not, take Main Street.

v

Continue south on River Road

Go east on Main Street

v

Turn south onto Ruby Lane

v

Turn east onto Algorithm Circle

v

Stop at 345 Algorithm Circle

Figure 4-2. Multiple-path logic flowchart

evaluate to either true or false. The list and interpretation of the supported relation
operators is presented in Table 4-1.

Table 4-1. Relational operators

== Equal to

= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to

An example of the use of relational operators to form relational expressions is shown
in Example 4-1.

4.3 Conditional Control | 43

Example 4-1. Relational expressions example

irb(main):001:0> 5 ==
=> true
irb(main):002:0> 5 == 6
=> false
irb(main):003:0> 5 <= 5
=> true
irb(main):004:0> 5 != 5
=> false

To create complex expressions, simple relational expressions are combined by using
Boolean operators. Two Boolean variable operators available in Ruby are and and or.
The operator and evaluates to true only if both operands are true. In contrast, the op-
erator or evaluates to true if either or both operands are true. To ensure the precedence
you desire, a good programming practice is to use parentheses. A truth table is presented
in Table 4-2.

Table 4-2. Truth table for and and or

A B AandB AorB
(alternate forms) A&&B A|B
True True True True
True False False True
False True False True
False False False False

Recall the negation operator (!) that appears in the not equal to relational operator. This
operator is a simple negation and works on any true or false expressions or conditionals,
as shown in Example 4-2. Sometimes the negation operator ! is denoted by the word
not. In fact, the fifth example in the figure, regardless of the Boolean values you set for
first and second, will always evaluate to true. This is called a tautology.

Example 4-2. Boolean expressions example

irb(main):001:0> !false

=> true

irb(main):002:0> !(true or false)

=> false

irb(main):003:0> first=true

=> true

irb(main):004:0> second=false

=> false

irb(main):005:0> (first and second) or !(first and second)
=> true

44 | Chapter4: Conditional Structures

Control Flow

Control flow is logic flow in the context of a program. Just as algorithms start somewhere
and show an order of steps until the end of the algorithm, so does a program. Programs
have a starting instruction, and then instructions are executed in a specific order, and
eventually the program ends. We use a flowchart to illustrate control flow. Figure 4-3
revisits the names example to illustrate control flow with flowcharts. Note that the start
and endpoints of the algorithms are indicated by circular shapes (circles or ovals de-
pending simply on the length of text contained).

This type of flow is known as one-directional control flow. Programs are not limited to
one-directional control flow. In this chapter, we discuss programming constructs that
allow us to change program control flow. Understanding this control flow is essential
to being able to create and test (debug) an implementation of an algorithm.

puts “What’s the first name?” puts “What's the middle initial?” puts“What's the last name?”

T 1

A 4 v v

gets first_name gets middle_initial gets last_name

Figure 4-3. Control flowchart

4.3 Conditional Control | 45

; Gem of Wisdom

A

« 4. An If-Then-Else statement or its equivalent is found in every programming
U Janguage.

4.4 If-Then-Else Statements

Ruby uses an if statement for basic conditional control flow.
The basic form of an if statement is shown in Example 4-3.

Example 4-3. If statement

1 1f (condition)
2 # section 1
3 end

The condition is a logical expression, as described previously; in Example 4-3, section
1 is executed when the condition evaluates to true, and it is skipped when the condition
evaluates to false. An example of using the i1f statement is shown in Example 4-4. Given
anumber from the user, the program determines if the value is even. If it is, the program
will print “Even” to the screen.

Example 4-4. Determine if the number is even

1 # i1f a number is even, print out "Even"

2 puts "Enter a number" # print message

3 number = gets.to_1i # get number as an integer
4 if (number % 2 == 0) # check if even

5 puts "Even"

6 end

Assume the user inputs a value of 11. In this case, number will be equal to 11 when we
try to evaluate the expression number % 2 == 0. This means that the flow option, shown
on line 5, will not execute because the expression 11 % 2 == 0 will evaluate to false
since 11 % 2 is equal to 1, not 0. Thus, nothing will be printed to the screen. If the user
enters 10, then 10 % 2 == 0 will evaluate to true, meaning puts ''Even'' will be
executed; the screen will display “Even.”

The if statement can be extended with the use of the else. The general form for the
if-else statement can be seen in Example 4-5.

Example 4-5. If-else statement

1 if (condition)
2 # section 1
3 else

4 # section 2
5 end

46 | Chapter4: Conditional Structures

Gem of Wisdom
. Make sure you can step through Example 4-6 and understand each and every
o step. Play computer and consider different values for age; trace each step. What
if age is 20? What if age is 5¢? Are there any cases where this program will not
work?

qs
[N
3

This is similar to the first 1f statement presented; however, now there is a second flow
option. In this case, if the original condition is not met, the second flow option is taken.
For example, we can create a program that will tell us how much a movie ticket will cost
based on a customer’s age. Anybody under age 12 would get a discounted rate. We will
call our program theater.rb and use the code shown in Example 4-6. Note that on line
13, we introduce the concatenation of two strings by using the + operator between them.

Example 4-6. Theater 1

puts "Enter the customer's age:
Get an integer age value from the user
age = gets.to_1

Determine the cost based on age
if (age < 12)

cost = 9

else

cost = 18
10 end
11
12 # Print out the final cost
13 puts "Ticket cost: " + cost.to_s

0O ~NOYULT A WN PR

O

The logic flow of the code in Example 4-6 is shown in Figure 4-4. Note that another new
constructin our flowchart uses diamonds. Diamonds represent conditional points. Each
option of the condition is designated on an outgoing branch. The algorithm follows the
branch corresponding to the value of the conditional.

4.41f-Then-Else Statements | 47

©

puts “Enter customer’s age”

y

age = gets

true /I\ false

cost=9

@

y

puts “Ticket cost: "+ cost

B

cost=18

Figure 4-4. If-else statement flowchart

Testing Conditional Flow

Now that we have a program whose logic forks into separate paths, it is important to

make sure that both forks work.

The movie theater will look unkindly on accidentally giving everybody a discount, es-
pecially if these moviegoers are not under age 12! We test the code stored in the file

theater.rb by running at least one test in each flow option of logic:

48 | Chapter4: Conditional Structures

$ ruby theater.rb
Enter customer's age:
8

Cost: 9

To test this for a higher value, we try again:

$ ruby theater.rb
Enter customer's age:
25

Cost: 18

Most errors occur on edge or boundary conditions. In our example, 12 is where the
price switch happens. As such, it is important to test the value 12 itself.

$ ruby theater.rb
Enter customer's age:
12

Cost: 18

If this is not what you expected, then you are used to the way many companies work: if
a person is age 12 or under, the person is considered a child. If the movie theater wants
to abide by this standard, we will have to modify our conditional test to become less
than or equal to.

Like most computer problems, there are many ways to achieve the same result. We could
have changed the conditional to be “age < 13”. However, since “age <= 12” better rep-
resents the real-world concept, it makes for code that is far more readable. The corre-
sponding version of the program is presented in Example 4-7.

Example 4-7. Theater 2

1 puts "Enter the customer's age: "
2 # Get an integer age value from the user
3 age = gets.to_1

4

5 # Determine the cost based on age
6 if (age <= 12)

7 cost =9

8 else

9 cost = 18

10 end

11

12 # Print out the final cost

iy
w

puts "Ticket cost: + cost.to_s

Elsif Statements

Conditional flow can have more than two flow options by using elsif statements. The
flowchart in Figure 4-5 shows multiple conditional flow and follows the code template
shown in Example 4-8.

4.41f-Then-Else Statements | 49

condition1 IF-ELSIF- else
ELSIF-ELSE
condition2 condition3
section 1 section 2 section 3 section 4
v v v v

Figure 4-5. Elsif statement logic flow

Example 4-8. Elsif statements

1 if (conditionl)

2 # section 1

3 elsif (condition2)
4 # section 2

5 elsif (condition3)
6 # section 3

7 else

8 # section 4

9 end

Only one of these four sections shown in Figure 4-5 will be executed. If none of the
three conditions are met, the fourth section will run. Note that the first satisfied (true)
condition encountered will be executed regardless of whether multiple conditions eval-
uate to true. With elsif statements, it is possible to expand to as many flow options as
needed. Like the regular if statement, the final else is optional. If the movie theater
decided to have different rates for children and senior citizens, the elsif statement
would come in handy, as shown in Example 4-9.

50 | Chapter4: Conditional Structures

Example 4-9. Theater 3

1 puts "Enter the customer's age:

2 # Get an integer age value from the user
3 age = gets.to_1i

4

5 # Determine the cost based on age
6 if (age <= 12)

7 cost =9

8 elsif (age >= 65)

9 cost = 12

10 else

11 cost = 18

12 end

13

14 # Print out the final cost

=
(%]

puts "Ticket cost: + cost.to_s

The movie theater, however, may likewise decide to sell tickets at the children’s dis-
counted price for senior customers as well. We modify our example to include age >= 65
in the discounted flow option, as in Example 4-10. Note that in this example, we use
multiple conditions combined with a Boolean operation to form a single condition.

Example 4-10. Advanced conditionals

puts "Enter the customer's age:
Get an integer age value from the user
age = gets.to_1

Determine the cost based on age
if ((age <= 12) or (age >= 65))
cost = 9
else
cost = 18
end

oo ~NOULLD WNBRE

T
N 2 O

Print out the final cost
puts "Ticket cost: " + cost.to_s

=
w

4.5 Case Statements

Instead of using 1f-elsif statements, Ruby has another statement called case for han-
dling multiple options. This statement is useful when presenting users with alarge menu
of different choices. The case statement is expressed in Example 4-11.

4.5 Case Statements | 51

Example 4-11. Case statement

1 case

2 when (expressionl)
3 # section 1

4 when (expression2)
5 # section 2

6 else

7 # section 3

8 end

After looking at a case statement in use, you may be wondering what would happen if
multiple when clauses evaluate to true. Case statements are processed in order, so the
first condition that evaluates to true has its corresponding flow option execute, skipping
over all others. As noted earlier, this processing order is identical to the cascaded
if-else statements.

We now update the movie theater example, where children, adults, and senior citizens
have differing rates to make use of the case statement as shown in Example 4-12.

Example 4-12. Theater 4

puts "Enter the customer's age:
Get an integer age value from the user
age = gets.to_1i

Determine the cost based on age
case

when (age <= 12)

cost = 9

when (age >= 65)

cost = 12

else

cost = 18

end

O ~NOUVT A WN R

e o e
U WN R O O

Print out the final cost
puts "Ticket cost: " + cost.to_s

e
(o))

4.6 Debugging

Basic debugging is a skill that every programmer must learn. When your program is
malfunctioning and you do not have a clue where the error is located, you can use
multiple puts statements to check the value of your variables at different times. Modify
the code in Example 4-12 to use the assignment operator (=) instead of the comparison
operator (<=) in the first conditional statement, as in Example 4-13.

52 | Chapter4: Conditional Structures

Example 4-13. Debugging example 1

O oo ~NOULLD WN R

el ol
aAuUh WNRL O

17

puts "Enter the customer's age:
Get an integer age value from the user
age = gets.to_1

Determine the cost based on age

case
'=' 1s assignment NOT equality test '=='
when (age = 12) then
cost = 9
when (age >= 65) then
cost = 12
else
cost = 18
end

Print out the final cost
puts "Ticket cost: " + cost.to_s

If you run the example, it will not matter what age you input; it will always output the
ticket cost as 9. This is because you are not comparing age to the integer 12 but instead
assigning 12 to age, which is something that will evaluate to true. Edit the program to
match Example 4-14.

Example 4-14. Debugging example 2

O oo ~NOUTD WNBRE

NN R R R R R B R B B B
B ®UVONOUDA WNROO

puts "Enter the customer's age:
Get an integer age value from the user
age = gets.to_1

DEBUG

puts age

Determine the cost based on age
case
'=' i1s assignment NOT equality test '=='
when (age = 12) then
cost = 9
when (age >= 65) then
cost = 12
else
cost = 18
end
DEBUG
puts age

Print out the final cost
puts "Ticket cost: " + cost.to_s

4.6 Debugging | 53

By adding puts statements before the case statement and at the end of the program,
you are checking what value is stored after it is entered and after the case statement was
executed. If you run the new program, you will see that the first output will equal what-
ever age value you originally entered. However, at the end of the program, the puts will
output the value 12, no matter what value was previously entered for age.

From this, you can infer that the value of age changed somewhere between the two puts
statements. As you remember, we changed the comparison operator (<=) to the assign-
ment operator (=). The assignment operator = is often mistyped when programmers
meant to use the comparison operator ==.

Using puts statements to output key values is one of the simplest yet most effective ways
to debug a program.

4.6.1 Alternative Styles of Debugging

Debugging your program includes printing intermediate steps. Further, it is highly ad-
vised—or more accurately, required—that you debug your program one portion at a
time, rather than the entire program as a whole.

Another approach relies on one or more constants, possibly named DEBUG_MODULE_1,
DEBUG_MODULE_2, and so on. In such an approach, these debugging flag constants are
defined at the beginning of the program and set initially to true. In each corresponding
section of the code, the programmer writes an i1f statement with the debugging constant
as the flag that determines whether a puts statement is executed. Once the particular
section of the program being tested is determined to be correct, the constant is set to
false. This approach is shown in Example 4-15.

54 | Chapter4: Conditional Structures

Example 4-15. Debugging example 3

1 # Flag for debugging (change to false when finished debugging)
2 DEBUG_MODULE_1 = true

3

4 puts "Enter the customer's age: "
5 # Get an integer age value from the user
6 age = gets.to_1

7

8

9

Determine the cost based on age
if DEBUG_MODULE_1

10 puts age

11 end

12 case

13 # '=' is assignment NOT equality test '=='

14 when (age = 12) then

15 cost = 9

16 when (age >= 65) then

17 cost = 12

18 else

19 cost = 18

20 end

21 if DEBUG_MODULE_1

22 puts age

23 end

24

25 # Print out the final cost

26 puts "Ticket cost: " + cost.to_s

Line 2 defines the constant to be used as our debug flag. Lines 9-11 and 21-23 represent
code that should be run only during debug mode to help ensure that the program is
running correctly. Compare the output of the code with DEBUG_MODULE_1 set to true
and false.

4.7 Summary

We discussed how to implement conditional execution in Ruby. The if statement can
cover simple conditions, and the case statement can cover more complex conditions.
Relational operators, outlined in Table 4-1, were introduced, as well as their combina-
tions and negations.

4.7Summary | 55

4.7.1 Key Concepts

Every program follows a control flow, which is dictated by the logic flow of its al-
gorithms. Logic flow and control flow can be better understood in a flowchart, and
are often one-directional or conditional.

Relational operators are the key to creating conditional flow. An expression that
uses a relational operator is known as a relational expression.

Another way to create conditional flow is through the use of advanced conditional
structures. This is done by employing special statements, such as if, elsif, and
case.

4.7.2 Key Definitions

Flowchart: A tool for understanding the logic flow of an algorithm or the control
flow of a program.

Logic flow: The order in which an algorithm performs key steps:

— One-directional flow: When the logic flow of an algorithm follows a one-
directional order (i.e., a straight line)

— Conditional flow: When the logic flow of an algorithm follows a conditional
order (i.e., different conditions lead to different paths)

Relational expression: An expression that uses a relational operator.

4.8 Exercises

1. Prompt the user for an integer and test if it’s even or odd. Consider using the way

Ruby rounds operations on integers when appropriate. Save this program in a file
called compare.rb.

2. Modify compare.rb so that it:

a. Prompts the user for an integer between 5 and 10 (inclusive) and displays
whether or not the input was correct. Implement this using an if/else
statement.

b. Prompts the user for an integer between 5 and 10 and then informs the user if
the integer was below the range, in the range, or above the range. Implement
this using a case statement.

56

Chapter 4: Conditional Structures

3. Write a program that, given two points on a two-dimensional graph, outputs a
message (string) if the line that connects them is horizontal or vertical, or if the
slope is positive or negative.

4. Write a program to solve a system of two linear equations. A linear equation is a
mathematical equation that describes a line through its slope () and its y-intercept
(b), and it will take the form y = mx + b. Make sure to account for the cases where
there is no solution or where there are an infinite number of solutions.

5. The unit pulse function, d[#], is very important in digital signal processing. This
function is defined for integers only. It is equal to 1 when # is 0, and it is equal to 0
when 7 is any other integer. Write a program that prompts the user for an integer
n, and returns the value d[n].

6. Prompt the user for integers x, y, and z. Implement the decision tree shown in
Figure 4-6 based on the values using if statements. Output how many of the vari-
ables are greater than 0. Note: each right flow option represents false, and each left
flow option represents true.

Output3 | | Output2 || Output2 | | Output1 Output2 | | Output1 || Output1 | | OutputO

Figure 4-6. Decision tree for Exercise 6

4.8 Exercises | 57

CHAPTER 5
Loop Structures

In This Chapter

o While loops
« Until loops
o For loops and nested loops

o Infinite loops

5.1 Introduction

The preceding chapter introduced conditional structures and the idea of logic and con-
trol flow. Now it is time to use these concepts within a new context: loop structures.
This chapter explains the logic of loop structures and presents the tools that allow them
to work. These tools include the while loop, the until loop, the for loop, and the concept
of nested loops.

5.2 While Loops

The job of any loop is to perform iteration or repetition, and the simplest construct for
doing this is known as a while loop. The general structure of a while loop is shown in
Example 5-1. Its corresponding flowchart is shown in Figure 5-1.

59

Example 5-1. While loop construct

1 while (condition)

2 # statement 1
3 # statement 2
O

5 # statement n
6 end

WHILE

true false

STATEMENT-1
STATEMENT-2

STATEMENT-n

| END WHILE

Figure 5-1. While loop flowchart

The control flow enters the while loop at the instruction: while (condition). This state-
ment determines whether the control enters the body of the loop. If the condition eval-
uates to true, then the statements within the loop are executed. If the condition evaluates
to false, then the control flow goes to the instruction, end, and the loop is exited. In the
case where condition is true, the control flow will continue through all the statements
between 1 and n, where # is any number greater than 0. Once a statement has finished
executing, the control flow jumps back to the first instruction, while (condition), and
the whole process starts over.

To clarify, a Ruby example is shown in Example 5-2. Its corresponding flowchart is
shown in Figure 5-2.

60 | Chapter5:Loop Structures

Example 5-2. Counting program

1n 5

2 1 0

3 while (1 <= n)
4 puts 1

5 1=1+1

6 end

WHILE

true

putsi
i=i+1

| END WHILE

false

Figure 5-2. Counting program flowchart

The presented code is a simple program that prints every number between 0 and 5. Walk

through lines 1 through 6 and make sure you understand the code before moving on.

The loop repeats and prints the value in variable 1 and then increments the value by
one. The loop continues as long as, or while, the value in 1 is less than or equal to the
value in n. Every loop must eventually cause the condition to change; otherwise, it loops
infinitely (known as an infinite loop). In the example, the variable 1 is incremented; so,

after six iterations, 1 will be larger than n.

5.2 While Loops

61

Gem of Wisdom
. An infinite loop is a logic problem, not a syntax problem. Recall that syntax
- problems are things like misspelling else (try it sometime, and see what hap-
pens). Logic errors are much harder to fix, so take your time, trace the flow of
execution, and step very slowly through the program.

aqs
[N
N

5.3 Until Loops

The until loop is just the opposite of a while loop. Instead of occurring while some
condition remains true, an until loop occurs until some condition becomes true. The
code and semantics of the until loop are presented in Example 5-3. Its corresponding
flowchart is shown in Figure 5-3.

Example 5-3. Until loop construct

1 until (condition)
statement 1
statement 2
...

statement n
end

A WN

UNTIL

false true

STATEMENT-1
STATEMENT-2

STATEMENT-n

| END UNTIL

Figure 5-3. Until loop flowchart

62 | Chapter5:Loop Structures

Until loops execute the same way as while loops; the only difference is the way they
terminate. If we want the counting program to work with until loops, only one line of
the program needs to be changed: while(i <= n) becomes until(i > n). The until
and while loops are logical opposites, and the change in the counting program illustrates
this, as a greater-than conditional operator (>) is used instead of less than or equal to
(<=). Table 5-1 shows every logical operator and its opposite operator.

Table 5-1. Logical operators and their opposites

Operator Opposite operator

== =

> <=

< >=

Switching from a while loop to an until loop is easy; simply switch the operator in the
condition to its opposite. However, this raises an interesting point: these loop constructs
are interchangeable. There is never any case where you must use an until loop instead
of a while loop, or vice versa. A Ruby programmer could go her or his entire life only
knowing one of these loops and never have any problem writing any program.

At this point you are probably wondering why both loop types even exist. The reason
for having both is to improve the clarity of a program. Some things are simply expressed
in a clearer manner with while loops than with until loops, and vice versa. Instead of
saying “while this is not true” we can say “until this is true,” and instead of saying “until
this is not true” we can say “while this is true” Frequently it is easier for someone to
understand a program that simply tests for the existence of true instead of not true.

In the counting program from Example 5-2, the variable 1 is a counter. Using counters
is common to many tasks that require automation. Anytime a given set of instructions
needs to be executed a certain number of times, we will be using counters. Ruby actually
does not require us to set up the counter at all. Instead, it is possible to give a set of
numbers for a loop to iterate through.

5.4 For Loops and Nested Loops

For Loops

A for loop takes a group of elements and runs the code within the loop for each element.
This can be used to run a piece of code a certain number of times, or the operations can
actually be based on the value. In Example 5-4, we see puts num is executed once for
each value of num. That is, the loop will execute six times, and six lines with numbers 0
through 5 written one number per line will be generated. The range of values for num is
defined by the construct0. .5 (seeline 1), which represents all the integer values between
0 and 5 inclusive.

5.4 For Loops and Nested Loops | 63

Example 5-4. For loop

1 for num in (0..5)
2 puts num
3 end

Nested Loops

A nested loop is a loop inside another loop. Although all kinds of loops can be nested,
the most common nested loop involves for loops. These loops are particularly useful
when displaying multidimensional data.

When using these loops, the first iteration of the first loop will initialize, followed by
the second loop. The second loop will completely finish before the first loop moves on
to its next iteration. If that sounds confusing, the example in Example 5-5 should help
you understand the concept. Its corresponding flowchart is shown in Figure 5-4.

Example 5-5. Nested loop construct

1 for 1 in (1..3)

2 puts "Outer loop: i =" + i.to_s
3 for k in (1..4)

4 puts "Inner loop: k =" + k.to_s
5 end

6 end

If you execute the program presented, you will see that the outer loop is displayed three
times. However, between each outer loop, four iterations of the inner loop are run.

The flowchart illustrates the internal computation necessary to execute the code pre-
sented. The code itself, however, is easier to follow than the actual flowchart. Note thus
the essence of using the proper code structure for a particular task.

Nested loops can be a powerful tool when displaying data involving both rows and
columns. For example, it is possible to make a program that would print a calendar that
displays 12 different months, and for each month, displays each day.

64 | Chapter5:Loop Structures

—

START LOOPS

i=i+1 END LOOPS

k=k+1

true

puts "Outer Loop:i="+i.to_s

puts "Inner Loop: k=" +k.to_s

true

Figure 5-4. Nested loop flowchart

5.5 Infinite Loops

A classic problem, especially among new programmers, is that a small mistake can lead
to implementing a program that simply will not stop.

Example 5-6 has an initial value of 5 stored in the variable 1 in line 3. The loop indicates
that we should continue as long as 1 is greater than zero. Line 5 increments 1. Hence,
the loop condition of 1 > 0 is always true; so the loop will never terminate. When you
run the program, it will look like nothing is happening, but in actuality, your computer
is quite busy. It is happily repeating lines 4 and 5 forever. To terminate the program,
hold down the Ctrl key and press C. This is an old key sequence that is an abbreviation
for cancel, one of the arcane things you should memorize. (Ctrl-C cancels execution,
and Ctrl-D ends the file.) There are a few other Ctrl sequences, but these two are all you
need to make it through this book.

5.5 Infinite Loops | 65

Example 5-6. Infinite loops

1 puts "Count from 0 to ? "
2 n = gets.to_1

31=5

4 while (1 > 0)

5 1=1+2

6 end

Assume you realize that you are in an endless loop, and you want to fix it. Sometimes
new programmers simply execute the program again with no changes. Let us assure you
that if you do not make a change, nothing will change. The program will once again run
indefinitely.

The secret to fixing an endless loop is to check the terminating condition and make sure
that it will ultimately be satisfied. Hence, change something but do not change things
randomly. Identify the cause of the problem, make a change that makes sense, and then
test to see if your change has fixed the problem.

5.6 Example: Finding Prime Numbers

You now know enough to write numerous computer programs in Ruby, and we will
soon finally be able to stop worrying about the details of a programming language and
return to the fundamentals of computer science. In fact, at this point, you really know
enough to compute mathematically just about anything that can be computed. To pro-
vide a little more practice with the topics we have discussed, let’s return to our prime
number example. First we present a Ruby implementation (Example 5-7), and then we
explain the algorithm illustrated in detail.

66 | Chapter5:Loop Structures

Gem of Wisdom
. Step through Example 5-7 and make sure you agree that this finds prime numbers.
*£%" Does it think 7 is a prime number? Try 9. Try 17. Convince yourself that this
approach works.

qs
[N
3

Example 5-7. Prime numbers

1 # Initialize our counter

2i1=1

3

4 #1: [0, 100]

5 while (1 <= 100)

6 # Initialize prime flag

7 prime_flag = true

8 j=2

9 # Test divisibility of i1 from [0, 1/2]
10 while (j <=1/ 2)

11 # puts " 1 ==> "+ 1i.tos + " j==>"+ j.to_s
12 if (1% j==0)

13 prime_flag = false

14 # break

15 end

16 j=3+1

17 end

18 # We found a prime!
19 if prime_flag

20 puts "Prime ==> " + i.to_s
21 end

22 # Increment the counter

23 1+=1

24 end

Recall that a number is considered prime if and only if its only divisors, commonly
called factors, are 1 and itself. For example, 9 is not prime while 7 is. As hinted in
Chapter 3, itisunnecessary to check for factors until you reach the actual number (minus
one) since the largest divisor must be no greater than half the number itself. A prime
number implementation can be optimized by using the knowledge that we can terminate
the loop early.

The Ruby implementation shown in Example 5-7 includes a main loop that terminates
at half the number rather than continuing until the actual number (minus one). Using
this modification, we eliminate roughly half the number of loop iterations needed to
determine if the number is a prime. If the number being tested is large, such a reduction
can be significant in terms of the actual execution time.

5.6 Example: Finding Prime Numbers | 67

Now let’s go through the code in detail.

Line 2 initializes 1 to 1 and defines 1 as an integer.
Line 5 starts an outer loop to begin the prime number search.

Line 7 sets a flag to true. The idea is that for each potential prime we assume it is
indeed a prime number until we know differently.

Line 10 begins an inner loop that tests all values from 2 to /2.

Line 11 is our first example of the debugging process we discussed at the end of
Chapter 4. As seen in our prime number implementation, we commented out line
11. Thus, the computer simply skips everything from the pound sign (#) until the
end of the line. However, if we were in the debugging stage of program development
and wanted to see the values of 1 and j at a key point, this is a great place to look
at them. You can uncomment this line just to watch how this program works. Many
people will tell you, “Put in some output statements to see what is going on,” but
part of the art to this is finding out the best place to put them so that they give you
the most information with the least number of output statements. Too many output
statements may overwhelm the programmer and resultin having her or him looking
erroneously for the needle in the haystack.

Many real-world programs are filled with statements, like the one on line 11, that
are commented out once everything is working. Programmers like to leave them
in so that they will be handy if anything goes wrong in the future. Furthermore,
although commented lines are nonexecutable, in trying to delete them you might
accidentally delete executable lines. Thus, since their presence can only potentially
help in the future, and their deletion might accidentally cause the deletion of exe-
cutable lines, we strongly suggest that you never delete a properly placed debugging
statement.

In line 12, the key test is performed to see if the value we are testing divides evenly
by a value between 2 and its half. If no remainder exists, the number divides evenly
by something other than 1 and itself, and thus is not a prime. We then turn the flag
off.

Line 14 has a new command called break. The break statement is an optimization
that simply says that, once you know that a given condition is met, there is no need
to further execute the loop. In our case, we can terminate the loop once we know
that the value is not prime; there is no need to test for any additional potential
factors. That is, once we find any factor other than 1 or itself, the candidate number
is nota prime number, so we can end the testing of all values. In our case, this means
the next statement executed will be line 16.

Line 14 is currently commented out. You should try the program once keeping the
line commented out as is and once with it included in the execution. You should
see that including the break statement results in the program running faster; you

68

Chapter 5: Loop Structures

Gem of Wisdom
. Note that in line 23 of Example 5-7, we introduce a new shorthand construct
4 known as op=, where the op can be any legal operator between two variables. So,

a op= bmeansa = a op b.Inline 23, the variable 1 is incremented by one.

may need to try to find all primes from 1 to 10,000 (change line 2 from 100 to 10,000)
to really see a difference.

o Line 16 increments j, and line 17 ends the inner prime search loop.

« Line 19 executes for each value being tested, and if prime_flag remains true despite
running through the entire inner loop, then the prime value is output. The to_s
method converts the integer 1 to a string to display it (output) with the puts (output
string) command.

o Line 23 increments the value of 1, and processing continues. The syntax used to
increment 1 adds, subtracts, multiplies, or divides a variable by a value and imme-
diately stores the result in the original variable. We can use the shorthand notation
shown on line 23 of Example 5-7.

Here is the output of this program. We changed it so that it checks for primes only
between 1 and 25.

$ ruby prime.rb
Prime ==$>$%
Prime ==$>$%
Prime ==$>$%
Prime ==$>$%
Prime ==$>$ 7
Prime ==$>$ 11
Prime ==$>$ 13
Prime ==$>$ 17
Prime ==$>$ 19
Prime ==$>$ 23

v W N -

We suggest that you do not look at the program we have supplied for too long and just
look at the algorithm. See if you can write your own program to find prime numbers.
Then just use our program as a guide if you run into any problems.

5.7 Summary

You are now able to write numerous programs in Ruby. You also now have a better idea
of what an algorithm is. What remains are topics that simplify the writing of complex
algorithms and programs.

5.7Summary | 69

5.7.1 Key Concepts

o Loop structures force the computer to repeat a set of steps until a condition is met.

This powerful tool greatly decreases the amount of code that must be written for a
task to be repeated.

While loops, until loops, and for loops can be used to create a loop structure.

o Nested loops are loops within loops.

5.7.2 Key Definitions

o Loop structure: A structure used to repeatedly execute a set of instructions.

o Nested loop: A loop contained within a loop.

5.8 Exercises

1. For each of the following subproblems, convert the given loop type (while, until)

into its opposite.
a. while (x == 5)
b. until
(x<7)
c. until
(x!'=0)and (y >2))

. Walk through the program in Example 5-8 and explain what it does.

Example 5-8. Code for Exercise 2

1 puts "Enter a number >= 0:
2 n = gets.to_1

3a=1

4 while (n > 1)

5 a=(n*(n-1)) *a
6 n=n-2

7 end

8 puts a

. Write a program to calculate compounded interest using a while loop. The user

inputs the amount deposited, the interest rate (as a percentage) per period, and the
number of periods the deposit accumulates interest. Compound interest means that
every period, your new balance is calculated using the last period’s balance times
the interest rate.

70

Chapter 5: Loop Structures

4. Implement the mod operator without using the mod operator but using a loop.
(Assume the numerator is always greater than the denominator and both are greater
than 0.)

5. Make a simple calculator. It should read in two numbers, apply an operator (+, -,
*, 1), and display the result. It should continue to do this until a condition of your
choosing stops it.

6. Write a program that outputs the first 20 numbers in the Fibonacci sequence. In

the Fibonacci sequence, the current number is the sum of the previous two numbers.
The first two numbers in the sequence are 1 and 1.

5.8 Exercises | 71

CHAPTER 6
Arrays

In This Chapter

o Arrays
o Hashes

6.1 Introduction

In previous chapters, we discussed various programming structures, namely, sequential,
conditional, and loop, which can be employed in algorithms and programs. This chapter
will increase the power of these structures by introducing a new data structure that can
be employed with any of them, that is, the array. A data structure is any organized means
of storage, an array being among the simplest of structures.

6.2 Array Types

6.2.1 One-Dimensional Arrays

An array is an ordered list of variables. To get the idea, imagine a row of compartments,
each of the compartments can contain something or be empty, and they are numbered
sequentially starting at 0, as you see on the left side of Figure 6-1.

Arrays start counting their elements, or individual variables, at index 0, as the index is
the offset from the beginning of the array. Index 0 is the position of the first element in
any array that contains at least one element. Likewise, the n™ element can be found at
index n - 1. Starting at 0 and ending at n — 1 may seem odd, but it is common among
most programming languages.

73

SN =N
Gem of Wisdom

. Array indices are the offset from the first element. As a result, the first element is
U stored at index 0.

aqs
[N
N

arr[0]— 73

arr[1]— 98

arr[2]—» 86

(o] | [a] | [2] [[3] | [4] arr[3]—f 61

73 | 98 8 | 61 96 arr[4]—» 96

Figure 6-1. Diagram of an array and array access in Ruby

The arrays in Figure 6-1 are known as one-dimensional arrays because there is only
one index or dimension. To access an element in an array in Ruby, the notation is
array_name[index], where array_name indicates the name of the array and index
indicates the element of the array being referenced.

Consider anarray named arr that stores alist of five test scores for a student. The student
received the scores 73, 98, 86, 61, and 96. The first step of creating an array is the state-
ment: array_name = Array.new. The example code in Example 6-1 shows how to in-
itialize an array to store test scores.

Example 6-1. Initializing an array

1 arr = Array.new()
2 arr[0] =73
3 arr[1] = 98
4 arr[2] = 86
5 arr[3] = 61
6 arr[4] = 96

The code shown is actual Ruby syntax for initializing array indices 0 through 4. The
result of the code is much like the array in the righthand side of Figure 6-1, an array of
size 5 with every element initialized. However, there is a quicker way to initialize an
array, as shown in Example 6-2.

Example 6-2. Initializing an array

1 arr = [73, 98, 86, 61, 96]

74 | Chapter6: Arrays

Gem of Wisdom
. Using arrays is a flexible and organized way of expressing multiple related items.
oy Every programming language has them. As an abstraction, arrays are expanded
variables. A variable holds one value; an array holds many. For example, to record
names of multiple institutions using variables requires the use of variables such
as institutioni, institution2, institution3, and so on. With arrays,
institutions[] stores all institutions.

aqs
[N
N

No matter which way the array is initialized, the result is the same. To use the array, you
access array_name[index], as if it were a variable of the data type expected, as shown
in Example 6-3.

Example 6-3. Changing the value of an element

1 arr = [5,6]
2 arr[0] = arr[0] + 10
3 puts arr[0]

The key advantage of arrays is highlighted when used in conjunction with loops. Since
the syntax for accessing an element in an array is array_name[index], we can use a
variable for the index instead of literal numbers, as in the examples just shown. Thus,
we can change the index in every loop iteration, and traverse or move through every
element in the array. To know when to stop traversing the array, we can get the number
of elements in an array by using the following statement:

arr.size

New programmers often make errors when dealing with the bounds of an array. These
are the basic rules for array bounds:

o The first element in an array is at index 0.

o arr.size returns the number of elements in the array, not the highest indexed
element.

o The last element in an array is at index arr.size - 1.

If we want to use a while loop to traverse an array, we need to initialize the index to 0
and increment it for every loop iteration. It is important to note that the condition in
the while loop is index < arr.size, not index <= arr.size, for the reasons just men-
tioned. The code in Example 6-4 is an example of basic array traversal that prints out
every element in the array.

6.2 Array Types | 75

Example 6-4. Displaying array content

1 arr = [73, 98, 86, 61, 96]
2 index = 0

3 while (index < arr.size)

4 puts arr[index]

5 index = index + 1

6 end

Running the code (stored in a file called array_4.rb) gives the following output:

$ ruby array_4.rb
73
98
86
61
96

However, in Ruby it is possible to accomplish the same goal in one line of code:
puts arr

This example is meant to be merely an introduction to simple array traversal. More
practical reasons to use loops and arrays together are illustrated later.

Example: Find the Max

The example in Example 6-5 shows how to find the maximum of a list of five non-
negative numbers. What would you need to change to support negative numbers?

Example 6-5. Find the max

Initialize array and loop values
arr = [73, 98, 86, 61, 96]

index = 0

max = 0

Loop over each element in arr

while (index < arr.size)
if (arr[index] > max)
Update max

10 max = arr[index]

11 end

12 index = index + 1

13 end

14

15 # Output calculated max

16 puts "Max ==> " + max.to_s

1
2
3
4
5
6
7
8
9

76 | Chapter6: Arrays

o Line 2 creates a new array named arr and initializes its variables.

o Line 3 sets a counter named index that will serve as an index into the array.

o Line 4 declares a variable called max that will be used to store the maximum number.
o Lines 7-13 implement a loop that scans every element of the array.

o Line 16 prints the maximum element at the end.

Each time the index variable index is incremented in line 12, the 1f statement in lines
8-11 tests to see whether the current value in the array indexed at index is higher than
the current value in max. If the current value is higher, then the max variable is updated
with the highest value.

Run this program, called find_the_max.rb. Your output should be:

$ ruby find_the_max.rb
Max ==> 98

As an exercise to make sure you understand the preceding code, change the example to
output the lowest value in the array.

6.2.2 Multidimensional Arrays

Arrays that have more than one dimension are called multidimensional arrays. A com-
mon multidimensional array is the two-dimensional array, which can be used to rep-
resent matrices and coordinate systems. Unlike some other programming languages,
Ruby does not provide built-in support for multidimensional arrays. The way to work
around this is to put an array inside an array, which is essentially what a multidimen-
sional array is anyway.

Consider the example in the previous section of an array that stores a list of five test
scores for a student. Now, what if you had students with the following scores?

Geraldo: 73, 98, 86, 61, 96
Brittany: 60, 90, 96, 92, 77
Michael: 44, 50, 99, 65, 10
Table 6-1. Multidimensional array

[o] 73 98 8 61 9%
[11 60 9 9% 92 77
[21 44 50 99 65 10

6.2 Array Types | 77

The best way to represent this data is to create one array with three indices and to have
each index contain five elements. This is basically an array with three rows and five
columns. To create such an array in Ruby, type in the following:

arr = [[73, 98, 86, 61, 96],
[60, 90, 96, 92, 77],
[44, 50, 99, 65, 10]]

By typing in this assignment statement, you have created a 3 x 5 table where the first,
second, and third rows represent Geraldo’, Brittany’s, and Michael’s test scores, re-
spectively. To access an individual score, use the format array[row][column]. So, if you
wanted to know what Brittany scored on her third exam (remember, each index starts
with 0, not 1), type:

puts "Brittany's Third Exam: " + arr[1][2].to_s
The output should be:
Brittany's Third Exam: 96

The rules for traversing a multidimensional array are similar to traversing a one-
dimensional array, except you have to add a nested loop for each extra dimension. In
Example 6-6, we illustrate how to print out each value in the array arr.

Example 6-6. Outputting multidimensional arrays

Initialize array and loop values
arr = [[73, 98, 86, 61, 96],
[60, 90, 96, 92, 77],
[44, 50, 99, 65, 10]]

column = 0

Loop over each row
while (row < arr.size)
10 puts "Row: " + row.to_s
11 # Loop over each column
12 while (column < arr[row].size)
13 # Print the item at position row x column
14 puts arr[row][column]
15 column = column + 1
16 end
17 # Reset column, advance row
18 column = 0
19 row = row + 1
20 end

1
2
3
4
5row =0
6
7
8
9

78 | Chapter6: Arrays

Gem of Wisdom

. Step through Example 6-6 and convince yourself that it generates the values you
‘f‘i expect. What output values will be generated? What would happen if we added
an if statement after line 13 that asked to skip values that were prime? Give that
a try, as it uses our prime number work.

Like one-dimensional arrays, you can output everything using one line of code:
puts arr

The only problem with this statement is that Ruby will list all the values without any
formatting. So it would be difficult to sort through all the data. We address means to
format output in one particular case as part of our tic-tac-toe example in Chapter 12.
We do not address formatting generally in this book.

Example: Find the Max—Modified

In the previous example, we created a program that finds the highest score in the array.
Now we will create a program that stores the five scores for all three students. Using
what you learned previously, modify the program to find out which student has the
highest score. Print out the highest score.

When you are done with your program, compare your program to the code in
Example 6-7.

6.2 Array Types | 79

Example 6-7. Find the max, modified

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

initialize the array and index/score variables
arr = [[73, 98, 86, 61, 96],

[60, 90, 96, 92, 771,

[44, 50, 99, 65, 10]]

row = 0
column = 0
maxscore = 0
maxrow = 0

for each row
while (row < arr.size)
for each column
while (column < arr[row].size)
update score variables
if (arr[row][column] > maxscore)
Mmaxrow = row
maxscore = arr[row][column]
end
increment column
column = column + 1
end
reset column, increment row
column = 0
row = row + 1
end

output name and high score information
if maxrow ==

puts "Geraldo has the highest score."
elsif maxrow ==

puts "Brittany has the highest score."
elsif maxrow ==

puts "Michael has the highest score."
else

puts "Something didn't work correctly."
end
puts "The high score was:

+ maxscore.to_s

Lines 2-4 initialize a 3 x 5 array called arr.

Lines 6-7 initialize the initial location of the row and column to start traversing the
array.

Lines 8-9 declare maxscore that will keep track of the highest score and maxrow that
will keep track of who has the highest score.

Lines 12-26 implement a loop that scans each element of the array.

80

Chapter 6: Arrays

o Lines 29-37 compare the value of maxrow and output the corresponding person’s
name as the individual with the highest score.

o Line 38 outputs the highest score.

Intuitively, like the previous example, there is a marker for the highest score. Whenever
the program finds a score higher than the current value of maxscore, it updates maxrow to
contain the value of the row in which the program found the high score (line 17) and
maxscore to reflect the highest score (line 18). The program then uses if-else state-
ments to find out who has the highest score (lines 29-37). Notice again how rows 0, 1,
and 2 correspond with Geraldo, Brittany, and Michael, respectively. When you run the
program, the output should read:

$ ruby find_the_max_modified.rb
Michael has the highest score.
The high score was: 99

6.3 Hashes

Unlike arrays, which strictly use integer indices, hashes can use any data type as their
index. What Ruby calls a “hash” is really a clever way of using a string data type to map
quickly to a specific element inside an array.

The string is referred to as a hash key. Some kind of function must exist to map a string
to a number. For example, a simple hash function could add up the ASCII codes for
each letter and implement a modulo for the number of keys we have. A hash collision
occurs when our hash function returns the same number for two different keys, which
can be handled with various collision resolution algorithms. A simple collision resolu-
tion algorithm simply places all keys that have a collision into a bucket, and the bucket
is sequentially scanned for the specific key that is requested when a collision occurs. A
detailed discussion of hashing is beyond the scope of this book, but we wanted to illus-
trate the differences between a hash table and an array.

In most cases, strings are used to associate keys to values. For example, instead of using
a two-dimensional array, we can use a hash to store student test scores by name as seen
in Example 6-8. As shown, similar to arrays, line 1 creates a new hash structure. Likewise,
element assignment, lines 2-4, follow the same process done for arrays.

Example 6-8. Example hash usage

1 scores = Hash.new

2 scores["Geraldo"] = [98, 95, 93, 96]

3 scores["Brittany"] = [74, 90, 84, 92]

4 scores["Michael"] = [72, 87, 68, 54, 10]

6.3Hashes | 81

Gem of Wisdom
. Arrays are accessed with a numerical index, as in array[5]. Hashes are accessed
0 with a string as the index, as in scores["Brittany"].

aqs
[N
N

Example: Hash

To access Brittany’s score, we could simply call on scores["Brittany"]. Of course, the
string "Brittany" can also be replaced by a variable that holds that string.

Example: Accessing a Hash

Example 6-9. Example hash accessor usage

1 scores = Hash.new

2 scores["Geraldo"] = [98, 95, 93, 96]

3 scores["Brittany"] = [74, 90, 84, 92]

4 scores["Michael"] = [72, 87, 68, 54, 10]

5 name = "Brittany"

6 puts name + " first score is: " + scores[name][0].to_s

In line 5 of Example 6-9, we assigned “Brittany” to the variable name; so, assuming that
the code of Example 6-9 is stored in file hash_2.rb, executing the code should display
Brittany’s first score on the screen:

$ ruby hash_2.rb
Brittany first score is: 74

It is possible to get an array of all the keys by calling on scores.keys. We can then go
through each key by using a for loop. We can now rewrite the maximum score example
to work for any number of students, no matter what their names are or how many scores
each student has.

Note that in our example, the number of individual scores varies among the students.
That is, in Example 6-9, both “Geraldo” and “Brittany” have four scores each, while
“Michael” has five. The ability to have varying numbers of entries provides great
flexibility.

82 | Chapter6: Arrays

Example: Find the Max—Hash

Example 6-10. Find the max—hash

scores = Hash.new

1
2
3 scores["Geraldo"] = [98, 95, 93, 96]

4 scores["Brittany"] = [74, 90, 84, 92]

5 scores["Michael"] = [72, 87, 68, 54, 10]
6

7

8

9

maxscore = 0
for name in scores.keys

column = 0
10 while (column < scores[name].size)
11
12 if (scores[name][column] > maxscore)
13 maxname = name
14 maxscore = scores[name][column]
15 end
16 column = column + 1
17 end
18 end
19

20 puts maxname + " has the highest score.”
21 puts "The highest score is: " + maxscore.to_s

We see that running the code from Example 6-10, stored in file find_max_hash.rb, will
output the following result:

$ ruby find_max_hash.rb
Geraldo has the highest score.
The highest score is: 98

Note that the entries in this hash differ from the entries used in the array example.

Hashes cannot replace arrays outright. Due to the nature of their keys, they do not
actually have any sensible sequence for their elements. Hashes and arrays serve separate
but similar roles. Hashes excel at lookup. A hash keyed on name with a phone number
as a value is much easier to work with than a multidimensional array of names and
phone numbers.

Arraysrefer to a sequence of variables where each variable does not have a name; instead,
it is referenced by an integer index. That is, arr[i] refers to the i element in the se-
quence, remembering that indices start at 0. In contrast, a hash table uses a key-value
pairing to identify the particular entry. In the earlier example, we wish to access test
scores based on a person’s name. That is, the hash table arr['Geraldo'] identifies
Geraldo’s test scores even though Geraldo is not an integer. Such referencing supports
both efficient access and logical correlations.

6.3Hashes | 83

6.4 Summary

We discussed one-dimensional arrays, arrays of arrays, and hashes. These are constructs
that often take students time to learn, so we strongly suggest that you work through all
the exercises in this chapter to ensure that you have a full understanding of these
concepts.

6.4.1 Key Concepts

o Arrays are structures that use a table format to store variables. The data stored in
an array is accessed using numbers as an index starting at 0. They can be used in
any programming structure, but they are most commonly associated with the loop
structure.

o One key concept when working with arrays is that they can have an infinite number
of dimensions. This means that a memory location within an array can either store
a single piece of data or store an entirely new array.

o Hashes are much like arrays, except that rather than using only an integer to look
up a memory location, any variable can be used as a key.

6.4.2 Key Definitions

o Array: A consecutively numbered list of variables.

o Element: A variable contained within an array.

 Multidimensional array: An array whose elements are also arrays.

o Index: The number associated with a certain element within an array.
o Traverse: To move from one element to another within an array.

o Hash: A data structure that can map any data type (key) to a value.

6.5 Exercises

1. Using thearray arr withvaluea[0] = 9, a[1] = 2, a[2] = 5, a[3] = 4, a[4]
= 3, determine the output of the code in Example 6-11.

84 | Chapter6: Arrays

Example 6-11. Code for Exercise 1

i=0

while (1 < a.size)
puts a[i]
1i=1+1

end

AU A WN R

. The code in Example 6-12 looks for the first two elements that are out of order and
swaps them; however, it is not producing the correct results. Fix the code so that it
works correctly.

Example 6-12. Code for Exercise 2

1 arr = [5, 22, 29, 39, 19, 51, 78, 96, 84]
21=0

3 while (1 < arr.size - 1 and arr[i] < arr[1 + 1])
4 i=1+1

5 end

6 puts i

7

8 arr[i] = arr[1 + 1]

9 arr[i1 + 1] = arr[i]

. Write a program that splits an array into two arrays where any element in one array
is smaller than any element in the other array. Solutions are not unique, but equally
sized splits are desirable. The input can be any size array less than 100.

Example input: [6, 45, 23, 65, 17, 48, 97, 32, 18, 9, 88]
Example output: [6, 23, 17, 18 , 9] < [45, 65, 48, 97, 32, 88]

. There are many ways to store image data. One way is to store pixel data in a two-
dimensional array. The pixel data is itself a three-element array that describes the
amount of red, green, and blue in the pixel. The amount of red, green, or blue is a
number from 0 to 255. Here are a few example RGB values:

red = [255, 0, 0]

green = [0, 255, 0]

blue = [0, 0, 255]

black = [0, 0, 0]

white = [255, 255, 255]

yellow = [255, 255, 0]
Suppose you have a picture and need to count red pixels. For a pixel to be red, it
must be within the following RGB constraints:

a. The R value must be greater than 100.
b. The G and B values must each be less than the R value divided by 4.

6.5 Exercises | 85

Write this program. Use this sample data to test your program:

sample =

[[[65, 67, 23], [234,176, 0], [143, 0, 0]],
[[255, 30, 51], [156, 41, 38], [3,243,176]11,
[[255,255,255], [©, 0O, 0], [133, 28, 13]],
[[26, 43,255], [48, 2, 2], [57, 89,202]]1]

This sample has three red pixels.

. Function-plotting software must calculate a function at many points to plot it. Given

the function:

x*+17 x x*® - 416 x x* — 612 x x + 2500

a. Write a program that calculates and stores 100,000 values for f (x) between
x =-50 and x = 50.

b. Extend the program so that it searches for values for x that are very close to, or
are, zero. How many x values between -50 and 50 make f{x) zero? What are they?

6. The three witches in Hamlet can brew any potion provided they have the right
ingredients. Suppose that five ingredients are necessary in making a health potion:
eye of newt (eon), toe of frog (tof), wool of bat (wob), adder’s fork (af), and tooth
of wolf (tow). Four reactions can occur between these ingredients:

o 4eon+2wob=3af+4tow
e 3tow+ 1tof=2eon
o 1wob+2af=1tof
o 4 tof + 7 tow + 2 af = 1 health potion
Assuming you can control the order of reactions, write a program that can cal-
culate the maximum number of health potions one can brew with a given amount
of ingredients. Here is example output:
If I have 34 eon, 59 tof, 20 wob, 5 af, and 20 tow, I can make seven
health potions.
86 | Chapter6: Arrays

CHAPTER 7
Sorting and Searching

In This Chapter

« Popular sorting algorithms
o Analyzing the complexity of algorithms

o Search algorithms

7.1 Introduction

Entire books have been written on sorting and searching with computers. We introduce
the topic here only to stress, once again, that writing programs is not the target of
computer science; solving problems efficiently and effectively with the limited resources
found in a computer is the real goal.

It turns out that computers spend a tremendous amount of time sorting. Just as we
discussed different algorithms for computing prime numbers, we will now discuss three
basic, comparison-based sorting algorithms. None of these are truly efficient. Efficient
comparison-based sorting is beyond the scope of this introductory text. Additionally,
we introduce a radix sort, one that capitalizes on the nature of the elements stored, rather
than individual comparison between elements.

The sorting problem is described as follows:

Given a list of elements provided as input in any arbitrary order, these elements having
an established ordinal value, namely a collating sequence, reorder them so that they ap-
pear according to their ordinal value from lowest to highest.

For example, consider the following list of numbers as input: 5, 3, 7, 5, 2, 9. A sorted
output corresponding to this input is: 2, 3,5, 5,7, 9.

87

Gem of Wisdom
. A common conjecture is that computers around the world spend the majority of
% their time sorting. Hence, it is difficult to talk much about computer science
without talking about sorting. There are many sorting approaches.

aqs
[N
N

In the following subsections, we will describe three comparison-based sorting algo-
rithms and briefly compare them to demonstrate how to determine which one is the
best. The implementation of each sorting algorithm will be presented in the context of
grades for a final exam in a programming class. We want to provide a sorted list of the
final scores, shown as percentages, to the students given an unsorted list. In each case,
we describe the algorithm in plain language and then provide a corresponding Ruby
implementation. Once the algorithms are presented, we discuss how we measure the
notion of “best”

7.1.1 Selection Sort

Selection sort is the simplest to explain and the most intuitive. Imagine you have a deck
of cards in your hand, and they have numbers on them. If you wanted to sort them, one
easy way is to just select the smallest number in the deck and bring it to the top. Now
repeat the process for all cards other than the one that you just did. If you repeated this
process until the entire deck was selected, you would end up with a sorted deck of cards.
The algorithm just described is selection sort.

The selection sort algorithm is formally defined as follows:

1. Start with the entire list marked as unprocessed.

2. Find the smallest element in the yet unprocessed list; swap it with the element that
is in the first position of the unprocessed list; reset the unprocessed list starting with
the second element.

3. Repeat step 2 for an additional n — 2 times for the remaining n — 1 numbers in the
list. After n - 1 iterations, the n™ element, by definition, is the largest and is in the
correct location.

We've already discussed arrays, so our Ruby code will first initialize an array and
populate it with randomly generated numbers. The rand(x) function, where x is
an integer, returns a randomly generated integer in the range [0, x].

The Ruby code for the selection sort is given in Example 7-1.

88 | Chapter7: Sorting and Searching

Example 7-1. Code for selection sort

1 # Code for selection sort

2 # 35 students in our class

3 NUM_STUDENTS = 35

4 # Max grade of 100%

5 MAX_GRADE = 100

6 num_compare = 0

7 arr = Array.new(NUM_STUDENTS)
8
9

Randomly populate arr

10 for i in (O..NUM_STUDENTS - 1)

11 # Maximum possible grade is 100%, keep in mind that rand(5) returns
possible values 0-4, so
we must add 1 to MAX_GRADE

12 arr[i] = rand(MAX_GRADE + 1)

13 end

14

15 # Output current values of arr

16 puts "Input list:"

17 for 1 in (0..NUM_STUDENTS - 1)

18 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s

19 end

20

21 # Now let's use a selection sort. We first find the lowest number in the

22 # array and then we move it to the beginning of the list

23 for 1 in (O..NUM_STUDENTS - 2)

24 min_pos = i

25 for j in (1 + 1)..(NUM_STUDENTS - 1)

26 num_compare = num_compare + 1
27 if (arr[j] < arr[min_pos])

28 min_pos = j

29 end

30 end

31 # Knowing the min, swap with current first element (at position i)
32 temp = arr[i]

33 arr[i] = arr[min_pos]

34 arr[min_pos] = temp

35 end

36

37 # Now output the sorted array

38 puts "Sorted list:"

39 for 1 in (O..NUM_STUDENTS - 1)

40 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s

41 end

42

43 puts "Number of Comparisons ==> " + num_compare.to_s

7.1Introduction | 89

Gem of Wisdom
. Selection sort works by repeatedly finding the lowest remaining number and
oy bringing it to the top. Selection sort is explained first since intuitively it is the
easiest to understand. If you are confused by Example 7-1, come back to it after
a break. Please do not just skip past it and hope that the rest of the chapter gets
easier. It does not.

aqs
[N
N

Lines 3 and 5 declare important constants that represent the problem. If the number
of students in the class changes, we have to change only one constant.

Line 7 initializes an array called arr that will hold the randomly generated numbers
and ultimately the sorted list.

Lines 10-13 step through the array arr and initialize each element to a randomly
generated number in the range [0, MAX_GRADE].

Lines 17-19 output the initial list so that you can examine its contents. Comment
this out if you want to try a large set of numbers to sort.

Line 23 is where the real work begins.
Lines 23-35, the outer loop, ensure that we repeat the core of step 1 n — 2 times.

Line 24 is the first line of finding the minimum value in the list. We set the first
position of the unprocessed list to min_pos.

Lines 25-30 iterate through the rest of the unprocessed list to find a value smaller
than the item located at position min_pos. If we find such a value, as in line 27, we
update the value of min_pos as in line 28. Once we have found the minimum value,
we perform the latter part of step 2 and swap it with the first position in the un-
processed list. The outer loop repeats until the entire list is sorted.

Line 26 counts the number of comparisons performed and is simply here for peda-
gogical purposes to determine the best sorting algorithm.

Lines 38-43 output the sorted list and the number of comparisons.

90

| Chapter7: Sorting and Searching

Gem of Wisdom
. Insertion sort works by leaving the first element alone and declaring it as a sorted
*E% Jist of size 1. The next element is inserted into the right position in our newly
sorted list (either above or below the element we started with). We continue by
taking each new element and inserting it in the right position in our list. By the
end, all of our insertions result in a single sorted list.

aqs
[N
N

7.1.2 Insertion Sort

Insertion sort is a little trickier than selection sort. Imagine once again that you have a
deck of cards and that you are given an additional card to add to this deck. You could
start at the top of your deck and look for the right place to insert your new card. If you
started with only one card and gradually built the deck, you would always have a sorted
deck.

The insertion sort algorithm is formally defined as follows:

Step 1: Consider only the first element, and thus, our list is sorted.

Step 2: Consider the next element; insert that element into the proper position in
the already-sorted list.

Step 3: Repeat this process of adding one new number for all # numbers.

The Ruby code for an insertion sort is given in Example 7-2.

7.1Introduction | 91

Example 7-2. Code for insertion sort

1 # Code for insertion sort

2 # Declare useful constants

3 NUM_STUDENTS = 35

4 MAX_GRADE = 100

5 num_compare = 0

6 arr = Array.new(NUM_STUDENTS)
7
8
9

Randomly populate arr

10 for 1 in (0..NUM_STUDENTS - 1)

11 arr[i] = rand(MAX_GRADE + 1)

12 end

13

14 # Output randomly generated array

15 puts "Input array:"

16 for 1 in (0..NUM_STUDENTS - 1)

17 puts "arr[" + i1.to_s + "] ==> " + arr[i].to_s

18 end

19

20 # Now let's use an insertion sort

21 # Insert lowest number in the array at the right place in the array
22 for i in (O..NUM_STUDENTS - 1)

23 # Now start at current bottom and move toward arr[i]
24 3 =1

25 done = false

26 while ((j > 0) and (! done))

27 num_compare = num_compare + 1

28 # If the bottom value is lower than values above it, swap it until it
29 # lands in a place where it is not lower than the next item above it
30 if (arr[j] < arr[j - 1])

31 temp = arr[j - 1]

32 arr[j - 1] = arr[j]

33 arr[j] = temp

34 else

35 done = true

36 end

37 j=3-1

38 end

39 end

40

41 # Now output the sorted array
42 puts "Sorted array:"

43 for 1 in (0..NUM_STUDENTS - 1)
44 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
45 end

46 puts "Number of Comparisons ==>

+ num_compare.to_s

92 | Chapter7: Sorting and Searching

Gem of Wisdom
. Bubble sort is a little tricky. It is not how people would likely sort. The premise
2 is that if we repeatedly place successive elements in order, eventually the smallest
element will bubble up to the top. It is clever and sometimes is more efficient than
the other algorithms we have discussed. So it is worth knowing. Take some time
and step through this code.

o Lines 22-39 contain the core outer loop that inserts the next number in the list into
the right place.

o Lines 26-38 contain the inner loop that swaps numbers starting at the beginning
of the unsorted list until the number falls into the right place.

 Once the number is in the right place, the flag done is set to true in line 35.

7.1.3 Bubble Sort

Bubble sort is based on percolation; that is, elements successively percolate to the right
order by swapping neighboring elements. This is like continuously and repetitively
comparing adjacent pairs of cards within your deck.

The bubble sort uses two relatively straightforward loops. The outer loop ensures that
the core process in the inner loop is repeated n - 1 times. The core process is to loop
through the list and, for any successive elements in the list, check the following: if the
value we are currently examining is larger than the next member of the list, simply swap
those two values. Thus, each value will fall down the list into its proper place. Essentially,
small values “bubble” to the top of the list, hence the name “bubble sort”

The bubble sort algorithm is formally defined as follows:

Step 1: Loop through all entries of the list.

Step 2: Compare each entry to all successive entries and swap entries if they are
out of order.

Step 3: Repeat this process a total of n - 1 times.

The Ruby code is given in Example 7-3. An efficiency optimization (not shown) ter-
minates the processing once no swaps occur. This conceptually does not affect the ef-
ficiency of the sort, but typically does so in practice.

7.1Introduction | 93

Example 7-3. Code for bubble sort

1 # Code for bubble sort

2 NUM_STUDENTS = 35

3 # Max grade of 100%

4 MAX_GRADE = 100

5 num_compare = 0

6 arr = Array.new(NUM_STUDENTS)
7
8
9

Randomly put some final exam grades into arr

10 for 1 in (0..NUM_STUDENTS - 1)

11 arr[i] = rand(MAX_GRADE + 1)

12 end

13

14 # Output randomly generated array

15 puts "Input array:"

16 for 1 in (0..NUM_STUDENTS - 1)

17 puts "arr[" + 1.to_s + "] ==> " + arr[i].to_s

18 end

19

20 # Now let's use bubble sort. Swap pairs iteratively as we loop through the
21 # array from the beginning of the array to the second-to-last value
22 for i in (O..NUM_STUDENTS - 2)

23 # From arr[i + 1] to the end of the array

24 for j in ((i + 1)..NUM_STUDENTS - 1)

25 num_compare = num_compare + 1

26 # If the first value is greater than the second value, swap them
27 if (arr[i] > arr[j])

28 temp = arr[j]

29 arr[j] = arr[i]

30 arr[i] = temp

31 end

32 end

33 end

34

35 # Now output the sorted array
36 puts "Sorted array:"

37 for 1 in (O..NUM_STUDENTS - 1)
38 puts "arr[" + i1.to_s + "] ==>
39 end

40 puts "Number of Comparisons ==>

+ arr[i].to_s

+ num_compare.to_s

Lines 22-33 contain the core algorithm.

Lines 24-32 contain the inner loop that swaps all elements that are larger than their
next successive element.

94 | Chapter7: Sorting and Searching

7.1.4 Radix Sort

The radix sortis very different from the others. The sorting algorithms we have discussed
compare the entire number with other numbers in the list and ultimately make a deci-
sion as to where an element belongs based on its number. The radix sort works by sorting
the list by each successive digit. The idea is that if we first sort all the units or ones digits
in a list and then sort all the tens digits and so on, ultimately, when we run out of digits,
we will have a sorted list. Sorting by a single digit can be done by running one of the
three sorting algorithms we have discussed. It can also be done by storing all values that
match the digit in an array. We use this method so that the algorithm ends up looking
very different from the algorithms we have already discussed.

Let’s make sure we are clear about the idea of sorting values one digit at a time.

Consider a list of values:

47
21
90

Now let’s sort them based only on their rightmost digit. The rightmost digits are 7, 1, 0.
We can sort these as 0, 1, 7. Now let’s look at our list:

90
21
47

It is clearly not in sorted order (but at least the rightmost digit is nicely sorted).

Now we move on to the next digit. It is 9, 2, 4. Sorting this, we obtain 2, 4, 9. Here is the
list:

21
47
90

7.1Introduction | 95

Gem of Wisdom
. In radix sort, unlike the other sorting algorithms discussed, no comparison of
th% elements is made. Instead, radix sort repeatedly sorts elements digit by digit,
commencing from the rightmost digit until the last digit is done. Radix sort il-
lustrates that there are numerous unique approaches to the sorting problem; thus,
investigate alternatives rather than simply selecting the first solution that comes
to mind.

aqs
[N
N

It is now sorted. You may wonder why we start at the rightmost digit. The reason is that
we know every number has at least one digit, so we can start there. Some numbers may
be bigger or smaller than others, so we have to start at the right and work our way to
the left. Now let’s consider the use of a hash. For the same example, we start with:

47
21
90

Now let’s make a hash bucket for each possible digit, so we have a bucket for 0, a bucket
for 1, and finally a bucket for 9.

We read the rightmost digit and put it into the correct bucket. This results in:

0-90
1-21
7> 47

We now read the buckets in order from 0 to 9 and output all values in the bucket to
continue the sort. This yields:

90
21
47

96 | Chapter7: Sorting and Searching

This is the same place we were at when we sorted the rightmost digit. This works because
we process the hash buckets in order from 0 to 9. Now we repopulate our hash buckets
with the tens digit. We obtain:

2-21
447
9-90
Reading the buckets in order gives us our sorted result of 21, 47, 90.

To review, we are building a hash of the following form:

0 — [Array of matching values for the digit 0]
1 - [Array of matching values for the digit 1]

9 - [Array of matching values for the digit 9]

It can be seen that our hash of 10 entries (one for each digit) points to an array of matches
for that specific digit. Note that this works because we know we are sorting only one
digit at a time, and we know the full set of valid digits.

The code for radix sort is shown in Example 7-4.

7.1Introduction | 97

Example 7-4. Code for radix sort

1 # Code for radix sort

2 NUM_STUDENTS = 35

3 MAX_GRADE = 100

4 arr = Array.new(NUM_STUDENTS)

5

6 # Randomly put some grades into the array *as strings*
7 for 1 in (0..NUM_STUDENTS - 1)

8 arr[i] = rand(MAX_GRADE + 1).to_s

9 end

10

11 # Output array and find the maximum number of digits in the generated array
12 puts "Input array: "

13 max_length = 0

14 for i in (O..NUM_STUDENTS - 1)

15 puts "arr[" + i1.to_s + "] ==> " + arr[i]

16 if arr[i].length > max_length

17 max_length = arr[i].length

18 end

19 end

20 puts "Max length ==> " + max_length.to_s

21

22 # Add 0 padding based on the max length, simplifying the sort algorithm
23 for 1 in (O..NUM_STUDENTS - 1)

24 arr[i] = arr[i].rjust(max_length, "0")

25 end

26

27 # Now let's use a radix sort. Go through each digit and

28 # add each element to an array corresponding to the digits.
29 for i1 in (0..max_length - 1)

30 # Clear out and reset the bucket

31 buckets = Hash.new()

32 for j in 0..9

33 buckets[j.to_s] = Array.new()
34 end
35

36 # Add each number to its respective digit bucket
37 for j in O..NUM_STUDENTS - 1

38 num = arr[j]

39 digit = num[max_length - 1 -]
40 buckets[digit].push(num)

41 end

42 # Flatten the buckets into a one-dimensional array
43 arr = buckets.values.flatten
44 end

45

46 # Now output the sorted array
47 puts "Sorted array:"

48 for i in (O..NUM_STUDENTS - 1)
49 puts "arr[" + i1.to_s + "] ==>
50 end

+ arr[i].to_s

98 | Chapter7: Sorting and Searching

o Lines 2-9 initialize the list to be sorted as we have described in all the other sorts.
Notice that we are storing the numbers as strings, rather than integers, so we can
easily access the individual digits of the number. The list is initialized with random
values.

 One addition is a loop, on lines 23-25, that right-justifies the array elements in the
list using the Ruby rjust function. This pads the numbers in the list with leading
Zeros.

Since we are going to loop through the entries in the list digit by digit, it is crucial
that all numbers contain the same number of digits. Padding with zeros in the front
of the number is the best way to ensure that all numbers are of the same length.

o Lines 29-44 contain the outer loop that processes the list one digit at a time. For
each digit, the entire list will be traversed.

o Onlines31-34, wereset the hash named bucket that we discussed in the description
of the algorithm.

o Lines 37-41 are the inner loop that adds each number to its corresponding bucket.

o Line 43 uses two functions, values and flatten, to give a new array representing
the values sorted according to the current digit we are processing. The values
function returns an array of all the values in a hash, which is analogous to the keys
function discussed in Section 6.3, “Hashes” The flatten function takes a two-
dimensional array and returns a one-dimensional array with the same elements, as
shown in the following irb session:

irb(main):001:0> arr = [[1, 2], [3, 4], [5, 6]]
=> [[1, 2], [3, 4], [5, 6]]

irb(main):002:0> arr.flatten
=> [1, 2, 3, 4, 5, 6]

7.2 Complexity Analysis

To evaluate an algorithm, a common approach is to analyze its complexity. That is, we
essentially count the number of steps involved in executing the algorithm.

An intuitive explanation of complexity analysis is the following. We caution you that
our explanation is clearly an oversimplification, but it suffices for our purposes. Given
a certain input size, assuming that to process a single element takes one unit of time,
how many units of time are involved in processing n elements of input? This is essentially
what complexity analysis attempts to answer. As can be seen, it is unnecessary to de-
termine exactly the computer time involved in each step; instead, we simply determine
the number of logical steps that occur in a given algorithm. In reality, we can have
families of steps (say, one family is addition and subtraction, the other multiplication
and division). We then count how many steps of each family are required.

7.2 Complexity Analysis | 99

A simple example will be to evaluate the complexity of computing a?+ab+b? for a large
number, say, 1, of pairs of a and b. Computing directly, we should have 3n multiplications
and 2n additions. However, we can compute the same expression using (a + b)? - ab,
which can be done in 2n multiplications and 2n additions (note that we consider addi-
tion and subtraction to be in the same family of steps). Thus, the second expression is
better than the original. For very large values of #, this may make a significant difference
in computation time. This is a very simple example, but it provides a background for
our discussions of the complexity of sorting algorithms.

In complexity analysis, we forgo constants; thus, the distinctions between n and n - 1
in terms of complexity are nonexistent. More so, we often assume that all computations
are of the same family of operations. In terms of our complexity analysis, it does not
matter whether the list shrinks or grows; for simplicity, assume it shrinks.

Now consider the three presented comparison-based sorting algorithms. For all, the
outer loop has 7 steps, and for the inner loop the size of the list shrinks by one with each
pass. So the first time it takes 7 steps, the next time 7 — 1, the next time n — 2, and so on.
Thus, the number of steps is:

n+n-1D+mn-2)+..43+2=2+43+..+(n-2)+(n-1)+n

If you add 1 to the rewriting of the sum, it becomes a well-known arithmetic series, and

n(n+1 n(n+1
its total is % So the total number of steps for these sorts is % -1
nn+1) e
Clearly, for any n >0, ———— - 1 is less than n’ however, the complexity is still con-

sidered roughly n2. The official notation is O(n?) and is pronounced “on the order of”
or “big oh” The reason the complexity is O(n?) is because complexity is only an ap-
(n+1)

2
ifyou grasp the concept of the dominant portion to determine complexity, you are ahead
of the game.

o . . n .
proximation, and clearly the dominant portion of - 1is n*. For our purposes,

For the complexity analogies, cn?, where c is a constant, is considered O(n?) for any
finite c. For actual computations, however, the value of ¢ may be important. Again, refer
to a book on complexity theory to understand, in detail, this important concept. For a
reading list on algorithms and complexity, see Appendix A.

100 | Chapter7:Sorting and Searching

As an aside, order computation typically involves best-, average-, and worst-case anal-
yses. For the selection and bubble sort algorithms presented, the best-, average-, and
worst-case analyses are the same, since regardless of the initial ordering of the list, the
processing is identical. As previously mentioned, there is an implementation of bubble
sort that checks for no swapping with potential early termination. In such a case, the
best-case analysis, which occurs when the initial list is already sorted, is O(n).

Now let’s turn to insertion sort, which is somewhat trickier to analyze. Here we are
finding the rightmost element at which point to insert the value. For an already sorted
list, the rightmost element will occur immediately, and we will end up at only 7 steps!
Thus, the best-case analysis for insertion sort is O(n). However, if the list is precisely
the opposite of sorted, namely, in descending order, we must process until the end of
nn+1)
2
worst-case analysis for insertion sort is O(n ?). It turns out that the average-case analysis
is likewise O(n?).

the list for each step. Thus, once again, we end up with - 1 steps. Thus, the

The radix sort works in O(dn), where d is the number of digits that must be processed
and # is the number of entries that are to be sorted. Hence, it should run much faster
than the other examples. It should be noted that other algorithms—quicksort, merge-
sort, and heapsort—all run in O(nlog(n)) time. The radix sort might at first appear to
be faster than these, but it depends on how many digits are processed. A 64-bit integer
might require processing each bit as a digit. Hence, the runtime where d = 64 will be
O(64n). This might sound good, but n log(n) time will be faster where n < 2. So, in
comparing the three sorts as presented, the average- and worst-case analyses for each
on the comparison-based sorts is O(n?), while the radix sort can vary from linear time
(sorting values with a single bit) to an infinite amount of time, as the number of digits
is theoretically not constrained.

7.3 Searching

Searching a list of names or numbers is another very common computer science task.
There are many search algorithms, but the key in developing a search algorithm is to
determine which type of candidate search process matches the particular need. The
following are the two questions (parameters) that affect our search algorithm selection:

o Is the list we are searching sorted or unsorted?

o Are the searched list elements unique, or are there duplicate values within the list?

7.3Searching | 101

For simplicity, we illustrate the search process using only a unique element list. That is,
our implementation assumes that there are no duplicate values. We then discuss what
needs to be modified in the algorithm and corresponding Ruby implementation to
support duplicate values. Given the level of programming sophistication you now pos-
sess, we forgo presenting the only slightly modified implementation that supports du-
plicate values and leave it as an exercise for you. Once again, we revisit the final exam
grade example we used in the sections on sorting.

We now discuss two types of searches. The first is for an unsorted list called a linear
search, and the second is for an ordered or sorted list; it is called a binary search.

7.3.1Linear Search

Consider the problem of finding a number or a name, or more accurately, its position,
in an unsorted list of unique elements. The simplest means to accomplish this is to visit
each element in the list and check whether the element in the list matches the sought-
after value. This is called a linear or sequential search since, in the worst case, the entire
list must be searched in a linear fashion (one item after another). This occurs when the
sought-after value either is in the last position or is absent from the list. Obviously, the
average case requires searching half the list since the sought-after value can be found
equally likely anywhere in the list, and the best case occurs when the sought-after value
is the first element in the list. The algorithm is as follows:

1. For every element in the list, check whether the element is equal to the value to be
found.
2. If the element looked for is found, then the position where the element is found is
returned. Otherwise, continue to the next element in the list.
Continue the search until either the element looked for is found or the end of the list is

reached.

A Ruby implementation for unique element linear search is provided in Example 7-5.

102 | Chapter7: Sorting and Searching

Example 7-5. Code for linear search

1 # Code for linear search
2 NUM_STUDENTS = 35
3 MAX_GRADE = 100
4 arr = Array.new(NUM_STUDENTS)
5 value_to_find = 8
61=1
7 found = false
8
9

Randomly put some student grades into arr
10 for 1 in (0O..NUM_STUDENTS - 1)
11 arr[i] = rand(MAX_GRADE + 1)
12 end
13
14 puts "Input List:"
15 for 1 in (O..NUM_STUDENTS - 1)
16 puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
17 end
181 =0
19 # Loop over the list until it ends or we have found our value
20 while ((i < NUM_STUDENTS) and (not found))
21 # We found it :)
22 if (arr[i] == value_to_find)

23 puts "Found " + value_to_find.to_s + " at position " + i1.to_s + " of
the list."

24 found = true

25 end

26 1=1+1

27 end

28

29 # If we haven't found the value at this point, it doesn't exist in our list
30 if (not found)

31 puts "There is no
32 end

+ value_to_find.to_s + " in the list."

Consider now the case of an unsorted list with potentially duplicate elements. In this
case, itisnecessaryto check each and every element in thelist, since an element matching
the sought-after value does not imply completion of the search process. Thus, the only
difference between this algorithm and the unique element linear search algorithm is
that we continue through the entire list without terminating the loop if a matching
element is found.

7.3Searching | 103

o In line 5, we initialize the sought-after value. Clearly the user would be prompted
with some nice box to fill in, but we do not want to get distracted with user-interface
issues. Ultimately the user fills in the nice box, pulls down a value list, or clicks on
a radio button, and a variable such as value_to_find will be initialized.

o Next, a flag called found is set to false on line 7. This is used so that the search will
terminate when the sought-after value is indeed found.

o Inlines 10-12, the list is initialized and filled with some random values.

« The key loop starts at line 20, where the list is traversed one item at a time. Each
time, the comparison in line 22 tests to determine if the element in the array matches
the sought-after value the user is trying to find. If the value matches, a message is
displayed, the flag is set to true, and the loop terminates.

« Finally, on line 30, a check is made to determine if the element was not found—in
other words, is absent from the list. If this is the case, the value in the found flag
will remain false. If it is still false after traversing the entire list, this means that
no value in the list matched the sought-after value, and the user is notified.

7.3.2 Binary Search

Binary search operates on an ordered set of numbers. The idea is to search the list
precisely how you might automatically perfectly search a phone book. A phone book is
ordered from A to Z. Ideally, you initially search the halfway point in the phone book.
For example, if the phone book had 99 names, ideally you would initially look at name
number 50. Let’s say it starts with an M, since M is the 13" letter in the alphabet. If the
name we are looking for starts with anything from A to M, for example, “Fred,” we find
the halfway point between those beginning with A and those beginning with M. If, on
the other hand, we are searching for a name farther down the alphabet than those names
that start with M, for example, “Sam,” we find the halfway point between those beginning
with M and those beginning with Z. Each time, we find the precise middle element of
those elements left to be searched and repeat the process. We terminate the process once
the sought-after value is found or when the remaininglist of elements to search consists
of only one value.

By following this process, each time we compare, we reduce half of the search space.
This halving process results in a tremendous savings in terms of the number of com-
parisons made. A linear search must compare each element in the list; a binary search
reduces the search space in half each time. Thus, 2* = 1 is the equation needed to de-
termine how many comparisons (x) are needed to find a sought-after value in an »
element list. Solving for x, we obtain x = log,(n).

104 | Chapter7: Sorting and Searching

Gem of Wisdom
. Binary search is one of the finest examples of computer science helping to make
U3 software work smart instead of just working hard. A linear search of 1 million
elements takes on average half a million comparisons. A binary search takes 20.
That is an average savings of 499,980 comparisons! So think before you code.

aqs
[N
N

Instead of an O(n) algorithm needed to find an element using a linear search, we now
have an O(log,(n)) search algorithm. Now, for example, consider a sorted list with
1,048,576 elements. For a linear search, on average, we would need to compare 524,288
elements against the sought-after value, but we may need to perform a total of 1,048,576
comparisons.

In contrast, in a binary search we are guaranteed to search using only log,(1,048,576)
=20 comparisons. Instead of 524,288 comparisons in the average case, the binary search
algorithm requires only 20. That is, the number of comparisons required by the binary
search algorithm is less than 0.004% of the expected number of comparisons needed by
the linear search algorithm. As an aside, O(log,(n)) and O(log(n)) are equivalent, since
they differ strictly by a constant. Hence, generally speaking, the O(log(n)) notation is
preferred. Of course, binary search is possible only if the original list is sorted. The
binary search explanation given earlier is for a unique element list only. However, before
presenting the modification needed for potential duplicate elements, a few remarks
regarding the use of binary search must be made:

o First, binary search assumes an ordered list. If the list is unordered, it must be sorted
prior to the search, or a binary search won't work. Sorting involves a greater time
complexity than searching. Thus, if the search will occur rarely, it might not be wise
to sort the list. On the other hand, searches often occur frequently and the updating
of the list occurs infrequently. Thus, in such cases, always sort (order) the list and
then use binary search.

o The average- and worst-case search times for binary search are O(log(n)), while
the average- and worst-case search times for linear search are O(n). What is inter-
esting, however, is that unlike for linear search, where, in practice, the worst-case
search time is double that of the average case, for binary search both times are
roughly identical in practice.

In Example 7-6, we present a Ruby implementation of unique element binary search.
Note that we introduce on line 16 a built-in Ruby feature to check if a value is already
present within an array and on line 22 to sort an array in place.

7.3Searching | 105

Example 7-6. Code for binary search

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48

Code for binary search
NUM_STUDENTS = 30

MAX_GRADE = 100

arr = Array.new(NUM_STUDENTS)
The value we are looking for
value_to_find = 7

low = 0

high = NUM_STUDENTS - 1

middle = (low + high) / 2
found = false

Randomly put some exam grades into the array
for 1 in (0..NUM_STUDENTS - 1)

new_value = rand(MAX_GRADE + 1)

make sure the new value is unique

while (arr.include?(new_value))

new_value = rand(MAX_GRADE + 1)

end

arr[i] = new_value
end
Sort the array (with Ruby's built-in sort)
arr.sort!
print "Input List: "

for 1 in (O..NUM_STUDENTS - 1)

puts "arr[" + i.to_s + "] ==> " + arr[i].to_s
end
while ((low <= high) and (not found))

middle = (low + high) / 2
We found it :)
if arr[middle] == value_to_find
puts "Found grade " + value_to_find.to_s + "% at position " + middle.to_s
found = true
end
If the value should be lower than middle, search the lower half,
otherwise, search the upper half
if (arr[middle] < value_to_find)
low = middle + 1
else
high = middle - 1
end
end
if (not found)

puts "There is no grade of " + value_to_find.to_s + "% in the list."
end

106

Chapter 7: Sorting and Searching

We use these features to simplify the code illustrated. Note that this type of abstraction,
namely, the use of the built-in encapsulated feature, simplifies software development,
increases readability, and simplifies software maintenance. Its use is paramount in
practice. It should be understood that this book uses Ruby as a tool for learning concepts
of computer science and basic programming, and not as an attempt to teach all the
capabilities of the Ruby interpreter. See the additional reading list in Appendix A if you
are interested in exploring additional built-in features of Ruby.

o Line 9 computes the first middle range.

o Lines 29-44 implement the key loop that keeps cutting the search space down
by half.

o Line 32 is the comparison to the sought-after value. If we find the element, we are
done and we update the same found flag that was used for the linear search. If the
value is less than the middle we update the high side of the range, and if it is greater
we update the low side of the range. At the end, we verify that the sought-after value
was indeed found.

As with the linear search algorithm, the modification required to support possible du-
plicate values is relatively minimal for the binary search algorithm. Since binary search
requires an ordered list, if a sought-after value is found, then all duplicates must be
adjacent to the position just found.

Thus, to find all duplicates, positions immediately preceding and following the current
position are checked for as long as the sought-after value is found. That is, in succession,
adjacent positions earlier and earlier in the list are checked while the stored element
value equals that which is sought after, and similarly for later and later positions. Again,
the implementation of this change is left as an exercise to the reader.

7.4 Summary

We discussed the various sorting schemes, both comparison-based and non-
comparison-based, and the strengths of each. We introduced the field of complexity
analysis, a tool used to quantify the performance of an algorithm. Finally, we discussed
searching and provided a real-world example of searching techniques.

Specifically, we described four elementary sorting algorithms. The first three presented
—selection, insertion, and bubble sort—are comparison based. That is, elements are
compared against one another to determine a sorted ordering. The fourth algorithm,
radix sort, differs substantially. Instead of comparing elements, radix sort orders the
elements according to their representation, starting from the rightmost digit. Once all
digits of the element representation are processed, the list is sorted. The complexity of
these sorting algorithms is presented in Table 7-1, where n represents the number of
elements in the list and k represents the number of digits needed to represent the largest

7.4Summary | 107

element. The best-case scenario occurs when the original list is already sorted; the worst-
case scenario occurs when the original list is in reserve order; and the average-case
scenario represents an original random ordering.

Table 7-1. Sort algorithm complexity summary

Bestcase Worst case Average case

Selection sort 0(n?) 0(n? 0(n?)
Insertion sort 0(n) 0(n?) (n?)
Bubblesort 0(n) 0(n?) 0(n?)
Radix sort 0(kn) 0(kn) (kn)

Likewise, we presented two searching algorithms: linear and binary search. Linear
search can be used to search any list, whereas binary search requires a sorted list. The
complexity of these searching algorithms is presented in Table 7-2, where # represents
the number of elements in the list searched. The best-case scenario occurs when the
first element encountered is the element sought; the worst-case scenario occurs when
the sought after element is missing; and the average-case scenario represents a random
list.

Table 7-2. Search algorithm complexity summary

Best case Worst case Average case
Linear search 0(1) 0(n) 0(n)
Binary search 0(1) 0(log(n)) 0(log(n))

7.4.1 Key Concepts

o Sorting is a common problem that occurs in many places in computer science. We
focus primarily on comparison-based sorting, where we simply compare the items
to determine the order. Radix sort sorts numbers without directly comparing them.

o Searching can be done naively by linearly searching through a list, but if the list is
sorted, we can take advantage of binary search to improve performance.

o When discussing algorithm performance, computer scientists use complexity
analysis.

7.4.2 Key Definitions

o Comparison-based sort: A sorting method that relies on directly comparing the
elements.

o Complexity analysis: A mathematical way of analyzing an algorithm’s performance.

108 | Chapter7: Sorting and Searching

7.5 Exercises

1. Radix sort, as presented, works for integers. Modify the algorithm in Example 7-4
to sort English names.

2. For each input sequence provided in the following list, state which presented
comparison-based sort or sorts would require the fewest steps. Explain why.

a. 52431
b. 12345
c. 54321
3. You are provided a lengthy unsorted list and told to search it.
a. Which search algorithm would you use?

b. If you were told that you will need to search the list many times, would your
search strategy change? If so, how?

c. At which point would you change your approach if you were to change it?

4. The complexity of the comparison-based sorting algorithms presented, on the
average case, is O(n?). Design a comparison-based sorting algorithm with a lower
complexity. What is the underlying premise that lowers its complexity?

5. Generate a 100-element list containing integers in the range 0-10. Sort the list with
selection sort and with radix sort.

a. Which is faster? Why?

b. Try this again, but with 10,000 elements. Note the relative difference. Why does
it exist?

7.5 Exercises | 109

CHAPTER 8
Using Objects

In This Chapter

o Objects

o Built-in objects

8.1 Introduction

In Chapter 6, we discussed the concept of arrays and hashes, additional structures that
can be used to store data. In this and the following two chapters, we discuss objects.

8.2 Objects and Built-in Objects

So far, we have been writing code that is procedural in nature; that is, code whose logical
flow starts at the top and works its way to the bottom. Any computer program can be
written in a procedural manner. However, when code gets long, it becomes difficult to
debug and maintain. It also becomes redundant and dangerous to write the same code
over and over. The object-oriented approach was created for dealing with these very
issues. To switch to objects, you must understand why they are useful in the first place.

Imagine a product as complex as Microsoft Word. To produce it, a team of Microsoft
programmers had to write millions of lines of code, with hundreds of people working
on the code at the same time. To support simultaneous development, the code was
segmented by functionality. Understanding how such complex products get subdivided
into manageable pieces requires that we first understand the building blocks of such
code. These building blocks in Ruby are classes that define objects.

m

Gem of Wisdom
. Ruby is a truly object-oriented language, and that is one reason we picked it for
*£% this book. Objects usually correspond to entities that exist in the real world. They
encapsulate values and support actions as well. While a variable might have a
value 5, an object named airplane might have one value of Boeing 747 and
another value of current location. Also, airplane can have an action that says
fly() that might change its current location based on how far it has flown.

aqs
[N
N

8.2.1 Objects

Objects and object-oriented programming simplify the implementation of large pro-
grams. If you work on a program by yourself, it is up to you to organize your work. If
you work with 100 other programmers, then everything must be nicely compartmen-
talized; otherwise, each programmer will constantly step on the other programmers’
toes. There is nothing worse than getting your piece of a program to work and finding
out that you inadvertently broke someone else’s.

If you and your friend decide to work on a project together, you can easily run into
trouble. Imagine if your friend makes a variable called x and manipulates it. You remain
unaware of this changing of value. So later on in the code, you likewise decide to use a
variable called x. Your piece of code and your friend’s piece of code both work on their
own, but when you integrate them, strange problems occur.

Objects are designed to separate key activities in a program so that once you get some-
thing to work, you need not constantly worry about accidentally breaking it when you
make new objects. The activities are essentially isolated from one another. They can
communicate information without the need to know how it is produced and what the
specifics of the implementation are. For example, a programmer might build an object
called TicTacToe when making a tic-tac-toe board game. Once the part of the program
that draws the board works, everyone can just communicate with that object in a way
that ensures that no one steps on another programmer’s toes.

Objects enable programs to be compartmentalized so that programmers can work at
the same time without fear of running over one another. Consider a construction crew
building a house. Someone painting one room does not constantly check on the work
of someone who is painting another room. This is because the rooms are compartmen-
talized—they have walls and ceilings that keep paint from dripping from one room to
the other. However, two painters working in the same room must always be in constant
communication to be effective and efficient. For example, if they were not communi-
cating, it would be possible that one painter could drip paint on the other or paint the
worker into a corner.

112 | Chapter 8: Using Objects

Objects are isolated pieces of code that have their own private chunks of data and private
actions that can be performed with that data. The actions that an object may perform
are referred to as methods. Object-oriented programming tries to create the most logical
separation between pieces of code.

8.2.2 Built-in Objects

Without realizing it, you have been using objects since the moment you began to pro-
gram anything in Ruby. In Chapter 3, you began using objects when you started using
variables; you just did not have to think about it. In fact, everything in Ruby is an object,
and this section will discuss some of the more common objects you will use.

An application programming interface, or API, is an interface provided to the program-
mer to allow the use of certain functionality without knowing the specifics of the im-
plementation. When you downloaded the Ruby interpreter to your hard drive, you
probably downloaded a copy of Ruby’s API documentation with it, but in case you did
not, it is available online. If you visit this site, you will notice it has three headings: files,
classes, and methods. For now, we will focus on classes.

A class defines the characteristics and behaviors of an object. It contains the variables
and the code necessary to implement the operations of the object, usually called meth-
ods. If you look through the list of classes, you will see there are many. However, you
have already used a few of them. Some classes you may have already used are the array,
Fixnum, float, and string classes. While there are many more classes than these, it is not
required that you know what they do or what they consist of. However, it is required
that you know how to use them when the time comes.

For any class, all the supported methods for the class are provided.

For example, the string class (see Figures 8-1 and 8-2) has a length method, str.length
=> integer. This means thatif we call the string’s length method, it will return an integer.
The next part is simply a description of the method, and it does what one would expect
a length method to do. The following is an example of using this method:
irb(main):001:0> "hello".length
=> 5
Simply put, we call the string class method length on the string object “hello,” and we
get back the number of characters in “hello,” which is 5. This is a simple example of
calling, or using, a method. However, calling a method is not always this simple. Let’s
look at another example of a method from the string class.

8.2 Objects and Built-in Objects | 113

http://www.ruby-doc.org/core/

D00 R Oty e 180
* C W D ry-Sor o cere-1 % 1/Snng M bamartas- - indk

String

A Srring ctysct hokin mnd mariLS a0 Aty SSQUERCR o by, Al secresenteg
ChARCinn. Swing CORCE Mty D CrMIS] g Striog raree o 48 A

Bacasse of alasng wsss. wvers of wirings shoukd b awars

Cortents of & Sring SERCt Troualy, Memcd wih fames #xng In 1 oty B

W Ti0ah WG & T AT B Pl Bitr Lo, HOwiver. IRGT 6 SSAPEOAL, BLLR B8 Beringd
=

Publie Class Methods

i ra™) = inew_str
et a4 e v e comd

try_comvertioh) == siring or nll
Ty 1 ot) ks g, i o8 s, et corweri wiang o il aty carrct b

Burleg. Uy _sesvernlt e)
Buekag iy _sasvarniiral)

Figure 8-1. String API documentation

9 length — integer
) size — integer
Returns the character length of sir.

Figure 8-2. String’s method: length

The example method in Figure 8-3 is significantly more difficult. It shows multiple ways
to call the method index, along with the results returned when the method is called. By
looking at the description of the method taken from the actual Ruby documentation
website and written on top of the example calls, you may be able to decipher how calling
this method works, but it uses concepts we have not yet discussed. The main concept
here is that this method needs some type of outside data to work; supplying this outside
data to a method while calling it is known as parameter passing.

114 | Chapter8: Using Objects

Returns the index of the first occurrence of the given substring or pattem (regexp) in str. Retumns nil
if not found. If the second parameter is present, it specifies the position in the string to begin the
search.

“helle".index('e") #=> 1
"hello".index('lo") #=> 3
"hello".index('a") #=> nil
"helle".index(%7e) #=> 1

"hello".index(/[aeiou]}/, =3) #=> 4

Figure 8-3. String’s method: index

8.2.3 Parameter Passing

Looking at the list of built-in methods, you will see that the syntax for some of them
requires a variable in parentheses; these variables are called parameters. When using
built-in methods with parameters, you are sending the value of the variable to the
method to be manipulated. Consider the imaginary method called multiplier in
Example 8-1.

Example 8-1. Parameter passing

1x=3
2y = x.multiplier(4)
3 puts "The number 1is:

"+ y.to_s

Line 1 defines the variable x to be 3. The next line assigns a value to y by calling our
imaginary method multiplier and passing the value of 4 as a parameter. If we looked
at the output of this method, it would show:

The number is: 12

By looking at this, you can assume that the method multiplies the value of the parameter
by a certain value. If we want to find out what the multiplier method really does, we
can change the value of the parameter to 5. After doing this, the observed output is:

The number is: 15

You can now conclude that themultiplier method multiplies the value of the parameter
by the value of x. The key concept of parameters in methods is that it does not matter
what value is being passed; an output is generated using the same operations within the
method every time. Think of the method as a black box, as depicted in Figure 8-4.

8.2 Objects and Built-in Objects | 115

input: z - output:y
— > multiplier p——»

Figure 8-4. Black box for multiplier method

The system has an input z, an output y, and a black box. The input z is sent to the black
box, which manipulates the variable and then outputs it as y. We do not know, nor do
we care, what happens inside the black box. The only thing that matters is the resultant
output.

Now let’s look at an example using the actual Ruby built-in method called split. This
method is used with strings and splits the strings into array elements based on the
parameter passed. In this case, this will be the delimiter. Observe the example in
Example 8-2.

Example 8-2. Split example 1

my_string = "Good;day;sir!"
arr = my_string.split(";")
puts arr

The following array is created:
arr[0]: "Good"
arr[1]: "day"
arr[2]: "sir!"

0NV A WN B

o Line 1 defines a string object with the value “Good;day;sir!”
o Line 2 calls the built-in method split with a semicolon as the parameter.

o Line 3 outputs the values of my_array.

After executing the code, the array shown in lines 6-8 will be created, and the output
will be the following:

$ ruby split_1.rb

Good

day

sir!
As you can see, the split method has created an array with three indices based on the
parameter passed (in this case, the semicolon). Now, what if we changed the parameter
of the split method to something else, as shown in Example 8-3?

116 | Chapter 8: Using Objects

Example 8-3. Split example 2

1 my_string = "Good;day;sir!"

2 arr = my_string.split("a")

3 puts arr

4

5 # The following array is created:
6 # arr[0]: "Good;d"

7 #arr[1]: "y;sir!"

Now the split method will perform the same operation, but instead of splitting the
string object based on the semicolon, it will split the string into array values based on
the new parameter. The resultant array is once again shown in the comments in lines 6
and 7, with the following output:

$ ruby split_2.rb

Good;d

y;sir!
The split method has created an array with two elements based on the parameter a.
You can see that no matter what the input is, the program will always perform the same
operation based on the parameter passed. It does not matter what the input is or what
is inside the method; the split method will create arrays splitting your string object
wherever there is an occurrence of the indicated parameter.

An astute reader may wonder what would happen if the chosen parameter for split
did not exist in the string, my_string. In this case, an array of one element is returned,
with the first element containing my_string. The code in Example 8-4 illustrates this.

The output follows from the array’s structure, as shown in line 6.

Example 8-4. Split example 3

my_string = "Good;day;sir!"
arr = my_string.split("z")
puts arr

The following array is created:

1
2
3
4
5
6 # arr[0]: "Good;day;sir!"

$ ruby split_3.rb
Good;day;sir!

8.3 Summary

Objects and their corresponding methods are the building blocks of many of today’s
software systems. For all object-oriented programming languages, some objects and
methods are predefined, and those are always specified in the language manuals.

83Summary | 117

In that light, we introduced objects, explained built-in objects, and discussed parameter
passing, a mechanism to transfer information in and out of objects.

8.3.1 Key Concepts

o Classes define the characteristics and behaviors of objects belonging to the class.

o Objects are instantiations of a class. They have a name and possess all the properties

of the class, namely, the variables and the methods.

o The application user interface, or API, is an interface used to communicate with

some underlying functionality.

8.3.2 Key Definitions

Object: An isolated piece of code that has its own actions and data.
Method: The action that an object may perform.

API: An interface provided to the programmer to allow the use of certain func-
tionality without knowing the specifics of the implementation.

Class: Construct that contains the definition of an object template and the imple-
mentation of the methods.

Parameter passing: The passing of data to a method within an object.

8.4 Exercises

1. Provide code using the split method to separate the following string into indi-

vidual words and then display them:
my_string = "Roses!are!red!Violets!are!blue"

2. You are programming part of the sign-up procedure for an online computer game.
Write a program that prompts the user to enter his or her user ID and password
and enforces the following restrictions:

a. User IDs and passwords must be at least seven characters in length.

b. Passwords must contain at least one of each of the following: uppercase char-
acter, lowercase character, number, and symbol.

Hint: use the documentation for the string class.

3. Write a program that prompts the user for three words and then outputs the total
and average number of characters in the three words.

118 | Chapter 8: Using Objects

. What would result if you were to type the following into irb?

irb(main):001:
irb(main):002:
irb(main):003:
irb(main):004:
irb(main):005:
irb(main):006:

0>
0>
0>
0>
0>
0>

"12345"
"12345"
"12345"
"12345"
"12345"
"12345".

.length

* 5

.index(2)
.index(0)
.index(1)

index(5)

. What does it mean to pass a parameter to a method? What happens when a pa-
rameter is passed to a method?

. Write a function multiplier that multiplies the value passed to it by x. Have the

function ask the user for the value of x.

8.4 Exercises

119

CHAPTER 9
Defining Classes and Creating Objects

In This Chapter

« Instantiating objects from classes

o Data and methods in objects

9.1 Introduction

The preceding chapter introduced classes and objects and some of the vocabulary as-
sociated with objects. It also delved into a few of the built-in objects within Ruby. Now
it is time to explore the true power of objects: the ability to create your own.

9.2 Instantiating Objects from Classes

As we mentioned in previous chapters, a class is a description of objects. A particular
object is an instantiation of the class, having a unique name selected for it by the pro-
grammers. As with all information in a computer system, the various classes are stored
in files. When reading the previous chapters, you probably noticed the following syntax
in some examples:

customer = String.new

This is essentially the syntax for instantiating a new object. The example shows that you
are instantiating an object whose class is String. The object’s name is customer, and
the name is used as a variable from the class String. Now you can manipulate the
customer variable using the different methods learned in the preceding chapters.

121

Gem of Wisdom

. In Ruby, class names must begin with an uppercase letter.
043

Ruby provides many built-in classes like strings and arrays, but you can also create your
own class. User-defined classes are a great way to group and categorize something’s
characteristics. For example, if you want to organize a database for bank accounts, you
can create a class describing the properties and behaviors of each bank account.

Example 9-1 provides an outline for defining your own class.

Example 9-1. Class definition syntax

1 class Classname

2 def initialize(varil, var2, ..., varn)
3 @variable_1 = varl

4 @variable_2 = var2
5

6

7

8

@variable_n = varn
end

9 def method_1
10 # code

11 end

12

13 def method_2
14 # code

15 end

16 end

We now describe lines 1-7 (the rest will be covered in the following sections), which
define a class and initialize variables local to the class. To define a class, use the class
keyword followed by a descriptive name that characterizes an object. For example, if
you wanted to create a class for a bank account called Account, define the class by typing:

class Account
end

Another important keyword you should notice in the class definition is def (short for
define). This keyword is used to define new activities (called methods) that may be
performed on the object. This keyword is also used to define the special method
initialize, which is called every time a new instance of the class, that is, a new object,
is created. All classes have this special method, which is called a constructor. We will
explain class generation using an example of a class describing bank accounts called
Account, the first iteration of which can be seen in Example 9-2.

122 | Chapter9: Defining Classes and Creating Objects

Gem of Wisdom
. Each created instance of a class will have its own unique instance variables. If a
3 variable is prefixed with @@, it becomes a class variable that is shared across all
instances of the class. We do not discuss class variables in this book.

aqs
[N
N

Example 9-2. Account version 1

1 class Account

2 def initialize(balance)
3 @balance = balance

4 end

5 end

The variables inside the parentheses after initialize are the parameters that are as-
signed when creating, or instantiating, the object.

Now when instantiating an object using the Account class, the object will have a variable
called balance with an initial value that you can assign using a parameter. The special
character (@) is used to indicate that this is an instance variable, meaning that it is a
parameter of the object. Variables might be specific to a single method in the class, but
these instance variables can be accessed by any method in the object description. These
instance variables are sometimes referred to as storing the properties of an object.

We have just created a user-defined class, but how do you use it? You can instantiate an
object of the Account class the same way you create new strings and arrays:

bob = Account.new(10.00)

This example creates an object called bob of the Account class. Remember when you
created the initialize method? You assigned one parameter called balance; this is the
value in the parentheses. The parameter passed in the parentheses will become the initial
balance of Bob’s account.

What other variables should you consider adding to the Account class? What kind of
behaviors should the class contain? In the following sections, we describe grouping data,
as well as adding your own methods and working with the data through the object’s
methods.

9.3 Data and Methods

Objects are made up of two important concepts: the data the object holds (the instance
variables) and the actions the object can perform (the methods).

9.3 Dataand Methods | 123

Gem of Wisdom
. Note that the instance variables balance, name, and phone_number are assigned
6% in the order the parameters were passed to the initialize method; however,
this is not required. It is done merely for convenience to the reader. Also, the
actual names can be chosen arbitrarily. For example, @cash = balance, while
allowed, is discouraged.

aqs
[N
N

9.3.1 Grouping Data and Methods

The previous section detailed how to create and instantiate an object of an Account
class, and while reading it you might have been thinking to yourself, “How was I sup-
posed to know that an Account class needs a balance variable?” The answer is that no
class requires any particular piece of data, but classes are used to group related pieces
of data together, and it only makes sense that an account has a balance. Likewise, there
are other things that would come as a part of a bank account. Depending on the nature
of the bank account, the type of data included would change. For example, a savings
account wouldn’t necessarily include the same data as a checking account. Regardless,
we are talking about a generic bank account, and additional data possibly included are
name, phone number, Social Security number, minimum balance, and maximum bal-
ance. We now introduce two additional instance variables to our Account class, as shown
in Example 9-3.

Example 9-3. Account version 2

1 class Account

2 def initialize(balance, name, phone_number)
3 @balance = balance
4 @name = name
5 @phone_number = phone_number
6 end
7 end

Our bank account is beginning to make a bit more sense. On top of just having a balance,
there is a name and a phone number attached to the account, so we can uniquely de-
termine whose account it is. Now that our Account class constructor has changed, let’s
see how to initialize Bob’s bank account when he has $10 as his starting balance, and
has a phone number of 716-634-9483.

bob = Account.new(10.00, "Bob", 7166349483)

An object also contains methods. Just like data, methods are logically grouped together
based on the class. The purpose of a method is to accomplish a task, so we must ask
ourselves, what actions should a bank account have? We would expect that at the very
least we could withdraw from and deposit to our account. Let’s add these methods to
our Account class, as shown in Example 9-4.

124 | Chapter9: Defining Classes and Creating Objects

Example 9-4. Account version 3

class Account

def initialize(balance, name, phone_number)
@balance = balance
@name = name
@phone_number = phone_number

end

0O ~NOUVT A WN R

def deposit(amount)
code
end

[
= ® o

12 def withdraw(amount)
13 # code

14 end

15 end

Aside from the missing implementation code on lines 9 and 13, our Account class im-
plementation is looking pretty good. Not only can Bob open an account, but he can also
deposit or withdraw money when he desires.

The Account class is almost finished, and the only thing left to do before Bob is able to
open a bank account is to implement the deposit and withdraw methods.

9.3.2 Implementing Methods

A key advantage of objects is that they abstract the details of their operations away from
the code that uses them. Once the details of the Account class are finalized, a program-
mer can use the class without knowing any of those details. The programmer need only
know what data are required to initialize the class, and what data are required for each
method in the class. For example, consider the String class provided in the Ruby stan-
dard library. When we use the capitalize method, we do not know how String stores
the data, nor how the data get accessed. All we need to know is that the capitalize
method capitalizes the first letter of the string.

As we implement an object, we must consider every detail of its operation. The
deposit method, for example, must add the value of the parameter passed to the pre-
vious @balance and store the result back in @balance. Let’s take a look at the imple-
mentation of the deposit and withdraw methods, as shown in Example 9-5.

9.3 Dataand Methods | 125

Gem of Wisdom
. Recalling our earlier Gem of Wisdom and looking at Example 9-5, using our
' shorthand construct known as op=,inline 9, the variable @balanceisincremented
by the value of amount, meaning @balance = @balance + amount, and in line
13, the meaning of the statement is @alance = @balance - amount.

qs
[N
3

Example 9-5. Account version 4

1 class Account

2 def initialize(balance, name, phone_number)
3 @balance = balance

4 @name = name

5 @phone_number = phone_number

6 end

7

8

9

def deposit(amount)
@balance += amount
10 end
11
12 def withdraw(amount)
13 @balance -= amount
14 end
15 end

To use these newly defined methods, we must initialize the classes and then access them
as we did with built-in methods. Note in the following code that this is the first time we
import definitions using the require command. For example, to create an account for
Mary, with $500, and then to deposit another $200, we would perform the following
steps in irb:

irb(main):003:0> require 'account_4.rb'

=> true

irb(main):004:0> mary_account = Account.new(500, "Mary", 8181000000)

=> #<Account:0x3dfa68 @balance=500, @name="Mary", @phone_number=8181000000>

irb(main):005:0> mary_account.deposit(200)

=> 700

irb(main):006:0> mary_account

=> #<Account:0x3dfa68 @balance=700, @name="Mary", @phone_number=8181000000>

As can be seen from the output, Mary’s account now holds 700 in its @balance variable.
However, it would be much nicer to provide a helper method to display this information.
The display method is an often-used method for outputting the contents of an object’s
instance. For the Account class, we can output the name, phone number, and account
balance to the screen with the code shown in Example 9-6.

126 | Chapter9: Defining Classes and Creating Objects

Example 9-6. Display method

1 def display()
2 puts "Name:
3 puts "Phone Number: + @phone_number.to_s
4 puts "Balance: " + @balance.to_s

5 end

+ @name

"

Now we can immediately see the result of our actions. For example, try running the
following code, which indirectly transfers $200 from Bob’s account to Mary’s:

bob_account = Account.new(500, "Bob", 8181000000)
mary_account = Account.new(500, "Mary", 8881234567)
bob_account.withdraw(200)

mary_account.deposit(200)

bob_account.display()

mary_account.display()

Note that in both the method definition in Example 9-6 and in its use in the preceding
code, empty parentheses are included. Such use is optional; however, we include it to
reinforce the fact that parameters are needed.

At the end of executing those instructions, bob_account would have $300 as its balance,
and mary_account would have $700. However, every time we would want to use the
Account class to transfer money, we would have to write two lines: one for withdrawing
from the old account and another for depositing to a new one. It would be much easier
to use the Account class if the two functionalities were combined into a single method.
This single method would need to affect two separate instances of a single class. This is
done by passing an account object to a new method called transfer, shown in
Example 9-7.

Example 9-7. Transfer method

1 def transfer(amount, target_account)
2 @balance -= amount

3 target_account.deposit(amount)

4 end

Finally, all our methods thus far affected values stored in the program.

However, none of our defined methods returned a value to the invoking statement. That
is, if one wished to assign the balance of an account to a variable, this balance would
need to be returned after a sequence of deposits and withdrawals. To obtain this value,
a method must be defined that returns a value. We define such a method, called
status, as shown in Example 9-8.

Example 9-8. Status method

1 def status
2 return @balance
3 end

9.3 Dataand Methods | 127

Two items are critical to note about the definition of the status method. First, the
return construct returns the value of @balance to the method-invoking element. For
the sophisticated Ruby programmer, the reality is that Ruby always returns the value of
the last statement executed. However, if a different value or better clarity is desired, a
return statement is often used.

Second, since there is no local overriding parameter called @balance, the global value
for @balance is accessed. Example 9-9 contains the full implementation of our
Account class.

Example 9-9. Account—final version (version 5)

1 class Account

2 def initialize(balance, name, phone_number)
3 @balance = balance

4 @name = name

5 @phone_number = phone_number

6 end

7

8

9

def deposit(amount)
@balance += amount
10 end
11
12 def withdraw(amount)
13 @balance -= amount
14 end
15
16 def display
17 puts "Name:
18 puts "Phone number: " + @phone_number.to_s
19 puts "Balance: " + @balance.to_s
20 end
21
22 def transfer(amount, target_account)
23 @balance -= amount
24 target_account.deposit(amount)
25 end
26
27 def status
28 return @balance
29 end
30 end

+ @name

9.4 Summary

We described how to create objects and methods. The special method initialize was
discussed as the means to implement a constructor. Also, class variables were described.

128 | Chapter9: Defining Classes and Creating Objects

9.4.1 Key Concepts

o Objects are created by instantiation. This is done via the constructor contained in
the class definition.

o When creating a class, it is important to keep in mind that objects from the class
are meant to group data and methods together.

o A key point to keep in mind when working with objects is that once an object has
been created, it abstracts the details away from the program that uses it. In other
words, you can use an object without seeing the details of that object directly.

9.4.2 Key Definitions

o Instantiating objects from classes: The creation of new objects.

o Constructor: A special method that all classes have that initializes the data in an
object each time a new object is created.

o Instance variable: A variable that is unique to an instance of a class. It stores infor-
mation relevant to the object.

9.5 Exercises

1. Create two classes to represent the following two objects: televisions and speakers.
Include an initialize function and several methods to interact with your objects.

2. Given two Cartesian points (x,, y,) and (x,, y,), the slope of the line segment con-
necting them is given by the formula (y, - y,)/(x, - x,).

Write a class that represents a Cartesian point. Define a method find_slope that
takes in a Cartesian point object and finds the slope between the two points. Test
your class with the following:

a. (0,0) (3,4)
b. (2,3) (6,5)
c (2,2)(2,7)
What happens in the last case? Why does that happen?

3. Define a class that compares two numbers and outputs the larger one. Test your
solution.

4. Briefly explain the code illustrated in Example 9-10.

9.5Exercises | 129

Example 9-10. Code for Exercise 4

1 class Profile

2 def initialize(name, phone_number)
3 @name = name

4 @phone_number = phone_number

5 end
6
7
8
9

def display

puts "Name ==> " + @name

puts "Phone number ==> " + @phone_number.to_s
10 end
11 end

5. Write a Student class that contains a student’s name, gender, phone number, and
exam score. It should also include the initialize, accumulated_score, and
display methods.

130 | Chapter9: Defining Classes and Creating Objects

CHAPTER 10
Object Inheritance

In This Chapter

o Inheritance
« Overriding methods
o Accessing the superclass

o Applications of inheritance

10.1 Introduction

The preceding two chapters introduced you to the use and creation of simple objects.
Now it is time to show how objects can be created from other objects. This chapter
covers inheritance, method overriding, and various applications of objects.

10.2 Inheritance

At this point in the book, your programming style is starting to become more sophis-
ticated. No longer are you writing code where one long file encompasses everything you
do. Now you are using objects, and you are also beginning to program in an object-
oriented manner. Object-oriented programming (OOP) is a powerful form of pro-
gramming that is currently extremely popular and the backbone for many new
languages, including Ruby.

Thus far, we have talked about creating simple objects that are independent of one
another. However, one of the most powerful abilities OOP has is the ability to define
relationships between objects. The first of these relationships is known as inheritance.
To understand the concept of inheritance, imagine a ball (any spherical object that could

131

Gem of Wisdom
. Object inheritance is one of the most powerful parts of object-oriented pro-
" gramming. Inheritance enables hierarchical decomposition of structures into

logically encapsulated units.

pass for a ball will do). Perhaps you are thinking of a baseball, a tennis ball, or a ping-
pong ball; it does not matter which because all those balls have alarge degree of similarity
among them, despite being different types of balls or even different objects. If we needed
to accomplish some task and asked you for a ball, they could all work despite their
differences. Inheritance allows us to define these types of relationships with Ruby ob-
jects. This ends up saving the programmer significant time and code because she or he
need not redefine parts of the objects that are similar.

Let’s return to our bank account example from the preceding chapter. It defined what
is essentially a checking account, and our bank is no longer happy with just this one
type of account; now it wants to expand to include savings accounts. The first thing to
notice are the similarities between a savings account and a checking account: they both
maintain a balance and can have money withdrawn from them and deposited to them.
The class that defines the similarities in the relationship is referred to as the parent class,
or the superclass.

The main differences between the two bank accounts are that you cannot withdraw
beyond the minimum balance from a savings account (we will touch on this in the next
section) and that a savings account generates interest. The class that defines the differ-
ences in the relationship is referred to as the child class or the subclass. Now we will use
inheritance to define this SavingsAccount class (see Example 10-1).

Example 10-1. SavingsAccount version 1

require_relative '../chapter_09/account_5.rb'

1
2
3 class SavingsAccount < Account

4 def initialize(balance, name, phone_number, interest, minimum)
5 super(balance, name, phone_number)

6 @interest = interest

7 @minimum = minimum

8 end

9

10 def accumulate_interest

11 @balance += @balance * @interest

12 end

13 end

Note that we use the require_relative command instead of the require command.
require loads files that are installed as Ruby libraries or files for which the full path to

132 | Chapter10: Object Inheritance

the file is given. require_relative is used to load files without specifying the full path
to the file; it looks for files in a location relative to the file require_relative is used in.

The first thing to note in the code provided in Example 10-1 is the < symbol (on line 3).
This is the symbol used to define inheritance in Ruby. In this case, the parent class is
the Account class, which is predefined via line 1, and the child class is the
SavingsAccount class. See the account class in Example 9-9.

The next thing to look over is the constructor of the SavingsAccount class, expressed
by the initialize method online 4. Immediately, in line 5, this method calls a method
named super (), which is the equivalent of calling the initialize method for the su-
perclass Account. After this, we initialize the instance variables @interest and
@minimum. It is important to note that these pieces of data distinguish a SavingsAccount
from a CheckingAccount and the subclass from the superclass.

Finally, there is the accumulate_interest method, which is just a simple interest
calculation.

However, thanks to inheritance, the SavingsAccount class can do more than just ac-
cumulate interest. It also inherits all the data and methods from the Account class.
Table 10-1 is a summary of everything inherited by the SavingsAccount class.

Table 10-1. SavingsAccount inherited summary

Data Methods

@balance withdraw(amount)
@name deposit(amount)
@phone_number transfer(amount, targetAccount)

display

If we create an instance of the SavingsAccount class:

account = SavingsAccount.new(200.00, "Reynolds",
9694905555, 0.015, 150)

we can then call any of the following methods:

account.deposit(amount)
account.withdraw(amount)
account.transfer(amount, targetAccount)
account.accumulate_interest
account.display

10.2 Inheritance | 133

This explicitly shows the power of inheritance. Although we never defined four of the
five methods shown for the SavingsAccount class, we can use them because they are
inherited from the parent class, Account. The SavingsAccount class consists of only 11
lines of code, but it has as much functionality as 41 lines of code (the number of lines
of code in Example 10-1 plus Example 9-9).

If we were to return to the transfer(amount, targetAccount) method from the
preceding chapter we would see that it was designed to transfer money from one
account to another. At the time we created the method, we had not designed a
SavingsAccount and were content with it working only on Account objects. However,
it will work on SavingsAccount objects, because a SavingsAccount is an Account; it
has enough similarity for a transfer between accounts to be possible. This is another
powerful ability granted by inheritance, and it is known as polymorphism.
Polymorphism, however, does not work both ways. With the transfer(amount,
targetAccount) method example, the polymorphism is from the subclass to the su-
perclass. Polymorphism will not work when you are trying to morph from a superclass
to a subclass, because the subclass has abilities the superclass does not. To express this
in an example, imagine trying to call the accumulate_interest() method from an
Account object; it won’t work because only SavingsAccount objects, not Account ob-
jects, have the accumulate_interest() method.

10.3 Basic Method Overriding

When extending a class, it is sometimes convenient to alter methods that already exist
in the class’s superclass. For example, both the checking and saving accounts need a
method for withdrawing money. However, the methods are only the same on the outside.
Unlike the regular checking account, the savings account needs to check if the balance
would fall below the minimum allowed. To achieve this, the SavingsAccount class will
need to override the withdraw method by defining its own withdraw functionality, as
shown in Example 10-2. Overriding is accomplished by using the same name in the
local class. The local definition always supersedes the parent definition.

134 | Chapter 10: Object Inheritance

Example 10-2. SavingsAccount version 2

require_relative '../chapter_09/account_5.rb'

1
2
3 class SavingsAccount < Account

4 def initialize(balance, name, phone_number, interest, minimum)
5 super(balance, name, phone_number)

6 @interest = interest

7 @minimum = minimum

8 end

9

10 def accumulate_interest

11 @balance += @balance * @interest

12 end

13

14 def withdraw(amount)

15 1if (@balance - amount >= @minimum)

16 @balance -= amount

17 else

18 puts "Balance cannot drop below: " + @minimum.to_s
19 end

20 end

21 end

Instead of calling on the withdraw method that belongs to Account, the SavingsAccount
class will use the new withdraw method that overrode it. As a result, any instances of
SavingsAccount will not be able to fall below their minimum account balances. This
powerful property of OOP has its problems. It implies that the writer of a subclass be
fully cognizant of the methods and instance variables of the superclass.

10.4 Accessing the Superclass

In many cases, the overriding methods will have similar functionality to the methods
they override. It is counterproductive to the concept of inheritance to just rewrite the
same methods again with slightly altered code. Inheritance exists to make code reuse
as easy as possible. As such, it provides a way to avoid rewriting the superclass method.
Simply insert the word super with all the parameters that would be used to call the
superclass method bearing the same name wherever you would like the superclass’s
method, just like the initialize method. Applying this to our new SavingsAccount
class, we get the code in Example 10-3.

10.4 Accessing the Superdass | 135

Example 10-3. SavingsAccount version 3

require_relative '../chapter_09/account_5.rb'

1
2
3 class SavingsAccount < Account

4 def initialize(balance, name, phone_number, interest, minimum)
5 super(balance, name, phone_number)

6 @interest = interest

7 @minimum = minimum

8 end

9

10 def accumulate_interest

11 @balance += @balance * @interest

12 end

13

14 def withdraw(amount)

15 1if (@balance - amount >= @minimum)

16 super(amount)

17 else

18 puts "Balance cannot drop below: " + @minimum.to_s
19 end

20 end

21 end

In our example, obviously the benefits seem minimal. However, for complex programs,
the advantages of using predefined classes are tremendous. Not only are we saving
ourselves the time of rewriting the class, but we are also making code maintenance
easier. If the withdraw method needs to be updated, we can update it in the Account
class. Any subclasses that use it as their superclass will be updated accordingly, wherever
they have called super.

10.5 Applications

Inheritance is a way to form new classes that borrow attributes and behaviors of previ-
ously defined classes. After learning about inheritance and method overriding, you are
probably wondering when you will ever need to use them. What is the big deal about
inheritance? Why can’t we just make a bunch of different classes? To put it simply, it
saves significant unnecessary coding by eliminating code duplication, and it simplifies
software testing and maintenance since functionality and local data are isolated. Here
are several other examples for which you can use inheritance.

10.5.1 Person Database

A contractor is looking for a way to keep track of all the people in his organization. He
has full-time and part-time employees, student interns, and volunteers. In this example,
you can make a class called Person. This class can have the individual’s name, address,
phone number, email address, and weekly hours worked. You can have a method called

136 | Chapter 10: Object Inheritance

email that emails all the employees to remind them to turn in their time sheets. Then
you can have subclasses called Full, Part, Intern,and Volunteer. For the Fullsubclass,
you can include variables like hourly wage and overtime pay. For a behavior you can
have a process_payment method to deposit money into the employee’s bank account.
A student Intern would have different variables. Maybe you want to keep track of who
has the highest grade-point average or test scores to see which one is the top intern.
Thus, you would create some variables for the aforementioned categories. For members
of the Volunteer subclass, you probably would not want to send them an email about
turning in their time sheets to get paid, so you should make a custom method that asks
them how many hours they volunteered. You can create an email method that overrides
the previous one.

10.5.2 Grocery Store

You go to a small grocery store and overhear the owner complaining about keeping
track of his food. He orders food every week, but his employees have no idea what to
do with the food when it comes in. You can create a database program with a class called
Food. This class can have variables like the name of the item, the price, and the location
where it is stored. You can have a method called PrintLabel to create price labels to
stick on the food. Possible subclasses to consider are Frutit, Meat, and Grain. Most of
the foods will have traits in common, so you won't need to worry about creating too
many variables. The PrintLabel method will create tiny stickers you can put on the
food, but what if you had a Frutit like raisins or grapes? There is no possible way you
can print labels to stick on each individual fruit. You will probably want to use method
overriding to print bigger labels you can stick on the shelf near the respective fruit.

10.5.3 Video Games

You have been hired to create a role-playing video game called “Pirates and Ninjas of
the Pacific,” where players can choose to play as ninjas or pirates. How are you going to
keep track of all the players’ characters? You can create a class called Player with vari-
ables for name, health points, and experience. You should also include methods for
walking and fighting so that the player can move around and kill monsters by fighting
with them. Since pirates and ninjas obviously have different skills, you will probably
want to create subclasses called Pirate and Ninja. Ninjas generally fight using hand-
to-hand combat; so you would not need to change their Fight method. Pirates, on the
other hand, generally lack hand-to-hand combat skills and use guns instead. What’s the
solution? Override their Fight method with something that allows them to shoot guns.
But ninjas don't always just fight with their hands, so you could create additional
methods like throw and jump.

Looking at this and the preceding examples, you can get the general idea for when
classes, inheritance, and method overriding can be useful. These techniques are used in

10.5 Applications | 137

every field of computer science. You can implement inheritance whether you are pro-
gramming for a contractor, a grocer, or a video game company. As an exercise, try to
come up with three of your own examples for which you can use classes, inheritance,
and method overriding.

10.6 Summary

We have introduced the notion of object inheritance and shown some examples.

10.6.1 Key Concepts

« One of the most powerful tools in object-oriented programming (OOP) is that ob-
jects can be created from other objects and use the resources of the parent object.
This is known as inheritance. In this relationship, the parent class or superclass
defines the relationship with the child class or subclass.

o Subclasses inherit both data and methods from their parent class.

o A key point to keep in mind when working with inheritance is that polymorphism
often takes place, which in some cases can lead to a need for method overriding.

10.6.2 Key Definitions

o Inheritance: When the relationship between two classes is defined.

Superclass: The class that defines the object for the relationship.

Subclass: The class for which the relationship is defined.

Method overriding: When the method for a parent class is redefined for a child class.

Polymorphism: Allows different data types to be handled by a unified interface.

10.7 Exercises

1. The class shown in Example 10-4 is used to keep track of the inventory for a com-
pany. It allows the user to assign a name and a manufacturer to each item. Write a
class ItemNumber that inherits from Item that lets the user input a number of items
owned for each item. Create an instance of the Item class and then an instance of
the ItemNumber class.

138 | Chapter 10: Object Inheritance

Example 10-4. Code for Exercise 1

1 class Item

2 def initialize(item, maker)
3 @item = item

4 @maker = maker

5 end

6

7 def display

8 puts "Item ==> " + @item

9 puts "Maker ==> " + @maker
10 end

11 end

2. Explain polymorphism.
3. Define OOP.

4. A university has three kinds of students: full-time students, part-time students, and
off-campus students. Each student has the following information: name, address,
phone number, Social Security number, student ID, and GPA. The full-time students
should take at least 12 credits per semester. The part-time students should take less
than 12 credits per semester. The off-campus students have no limit on credits per
semester. The tuition fee for full-time students is $8,500 for up to 18 credits per
semester and $600 for every credit over 18 credits. The tuition fee for part-time
students is $750 per credit. The tuition fee for off-campus studentsis $520 per credit.
Write a program that lists student information and calculates their tuition fees.

5. Writea program for the grocery store example described in Section 10.5.2, “Grocery
Store”

10.7 Exercises | 139

CHAPTER 11
File Input/Output

In This Chapter

« Reading files
o Writing files

11.1 Introduction

Until this point, all of our programs have taken a data set of values from user input. Any
given program took in one data set, which consisted of one or more related values from
the user, and then performed a computation based on that data set. Imagine a program
that has many data sets, each consisting of multiple values. Entering all the data sets by
hand could be somewhat time-consuming. Also, some data sets may come from external
sources and not directly from the user.

The techniques presented in this chapter will allow you to manipulate files and utilize
their data within your software. File input/output (I/O) allows software to perform
computations on sets of data until a desired end result is achieved.

11.2 File Access: Reading and Writing

To access files, the built-in Ruby File class is used. This class contains multiple methods.
We use the following: open, close, gets, and puts. The method File.open instantiates
a new object that enables Ruby to read from or write to an existing or new file. The
object returned by File.open can then be used by Ruby to access the file. The following
code shows how to open a file:

myfile = File.open(file_name, access_mode)

141

N
Gem of Wisdom
.. Files provide access to data resident in the computer system’s long-term memory.
oy Storage in long-term memory, such as disks, provides data resiliency, namely,
permanence. That is, disks work even without power, so they store things far
longer than the internal random access memory, which works only if the power
is on.

aqs
[N
N

The myfile variable is a File object that can now be used to interact with the file’s
contents, depending on what access mode is used. Note that file name and access
mode are strings. The variable file_name is a representation of a path to a file, such
as/home/ruby/file.txt. The myfile variable in our program islocal to only our program.
Two of the most basic access modes and what they do are shown in Table 11-1.

Table 11-1. Some file access modes

Mode Description

r Read access only. Points to start of the file. This is the default, but it is good programming style to specify it anyway.

W Write access only. Points to the beginning of the file that will overwrite the file’s content if it already exists.

To read aline of characters from a file, call the gets method on the myfile object. When
the gets method is called, it reads characters until it reaches a newline character (\n),
and then it returns what it read. The File object keeps track of what has been read in,
so each successive call to gets will always return the next line, until it reaches the end
of the file and returns nil. nil has the logical truth value of false. Every other value
returned by gets has the logical value of true. Consider the code provided in
Example 11-1, which reads in a file foo.txt and then prints it out.

Example 11-1. Sample code for file reading
myfile = File.open("foo.txt", "r")

whole_file = ""

1

2

3

4 while (input_line = myfile.gets)
5 whole_file += input_line

6 end

7

8 puts "Contents of input file:"
9
10

puts whole_file
myfile.close()

o Line 1 opens foo.txt for read access.

o Line2 instantiates an empty string variable, whole_file, which will be used to store
the file to display.

o Lines 4-6 contain a loop that reads the file into input_1line, one line at a time, and
appends each line into whole_file.

142 | Chapter 11:File Input/Output

o Line 9 prints out the file.

Sequentially writing to a file is similar to sequentially reading from a file. Instead of
opening the file in read mode, the file needs to be opened with w for writing access. To
write text to a file, use the local variable myfile to call the puts method:

myfile.puts("text goes here!")

The code shown in Example 11-2 opens a file for write access, accepts user input, and
writes that input to the file. It will then close the file, reopen it, and print the contents
to verify correctness.

Example 11-2. File read/write example

file_a = File.open("bar.txt", "w")

puts "Please enter a line of text"
line = gets()

file_a.puts(line)

file_a.close()

file_b = File.open("bar.txt", "r")
puts "Contents of file:"

puts file_b.gets()

file_b.close()

R O Voo ~NOULLD WNBRE

P

o Line 1 opens bar.txt as file object file_a with write access.
o Lines 3-4 take text input from the user.
o Line 5 writes the user input into "bar. txt".

o Line 6 closes the File object file_a (this saves the text inside it by closing the file
and preventing further access to it).

o Line8instantiatesa new File object file_b. This object will be used for the purpose
of reading the content of bar.txt. Note the file access mode r.

o Line 10 outputs the contents of the newly created file to the console, illustrating
that the code in Example 11-2 behaves in the desired fashion.

11.2.1 File Reader Class

We will now define two classes that encapsulate reading in a file and writing out a file.
Then we will use the two classes to create a file copy program that will read text from a
file and then copy the text into a new file.

The class presented in Example 11-3 encapsulates reading and displaying a file.

11.2 File Access: Reading and Writing | 143

Example 11-3. FileReader class

class FileReader

1
2
3 def initialize(file_name)

4 @file = File.open(file_name, "r")
5 end

6

7

8

def read_file

whole_file = ""
9 while (input_line = @file.gets)
10 whole_file += input_line

11 end

12

13 return whole_file
14 end

15

16 def display

17 puts "Contents of input file:"
18 puts read_file

19 end

20

21 def close

22 @file.close()

23 end

24 end

o Lines 3-5 define the constructor. The variable @f ile references the File object that
has been opened.

o Line 4 opens the file for the purpose of reading the contents. The r indicates that
this file is to be open for reading.

o Lines 7-14 define the read file method. This method incorporates a basic loop
that goes through a given file using gets for the purpose of reading one line at a
time.

o Line 10 appends (adds to the end of the string) to whole_file the contents of the
currently read line of the file.

o Line 13 returns the contents of the file that is now stored in whole_file.

o Lines 16-19 define a display method that outputs the contents of the file.

Lines 21-23 define a close method that closes the opened file, @file.

11.2.2 FileWriter Class

The class in Example 11-4 encapsulates writing to and closing a file.

144 | Chapter 11:File Input/Output

Example 11-4. FileWriter class

class FileWriter

1
2
3 def initialize(file_name)

4 @file = File.open(file_name, "w")
5 end

6

7

8

def write_line(output_line)
@file.puts(output_line)
9 end

11 def close

12 @file.close()
13 end

14 end

o Lines 3-5 define the constructor.
o Line 4 opens the file file_name using w for write access mode.

o Lines7-9 define thewrite_line method, which outputsasingleline, output_line,
to a file associated with the FileWriter object.

o Line 8 makes use of the puts method to output the contents of a given output_line
to the file referenced by @file.

o Lines 11-13 close the file. This ensures that all the data that have been written to
the file are actually written to it. That is, data that are temporarily buffered in in-
termediate storage are actually written to secondary (permanent) storage. Buffering
is commonly used to reduce output writing delays.

The above use of buffers may seem obscure for a reader who is not familiar with the
actual mechanisms employed in writing a file. In reality, the puts method does not
actually write to a file; it actually fills a holding area commonly referred to as a buffer.

11.2.3 File Reader/Writer Example

The code in Example 11-5 will read in a file and write the contents out to a new file.
This code assumes you have written out the class definitions for FileReader and
FileWriter given in the preceding section as files named file_reader.rb and
file_writer.rb.

11.2 File Access: Reading and Writing | 145

Example 11-5. FileReader/FileWriter example

require_relative "file_reader.rb"
require_relative "file_writer.rb"

fr = FileReader.new("input.txt")
fw = FileWriter.new("output.txt")

input = fr.read_file()
fw.write_line(input)

=

fw.close()
fr.close()

B O VWO NGOV WN PP

=

o Lines 1 and 2 import the class definitions of FileReader and FileWriter.

o Lines 4 and 5 create instances of our two classes, the first for input, the second for
output.

o Line 7 reads the file into a string called input.
o Line 8 writes the string input out to the file held by the instance of FileWriter.
o Lines 10 and 11 close both of the open files.
To verify that the code presented in Example 11-5 works correctly, use the input text

file with the content shown in Example 11-6. After running Example 11-5’s code with
the input from Example 11-6, ensure that output.txt is the same as input.txt.

Example 11-6. Sample input file

Hello world!
A mighty fine day for ruby programming!
Computer Science is the best!

11.3 Summary

We described basic file input and output operations.

11.3.1 Key Concepts

« Text files in Ruby are contiguous streams of data in the form of characters.

« Data can be entered into a program using file access; this is done through file input/
output or I/O.

o To read from or write to a file, one must access the file through Ruby’s File class.

146 | Chapter 11: File Input/Output

11.3.2 Key Definitions

o File access: Opening a file for reading or writing.

o Input: Reading information from a stored file.

o Output: Writing information to a file for storage.

11.4 Exercises

AN Ul W

The game of Go is often played online. Many users save their game data for later
analysis. The game is played by two players who take turns placing stones (one
player using black stones and the other using white stones) on the intersections of
a 19 x 19 board. Create a program to enter each move of a game and save that
information to a file.

. Write a program that quizzes the user on her or his vocabulary. Make the program

read a set of words and definitions from a file; display definitions one at a time, in
random order; and prompt for the appropriate word.

. Write a program that will keep track of the mileage for oil changes for your car.
. Write a program that reads the content of a file and outputs it to the screen.
. Write a program that takes input from the user and saves it to a file.

. Write a program that creates and stores a simple address book.

1.4 Exercises | 147

CHAPTER 12
Putting It All Together: Tic-Tac-Toe

In This Chapter

o Approaching the problem

« Implementing tic-tac-toe

12.1 Introduction

It is finally time to put everything you know all together. You will no longer use pro-
gramming elements in isolation; writing programs rarely involves using only if state-
ments, loops, or objects. Typically, all programming elements are interleaved. For clarity,
we described these elements in isolation; now we integrate them. The challenge is to
create a task that requires integration that is not too simple to be uninteresting but not
so complex that it requires 500 pages of text.

After much thought, we decided to develop the simple, well-known game of tic-tac-toe.
The idea is to initially develop a program that facilitates two people playing against each
other, and then to enhance the program so that a person can play against a computer.
As correct play guarantees at least a tie, we provide sufficient algorithm detail to guar-
antee that the computer will never lose. We provide sufficient code segments to illustrate
the development of the program but leave it to you to complete it. Good luck; you are
ready for it.

Using what you have learned so far, it is time to put all of your knowledge together into
one fun program. The game of tic-tac-toe is a classic, and the rules can be easily looked
up if you are not familiar with them. First you will learn how to build a Ruby program
that will allow two users to play the game. After this program has been established, we
will extend the program to allow a user to play against the computer.

149

Gem of Wisdom
. If you can write a tic-tac-toe game in Ruby that works, most people would agree
2 that you know Ruby and that you have a clue about programming. It is not the
easiest thing to do. If you grasp everything in this chapter, then you are ready to
move beyond just an introduction to computer science.

aqs
[N
N

Our tic-tac-toe game will not have a nice user interface. User interfaces are a more
advanced topic that is beyond the scope of this book. We want you to focus on problem
solving in this course and not on figuring out how to create a pretty user interface.

Our board will be drawn with simple X’s and O’s and will be invoked from the command
line of your operating system.

We will first talk about how to approach the problem, and then how to implement the
solution in an incremental fashion.

12.2 Programming Approach

First we need to break the problem into key steps. Many programmers are tempted to
run to the computer and start writing code immediately and then debug their code. This
is not recommended.

It is strongly suggested that you step away from the computer, grab paper and pencil,
and write out the key algorithms that will be needed to solve the problem. As part of
this effort, you should be able to describe the key objects and methods that will be
involved.

The key steps of a tic-tac-toe game are rather straightforward. Until the board is full
and there is no winner, do the following:

1. Draw the current board.

2. Ask the player for a move.

3. Make sure the move is valid (e.g., you can’t move to a square that is already taken).

4. Store the current move.

You should write out the key objects and the key methods and then implement them
gradually.

12.3 Tic-Tac-Toe

When two players initiate a game of tic-tac-toe, what is the first thing they do? They
draw a board. Therefore, we will worry about the board first. A key object we will need
is a Board object that stores the tic-tac-toe board. Think about the properties of such a

150 | Chapter 12: Putting It All Together: Tic-Tac-Toe

Gem of Wisdom
. In Example 12-1, we use a shorthand way of declaring an array and its members.
5y Array.new(5) { 3} creates an array of five elements, with each value initialized
to 3. Lines 8-10 declare an array (line 8), with each element being an array ini-
tialized to EMPTY_POS (line 9).

qs
[N
3

board. A board is typically a large square made up of 3 x 3 smaller squares. At the start
of the game all the little squares will be empty, but later they will be filled in with X’s and
O’s as the game progresses. Therefore, we will need a 3 x 3 array that is initially empty
and can be filled in later while the game is being played. Using objects, we will be able
to design the board construction.

Using our knowledge of arrays and objects, we are able to set up the board constructor
as shown in Example 12-1.

Example 12-1. Initial board and constructor

1 class Board

2

BOARD_MAX_INDEX = 2
EMPTY_PQOS = ' '

def initialize(current_player)
@current_player = current_player

@board = Array.new(BOARD_MAX_INDEX + 1) {
Array.new(BOARD_MAX_INDEX + 1) { EMPTY_POS }

O oo ~NOUL bW

10 }
11 end
12 end

Line 3 defines the largest index (remember, array indices start at 0).

Line 4 defines what is considered an empty position, or a position not occupied by
either an X or an O.

Lines 6-11 define the constructor for our board.
Line 7 assigns an instance variable that represents the current player.

Lines 8-10 create the board instance variable, a 3 x 3 array.

The main program (tictactoe.rb) will use the board class. The start of the main program
is given in Example 12-2.

123 Tic-Tac-Toe | 151

Example 12-2. Beginning of tictactoe.rb

1 require_relative 'board.rb'

2

3 puts "Starting tic-tac-toe..."

4 players = ['X"', '0']

5 current_player = players[rand(2)]
6 b = Board.new(current_player)

7 b.display()

8 puts

o Lines 4 and 5 randomly pick an initial player (either X or O).
o Line 6 creates an instance of the Board class and assigns it to b.
o Lines 7 and 8 display the initial blank board and output a fresh blank line for read-
ability.
The display method (which is part of board.rb) is given in Example 12-3.

Example 12-3. Display method for Board class
1 def display

2 puts "+- - - - - - +

3 for row in 0..BOARD_MAX_INDEX
4 # print has to be used when we don't want to output a line break
5 print "| "

6 for col in 0..BOARD_MAX_INDEX
7 s = @board[row][col]

8 if s == EMPTY_POS

9 print col + (row * 3) + 1
10 else

11 print s

12 end

13 print " | "

14 end

15 puts "\n+- - - - - - +"

16 end

17 end

o Line 2 prints a row of dashes (the top of the board).

o Line 3 starts an outer loop that runs through each row.
o Line 6 starts an inner loop that traverses each column.
o Line 7 assigns the current cell to the variable s.

o Lines 8-12 print the number of the cell if it’s currently unoccupied or the current
occupant if the cell is occupied.

Note the difference between print and puts: print simply writes the characters passed
to it without writing an end of line upon completion. Thus, if one wishes to continue

152 | Chapter 12: Putting It All Together: Tic-Tac-Toe

writing to a given line, print would be used. Remember, however, that if using print
and a new line is desired, the newline character (\n) must be entered, as shown in line
15. This is in contrast to puts, which automatically inserts the newline character every
time.

Returning to our main program, the key loop that runs the game will be implemented.
The code is presented in Example 12-4. (The code begins at line 1; however, this is a
continuation of tictactoe.rb.)

Example 12-4. Continuation of tictactoe.rb

1 while not b.board_full() and not b.winner()
2 b.ask_player_for_move(current_player)
3 current_player = b.get_next_turn()

4 b.display()

5 puts

6 end

7

8 if b.winner()

9 puts "Player " + b.get_next_turn() + " wins."
10 else

11 puts "Tie Game."

12 end

13 puts "Game Over"

o Line 1 starts a loop that continues as long as the board is not full and there is no
winner.

o Line 2 prompts the current player for a move.
o Line 3 gets the next player.
o Lines 4 and 5 display the current board.

o Lines 8-13 print the winner’s name if there was a winner, or “Tie Game” if the game
ended in a tie.

The loop ends when there is a winner or there is a full board detected. At this point, you
can see we need to discuss the board_full method, the winner method, and the
get_next_turn method. The code presented in Example 12-5 is for the board_full
method. This method determines if the board is full, meaning that no more pieces may
be placed.

123 Tic-Tac-Toe | 153

Example 12-5. board_full method

1 def board_full
2 for row in 0..BOARD_MAX_INDEX

3 for col in ©..BOARD_MAX_INDEX

4 if @board[row][col] == EMPTY_POS
5 return false

6 end

7 end

8 end

9

Since we found no open positions, the board is full
10 return true
11 end

o Line 4 checks each cell to see if it is unoccupied. If at least one cell is unoccupied,
the board is not full and the game must continue.

o Line 10 returns true in the event that none of the cells are open for possible capture.

The winner method is more complex. Essentially, we must check every row, every col-
umn, and every diagonal for a winner. The method is presented in Example 12-6.

Example 12-6. Winner method

1 def winner

2 winner = winner_rows()
3 if winner

4 return winner

5 end

6 winner = winner_cols()
7 if winner

8 return winner

9 end

10 winner = winner_diagonals()
11 if winner

12 return winner

13 end

14 # No winners

15 return

16 end

The winner method uses the helper methods winner_rows, winner_cols, and
winner_diagonals, which return the player’s symbol if the player won by connecting
the rows, columns, or diagonals with her or his pieces, respectively. If winner is set, then
we know that the current value of winner is the player who won the game. Otherwise,
we return nothing, signifying there is no winner yet.

The methods winner_rows, winner_cols, and winner_diagonals are good examples
of class methods, as explained in Chapter 9. They are all fairly straightforward, as they
all look for three of the same values with regard to their given task. The meth-
od winner_rows is shown in Example 12-7.

154 | Chapter 12: Putting It All Together: Tic-Tac-Toe

Gem of Wisdom
. Aside from being able to return values, the return keyword immediately stops
1% execution of the current method and returns to the one from which it was called.
This is used heavily in the winner method. If the winner is found in the rows, the
columns and diagonals are not searched. Likewise, if the winner is found in the
columns, the diagonals are not searched.

aqs
[N
N

Example 12-7. winner_rows method

1 def winner_rows
2 for row_index in 0..BOARD_MAX_INDEX

3 first_symbol = @board[row_index][0]

4 for col_index in 1..BOARD_MAX_INDEX

5 if first_symbol != @board[row_index][col_index]
6 break

7 elsif col_index == BOARD_MAX_INDEX and first_symbol != EMPTY_POS
8 return first_symbol

9 end

10 end

11 end

12 return

13 end

o Line 2 begins an outer loop to look for a winner across a row. For each row, all the
columns are checked. The variable first_symbol contains the symbol that must
match.

« Line 3 initializes first_symbol for row 0.

o Lines 4-10 provide an inner loop that looks at all elements in the given column. If
a cell does not match the first_symbol value, then it is not a winning combination.

For example, if the first_symbol value was initially an O and now we encounter
an X in the same column, then this is not a winning combination. If we reach the
end of the columns, we have a winner, and we return the winner as its name is in
the first_symbol column.

o Line 7 contains a final check to make sure we have not found three empty positions
in a column. If we do not return a winner, then we simply return on line 12 (this is
essentially returning a nil or false value) to the caller of this method.

The next method, presented in Example 12-8, is very similar in that itlooks for a winning
column. This time, a given column is checked, and we travel down the column checking
to see if we have all matching symbols.

123 Tic-Tac-Toe | 155

Example 12-8. winner_cols method

1 def winner_cols

2 for col_index in 0..BOARD_MAX_INDEX

3 first_symbol = @board[0][col_1index]

4 for row_index in 1..BOARD_MAX_INDEX

5 if first_symbol != @board[row_index][col_1index]
6 break

7 elsif row_index == BOARD_MAX_INDEX and first_symbol != EMPTY_POS
8 return first_symbol

9 end

10 end

11 end

12 return

13 end

Finally, we look for a win across a diagonal. This is inherently more difficult because it
requires a backward traversal of the columns. This is done with the winner_diagonals
method shown in Example 12-9.

Example 12-9. winner_diagonals method

1 def winner_diagonals

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

first_symbol = @board[0][0]
for index in 1..BOARD_MAX_INDEX

if first_symbol != @board[index][index]

break

elsif index == BOARD_MAX_INDEX and first_symbol != EMPTY_POS

return first_symbol

end
end
first_symbol = @board[0][BOARD_MAX_INDEX]
row_index = 0
col_index = BOARD_MAX_INDEX
while row_index < BOARD_MAX_INDEX

row_index = row_index + 1

col_index = col_index - 1

if first_symbol != @board[row_index][col_index]

break

elsif row_index == BOARD_MAX_INDEX and first_symbol != EMPTY_POS

return first_symbol

end
end

return

23 end

o Line 2 initializes our search with the upper-lefthand corner of the board.

o Lines 3-9 traverse the diagonal from the top left to the bottom right, continuing as
long as there is a match.

o Line 10 sets the initial value to the top right.

156 |

Chapter 12: Putting It All Together: Tic-Tac-Toe

o Lines 11-20 check the diagonal from the top right to the bottom left. If no matches
are found, we return nothing (line 22).

The only methods we have not yet described are the ask_player_for_move method and
the validate_position method, which simply prompt the user for a move and ensures
that the move is allowed. The ask_player_for_move method is presented in
Example 12-10.

Example 12-10. ask_player_for_move method

1 def ask_player_for_move(current_player)
played = false

3 while not played

4 puts "Player " + current_player +
5 move = gets.to_1 - 1
6
7
8

N

: Where would you like to play?"

col = move % @board.size

row = (move - col) / @board.size
if validate_position(row, col)
@board[row][col] = current_player
10 played = true

11 end

12 end

13 end

O

o Line 3 starts a loop that keeps processing until a valid move is obtained. The flag
played is initially set to false.

o Line 4 asks the user for her or his move.

o Line 5 obtains the user’s response with a call to gets, which obtains a string and
then converts it to an integer.

« Line 6 converts the number 1-9 into column number 0-2, and line 7 converts it
into a row number. These conversions stem from the equation that took each cell
of the array and assigned a cell number. Convince yourself that lines 6 and 7 are
correct.

« Line 8 calls another internal method, validate_position, which is a method that
makes sure the user chooses a spot on the board and a spot that is not already taken.
If a valid position is obtained, then line 10 sets the played flag to be true, and the
loop will end when line 3 is encountered. For an invalid move, the played flag is
not set to true, so the loop will continue again.

The validate_position method is given in Example 12-11.

123 Tic-Tac-Toe | 157

Example 12-11. validate_position method

1 def validate_position(row, col)
2 if row <= @board.size and col <= @board.size

3 if @board[row][col] == EMPTY_POS
4 return true

5 else

6 puts "That position is occupied."
7 end

8 else

9 puts "Invalid position."

10 end

11 return false

12 end

Line 2 makes sure the row and column are within the range of the board. We know
it's a three row by three column game, but by using the size variable we could easily
expand this to larger board sizes for other games, like Connect Four. In this case
the size is three elements, 0, 1, and 2. The size was established earlier, but this will
allow us to easily change the size of the board.

Line 3 checks to make sure the user has selected a position that was previously
empty. If so, true is returned, and we are done.

Lines 5-7 handle the case for when a user selects an occupied position.
Lines 8-10 handle the case for when a user selects a position off the board.

Line 11 returns false, which indicates that an invalid move occurred. Note that
line 11 is reached only when an invalid move is attempted.

Finally, we need to discuss the get_next_turn method, and we are done. Itis very simple
and is shown in Example 12-12.

Example 12-12. get_next_turn_method

1 def get_next_turn

2 if @current_player == 'X'
3 @current_player = '0'

4 else

5 @current_player = 'X'

6 end

7 return @current_player

8 end

Line 2 checks to see if we were using an X, and if so, we change to the 0 in line 3;
otherwise, it was an 0, so in line 5 we turn it into an X.

At this point, we have created a working game of tic-tac-toe that you can play against
yourself or a friend. The code written for this game encompasses almost all the topics
covered in this book. If you understood it all, give yourself a pat on the back. If you are

158

| Chapter 12: Putting It All Together: Tic-Tac-Toe

frustrated with this chapter and do not understand all the ideas presented, it is a good
idea to go back to previous chapters and play around with the Ruby concepts presented
in those chapters.

Don't get too comfortable if you've done well thus far. The next section will add artificial
intelligence to our tic-tac-toe game, enabling you to play against the computer.

12.4 Tic-Tac-Toe Revised

Although a player-versus-player version of tic-tac-toe is nice, chances are you will not
have a friend who wants to spend time playing computerized tic-tac-toe with you for
long. Perhaps it will be more satisfying if you create a version of tic-tac-toe that will play
against you. This is what we will do in this section.

First, let’s understand the change we are trying to make. Instead of always having the
player input the position on the board to fill, we want the computer to take one of the
turns. Therefore, we will make a clearer distinction between the human’s move and the
computer’s move. The code in Example 12-13 illustrates this change.

Example 12-13. Revised ask_player_for_move method

1 def ask_player_for_move(current_player)
2 if current_player == COMPUTER_PLAYER
3 computer_move(current_player)

4 else

5 human_move(current_player)

6 end

7 end

The purpose of the ask_player_for_move method is to switch between player input
and computer Al (artificial intelligence) based on the current player. If the current player
is the computer (line 2), let the computer take its move (line 3); otherwise (line 4), let
the user take her or his move (line 5). Make sure to define the constant
COMPUTER_PLAYER. It may be set equal to X or 0. This would also be a good time to define
the constant HUMAN_PLAYER. This should be set equal to 0 if COMPUTER_PLAYER is equal
to X, or X if COMPUTER_PLAYER is equal to 0.

If you have been reading carefully, you will have noticed that ask_player_for_move
was already defined pages ago, and now we have changed its definition here. Previously,
the method prompted either player one or player two for which turn she or he wanted
to make, and then took the turn if it was valid. That code was relocated to the method
human_move. The code for human_move is identical to our old ask_player_for_move
method.

At this point, we have a mechanism for changing between the human’s and the com-
puter’s turn, and we have slightly changed the definition of the human’s turn. From here

124 Tic-Tac-Toe Revised | 159

it should be clear that the next logical step is to define the computer_move method, and
it is defined in Example 12-14.

Example 12-14. computer_move method

def computer_move(current_player)
row = -1

col = -1

found = "F"

1
2
3
4
5
6 check_rows(COMPUTER_PLAYER, found)

7 check_cols(COMPUTER_PLAYER, found)

8 check_diagonals(COMPUTER_PLAYER, found)
9

10 check_rows(HUMAN_PLAYER, found)

11 check_cols(HUMAN_PLAYER, found)

12 check_diagonals(HUMAN_PLAYER, found)

13

14 if found == "F"

15 if @board[1][1] == EMPTY_POS

16 row = 1

17 col =1

18 @board[row][col] = current_player

19 elsif available_corner()

20 pick_corner(current_player)

21 else

22 until validate_position(row, col)
23 row = rand(@board.size)

24 col = rand(@board.size)

25 end

26 @board[row][col] = current_player
27 end

28 end

29 end

If this method looks complicated, don’t worry. First, let'’s walk through the code at an
algorithmic level. The computer_move method does the following in order, picking the
first rule it can successfully complete:

1.

Check the rows, columns, and diagonals to see if either the computer can win or
the human can win. If such a spot exists, take it to either win the game or prevent
the human from winning. Note that we intentionally do not include the code for
those methods, as their implementation is straightforward and their details are
unnecessary for the purposes of our discussion.

. If the middle cell is unoccupied, take the middle cell.

3. If there is an available corner, take any of the available corner spots.

If none of the prior conditions are true, pick a random cell.

160

| Chapter 12: Putting It All Together: Tic-Tac-Toe

For simplicity, we did not include all the necessary code to guarantee at least a draw
for the AI. However, in tic-tac-toe, correct play guarantees at least a draw. To guar-
antee at least a draw, the computer’s corner selection option should be modified as
follows:

If a corner spot is available, then select a corner spot, with the following corner
selection preference. If the computer went first, randomly choose among the avail-
able corners that are not adjacent to the human’s noncenter spot(s). If the human
went first, then check for one exception condition; otherwise, randomly choose
among the available corners that are adjacent to the human’s noncenter spot(s). The
exception condition is one in which only three squares are occupied, the computer
has the center square, and the human has both corners on the same diagonal; in
such a case, override the corner selection option and randomly choose a noncorner
spot. If none of the aforementioned conditions are met, then choose any available
corner.

This description defines a high-level algorithm for the game of tic-tac-toe. You now
have all the needed skills to design, develop, and debug all the implementation specifics.
Please do so and enjoy playing your computerized opponent.

12.5 Summary

Now that we have walked through a more detailed example, you should be able to
implement some fun games in Ruby. Games like blackjack and poker are now all within
your grasp.

We have combined the concepts covered in the previous chapters in this example. With
the file processing we discussed in Chapter 11, you can even make it so that you can
save the state of these games or the current high score to a file. These concepts are
common among most programming languages. So, as a programmer, it is much more
effective to learn these concepts and how they can be used to solve certain problems
than to direct your focus onto learning syntax, which is just the tool that allows us to
implement our ideas.

The best way to become more comfortable with these types of problems is to practice
doing them. Take your time with the following problems, draw out what the problem
requires, and design a solution. Eventually, this process becomes much easier, and you
will be able to implement the solution in any language.

12.5Summary | 161

12.6 Exercises

1.

Give a detailed explanation of the relationship between the board and the tic-tac-
toe objects.

. Design and implement a game of “pick a number” This is a simple guessing game

where you think of a number between 1 and # in your head (don’t let the computer
know this number). Tell the computer what 7 is, and then let the computer guess
the number. If the guess is too low, you should let the computer know that the guess
was too low; likewise, if the guess was too high you should also let the computer
know. The computer can take multiple turns (hint: it should take log # turns), but
simply guessing every number between 1 and # is far from an acceptable answer.
Implement this program two different ways: procedurally and object-oriented.

Design and implement a simplified version of the card game blackjack. The rules
are as follows:

a. A standard 52-card deck is used and shuffled well.

b. The cards have the following values: 2 to 10 are the value of the card, jack to king
have a value of 10, and ace has a value of 1 or 11.

c. Only you are playing, trying to get the cards to add up to 21 without going over
21.If you go over 21, you lose.

d. Initially you are dealt two cards. If you are dissatisfied with these cards, you can
ask for more. It is not a trade; additional cards are added. If you feel like you

have enough cards and do not want to bust, you can “stay” and end this round
of blackjack.

After the game has ended, the user should be able to play again, if she or he chooses
to do so. If so, the game will restart like a brand-new game. Implement this in an
OO fashion. If you split the work among your objects properly, you will be able to
reuse a significant chunk of code on the next problem.

. Add scoreboard functionality to Exercise 3. To do this, you need to make a few game

modifications. First, you need to ask for the user’s name at the beginning of every
game. Next, you need the ability to view the scoreboard during a game; this should
be done directly after prompting for a name. If a user’s name already exists on the
scoreboard, you will modify that user’s score. Otherwise, the new user will be added
to the scoreboard in the proper position. The scoreboard needs to remember scores
even after the program is exited (hint: write scores out to a file). If a score surpasses
another score, the ordering of scores on the scoreboard needs to change. The highest
score should be listed first, the lowest score last. The scoring criteria are defined in
Table 12-1.

162

| Chapter 12: Putting It All Together: Tic-Tac-Toe

Table 12-1. Blackjack scoring criteria

Total card value Points given

Bust -15
21 40
20 30
19 20
18 10
17 5
16 1
<16 0

. Being able to read and modify other people’s code is essential to being a successful
computer scientist. Modify tictactoe.rb and board.rb to play tic-tac-toe on boards
of size 3 x 3,6 x 6,and 9 x 9 based on the user’s choice. Adjust everything so that
the game works as well on 6 x 6 and 9 x 9 boards as it does on 3 x 3 boards.

. The current AI for the tic-tac-toe game is not perfect. Implement the behavior
discussed in this chapter’s summary to guarantee at least a draw, and ensure its
correctness.

12.6 Exercises | 163

APPENDIX A
Recommended Additional Reading

A.10S Reading Material

o Modern Operating Systems by Andrew S. Tanenbaum (Prentice Hall). http://bit.ly/
XHecjo

o Computer Systems: A Programmer’s Perspective by Randal E. Bryant and David R.
O’Hallaron (Addison-Wesley). http://csapp.cs.cmu.edu/

o Lions’ Commentary on UNIX, 6th Edition, with Source Code by John Lions. http://
bit.ly/YQIV1]

A.2 Ruby Documentation

o Ruby API documentation

o Programming Ruby 1.9, The Pragmatic Programmers’ Guide, 3rd Edition by Dave
Thomas, with Chad Fowler and Andy Hunt (Pragmatic Bookshelf). http://bit.ly/
10QnLt0

o Metaprogramming Ruby by Paolo Perrotta (Pragmatic Bookshelf). http://bit.ly/
10QnNkt

o The Ruby Programming Language by David Flanagan and Yukihiro Matsumoto
(OReilly). http://oreil.ly/1534yK7

165

http://bit.ly/XHecjo
http://bit.ly/XHecjo
http://csapp.cs.cmu.edu/
http://bit.ly/YQ1VrJ
http://bit.ly/YQ1VrJ
http://ruby-doc.org/core/
http://bit.ly/10QnLt0
http://bit.ly/10QnLt0
http://bit.ly/10QnNkt
http://bit.ly/10QnNkt
http://oreil.ly/1534yK7

A.3 Algorithm and Complexity Reading Material

o Introduction to Algorithms, 3rd Edition by Thomas Cormen, Charles Leiserson,
Ronald Rivest, and Clifford Stein (MIT Press). http://bit.ly/XHeN4A

o Algorithms in a Nutshell by George Heineman, Gary Pollice, and Stanley Selkow
(O’Reilly). http://oreil.ly/16ROhGd

o Introduction to the Design and Analysis Algorithms, 3rd Edition by Anany Levitin
(Addison-Wesley Longman, Inc.). http://bit.ly/10ZXCbw

166 | Appendix A: Recommended Additional Reading

http://bit.ly/XHeN4A
http://oreil.ly/16ROhGd
http://bit.ly/10ZXCbw

APPENDIX B
Installing Ruby

This book uses the Ruby programming language to demonstrate code. It is expected
that the student learn how to develop programs in Ruby. To accomplish such, the Ruby
language must be installed.

To install Ruby on your computer, follow the instructions that correspond to your op-
erating system (Windows, Mac, or Linux).

B.1 Windows

1. Open a web browser and go to the Ruby Installer.

2. Click the Download button on the main page.

3. Click the top file under RubylInstallers and save the file to the desktop.
4

. Double-click the file on the desktop and follow the instructions to install Ruby. irb
will automatically be installed with the package, as will the rdocs.

B.2 Linux

Debian/Ubuntu: $ sudo apt-get install ruby1.9.1-full
Gentoo: $ emerge ruby irb rdoc

Slackware: Download the source code and follow the instructions in the tar.gz file.

B.3 Mac 0S X

Ruby is installed by default in Mac OS X. However, we recommend that you update to
a later version of Ruby 1.9 by using the One-Click install.

167

http://rubyinstaller.org/
http://www.ruby-lang.org
http://rubyosx.rubyforge.org/

APPENDIX C
Writing Code for Ruby

This appendix describes tools that will make writing Ruby code easier. Utilities that
provide syntax highlighting and code indentation make it easier for you to focus on the
code you are writing.

C.1 Windows

Most Windows users will prefer to use Edit Plus 2, a text editor that uses syntax high-
lighting. This utility can be found at http://www.editplus.com. On the main page, click
on Download Latest Version and follow the installation instructions. There are also
syntax highlighting files on the website, which you will need to download for syntax
highlighting in Ruby. These can be found under the Features section. Follow download
and install instructions provided by the website.

C.2 Linux

Linux users usually have two choices when it comes to full-featured text editors: emacs
and vim. We will discuss vim here, but additional information on emacs can be found
on Google by searching for emacs. Vim is a fully customizable text editor that offers
out-of-the-box syntax highlighting for nearly every language. To learn how to use vim,
type the following in the command line:

$ vimtutor

This text editor will teach you how to use all the commands in vim. You may want to
customize vim before jumping in, so in your home directory, create a new file:

$ vim ~/.vimrc

169

http://www.editplus.com
http://www.vim.org/

and add the lines:

set number
syntax on

set nowrap
set tabstop=4

Then type :wq and press Enter to save and quit.

For a more comprehensive tutorial, read Learning the vi and Vim Editors by Arnold
Robbins, Elbert Hannah, and Linda Lamb (O’Reilly).

(.3 Mac0SX

TextMate is a wonderful (though not free) programming solution. It offers syntax high-
lighting, macros, and a very intuitive and easy interface. Mac users who do not wish to
pay for a text editing suite may also use vimin Terminal (in Applications—Utilities). See
the Linux section on getting started with that.

(.4 General Information

o Ruby files have the extension .rb.

« To run a Ruby program, either double-click the file or use the command line (as-
suming the Ruby interpreter executable is in your PATH):

$ ruby program.rb

170 | Appendix C: Writing Code for Ruby

http://shop.oreilly.com/product/9780596529833.do
http://macromates.com/

APPENDIX D
Using irb

Oftentimes while programming, you will wonder about the syntax of a command or
how something works in Ruby. Creating a new file and running it is the wrong option
in many cases because it wastes a lot of time.

irb is Ruby’s interactive interpreter (short for Interactive Ruby). This is a great tool that
you will want to learn to use, as it will greatly speed up time spent debugging code. We
also use it throughout the book to give examples.

To run irb, first open a terminal.

In Windows, you can do this by opening the Start menu and clicking on Run. A small
window will appear with a text box. Type cmd and hit Return. A black-and-white window
that has a blinking cursor will open. Welcome to the terminal.

On a Magc, the Terminal is located in Applications— Utilities.

Type irb in the terminal to launch irb. When it launches, you will be greeted with a
prompt to enter your first line of code:

irb(main):001:0>

To exit, either type exit or hit Ctrl-D. This is a terminating condition that allows you
to exit most programs.

7

About the Authors

Ophir Frieder holds the Robert L. McDevitt, K.S.G., K.C.H.S., and Catherine H.
McDevitt L.C.H.S. Chair in Computer Science and Information Processing and is Chair
of the Department of Computer Science at Georgetown University. He is also Professor
of Biostatistics, Bioinformatics, and Biomathematics in the Georgetown University
Medical Center. He is a Fellow of the AAAS, ACM, and IEEE.

Gideon Frieder is the former Dean of Engineering and currently A. James Clark Pro-
fessor Emeritus of Engineering and Applied Science in the School of Engineering of
George Washington University. Author of various academic publications in areas of
physics, logic, medical applications, and computer design, his background includes in-
dustrial and academic development of sophisticated projects such as complex systems
(in the Israeli DoD), an innovative universal emulator/computer used, among other
applications, in the certification of the Trident Submarine firing systems (in the United
States, via industrial corporations), and the design of a solar car that won first place in
the 1995 World Solar Challenge in Japan. In all cases, the development was from the
“gleam in the eye” phase through basic research, followed by development, design, cer-
tification, and prototype.

David Grossman is the Associate Director of the Information Retrieval Lab at Geor-
getown University and the Chair of the Steering Committee for the ACM Conference
on Information and Knowledge Management. Previously, he was an Associate Professor
of Computer Science and the Director of the Information Retrieval Laboratory at the
Ilinois Institute of Technology. He was a Principal Investigator on several NSF grants
that solely focused on improving the computer science undergraduate curriculum. He
also chaired, for more than six years, the II'T Computer Science Undergraduate Studies
Committee and led the department through two successful ABET reviews. He has taught
computer science courses at all levels (freshman through Ph.D. seminars) at IIT, the
University of Maryland, George Washington University, and George Mason University.

Colophon

The animal on the cover of Computer Science Programming Basics in Ruby is a common
Creeper.

The cover image is from Cassell's Natural History. The cover font is Adobe ITC Gara-
mond. The text fontis Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Computer Science
	1.1 Introduction
	1.2 Application Development
	Step 1: Understand the Problem
	Step 2: Write Out the Solution in Plain Language
	Step 3: Translate the Language into Code
	Step 4: Test the Code in the Computer

	1.3 Algorithms
	1.3.1 Algorithm Efficiency

	1.4 Summary
	1.4.1 Key Concepts
	1.4.2 Key Definitions

	1.5 Exercises

	Chapter 2. How Does the Computer Really Work?
	2.1 Introduction
	2.2 Basic Nomenclature and Components of a Computer System
	2.3 Scales of Magnitude
	2.4 Instruction Execution—Speed and Timing Scales
	2.5 Bit Strings and Their Meaning
	2.6 The Interpreter Process and Ruby
	2.7 Summary
	2.7.1 Key Concepts
	2.7.2 Key Definitions

	2.8 Exercises

	Chapter 3. Core Programming Elements
	3.1 Introduction
	3.2 Getting Started
	How to Install Ruby
	How to Save Programs

	3.3 What Is a Variable?
	Constants: Variables That Never Change
	Data Types
	Integer
	Float
	Strings
	Booleans

	3.4 Basic Arithmetic Operators
	3.5 Input and Output
	Output Using Variables
	Display User Input
	Basic Programs
	Step 1: Understanding the Problem
	Step 2: Write Out the Problem in Plain Language
	Step 3: Rewrite the Plain Language into Code
	Step 4: Test the Code in the Computer

	3.6 Common Programming Errors
	Syntax Errors
	Logic Errors

	3.7 Mixing Data Types
	3.8 Summary
	3.8.1 Key Concepts
	3.8.2 Key Definitions

	3.9 Exercises

	Chapter 4. Conditional Structures
	4.1 Introduction
	4.2 Flow of Execution
	Logic Flow

	4.3 Conditional Control
	Control Flow

	4.4 If-Then-Else Statements
	Testing Conditional Flow
	Elsif Statements

	4.5 Case Statements
	4.6 Debugging
	4.6.1 Alternative Styles of Debugging

	4.7 Summary
	4.7.1 Key Concepts
	4.7.2 Key Definitions

	4.8 Exercises

	Chapter 5. Loop Structures
	5.1 Introduction
	5.2 While Loops
	5.3 Until Loops
	5.4 For Loops and Nested Loops
	For Loops
	Nested Loops

	5.5 Infinite Loops
	5.6 Example: Finding Prime Numbers
	5.7 Summary
	5.7.1 Key Concepts
	5.7.2 Key Definitions

	5.8 Exercises

	Chapter 6. Arrays
	6.1 Introduction
	6.2 Array Types
	6.2.1 One-Dimensional Arrays
	Example: Find the Max
	6.2.2 Multidimensional Arrays
	Example: Find the Max—Modified

	6.3 Hashes
	Example: Hash
	Example: Accessing a Hash
	Example: Find the Max—Hash

	6.4 Summary
	6.4.1 Key Concepts
	6.4.2 Key Definitions

	6.5 Exercises

	Chapter 7. Sorting and Searching
	7.1 Introduction
	7.1.1 Selection Sort
	7.1.2 Insertion Sort
	7.1.3 Bubble Sort
	7.1.4 Radix Sort

	7.2 Complexity Analysis
	7.3 Searching
	7.3.1 Linear Search
	7.3.2 Binary Search

	7.4 Summary
	7.4.1 Key Concepts
	7.4.2 Key Definitions

	7.5 Exercises

	Chapter 8. Using Objects
	8.1 Introduction
	8.2 Objects and Built-in Objects
	8.2.1 Objects
	8.2.2 Built-in Objects
	8.2.3 Parameter Passing

	8.3 Summary
	8.3.1 Key Concepts
	8.3.2 Key Definitions

	8.4 Exercises

	Chapter 9. Defining Classes and Creating Objects
	9.1 Introduction
	9.2 Instantiating Objects from Classes
	9.3 Data and Methods
	9.3.1 Grouping Data and Methods
	9.3.2 Implementing Methods

	9.4 Summary
	9.4.1 Key Concepts
	9.4.2 Key Definitions

	9.5 Exercises

	Chapter 10. Object Inheritance
	10.1 Introduction
	10.2 Inheritance
	10.3 Basic Method Overriding
	10.4 Accessing the Superclass
	10.5 Applications
	10.5.1 Person Database
	10.5.2 Grocery Store
	10.5.3 Video Games

	10.6 Summary
	10.6.1 Key Concepts
	10.6.2 Key Definitions

	10.7 Exercises

	Chapter 11. File Input/Output
	11.1 Introduction
	11.2 File Access: Reading and Writing
	11.2.1 File Reader Class
	11.2.2 FileWriter Class
	11.2.3 File Reader/Writer Example

	11.3 Summary
	11.3.1 Key Concepts
	11.3.2 Key Definitions

	11.4 Exercises

	Chapter 12. Putting It All Together: Tic-Tac-Toe
	12.1 Introduction
	12.2 Programming Approach
	12.3 Tic-Tac-Toe
	12.4 Tic-Tac-Toe Revised
	12.5 Summary
	12.6 Exercises

	Appendix A. Recommended Additional Reading
	A.1 OS Reading Material
	A.2 Ruby Documentation
	A.3 Algorithm and Complexity Reading Material

	Appendix B. Installing Ruby
	B.1 Windows
	B.2 Linux
	B.3 Mac OS X

	Appendix C. Writing Code for Ruby
	C.1 Windows
	C.2 Linux
	C.3 Mac OS X
	C.4 General Information

	Appendix D. Using irb
	About the Authors

